第五讲 修正单纯形法(1)(运筹学-清华大学,林谦)

合集下载

改进单纯形法讲解1

改进单纯形法讲解1

根据矩阵理论,第二步迭代表中的任何数都可由B2-1左乘原始 数据得到 1
如:p‘
2=B2
-1
p2=
1 0 -
1 0
-
1 0 4 1 4 1 4
p‘3=B2-1 p3=
p‘4=B2-1 p4=
CB 0 0 0 8 6 8 Cj XB x3 x4 σ x3 x2 σ x1 x2 σ b 12 20 7 5 4 4 6 x1 2 1 6 7/4 1/4 4 1 0 0 8 x2 1 4 8 0 1 0 0 1 0 0 x3 1 0 0 1 0 0 4/7 -1/7 -16/7 0 x4 0 1 0 -1/4 1/4 -2 -1/7 2/7 -10/7 θ 12/1=12 20/4=5 7/(7/4)=4 5/(1/4)=20
例1. 已知: 迭代前的基为: 1 0 0 0 B=( p1, p2, p3, p4 )= 0 1 0 0 0 0 0 1 迭代后的基为: 1 0 0 1 0 0 0 0
1 1
=I
B =(p1, p2, p5, p4) =
-2 0 3 0 5 0 4 1
第r列 -a’1k/a’rk -a’2k/a’rk . . . 1/a’rk . . . . . . -a’mk/a’rk
改进单纯形法的计算步骤可以归结为: (1)在下一步迭代的基变量确定后,求新单纯形表中基矩阵B的逆 θ 矩阵B-1,并求基可行解XB=B-1 b C XC b x6 x8 x0 x0 0 x 12 2 1 1 0 12/1=12 T -1 0 x 20 1 4 0 1 20/4=5 (2)计算和单纯形乘子Y = CB B 6 8 0 0 σ 0 x 7 7/4 0 1 -1/4 7/(7/4)=4 并计算非基变量的检验数 8 x 5 1/4 1 0 1/4 5/(1/4)=20 4 0 0 σ -2 σN=CN-CBB-1N= CN- YN 6 x 4 1 0 4/7 -1/7 8 x 4 0 1 2/7 -1/7 - 1 0 0 σ -16/7 -10/7 σj=Cj-CBB Pj= Cj- Y Pj , 如果有σj ≤0,达到最优解,计算结束。否则转入下一步 (3)根据max {l ∣ l > 0,l∈IN } = k,确定 xk 为换入变量(即为新 基的基变量) 计算P‘k=B-1Pk=(a1k’、a2k’、…… amk’ ) 若aik’ ≤0,线性规划问题有无界解,计算结束。否则转入下一步 (4)按最小比值原则来确定第r行基变量xr为换出变量

运筹学讲义-单纯形方法(ppt 78页)

运筹学讲义-单纯形方法(ppt 78页)
为变量xj关于基B的判别数,j=1,2, -------, n。
7 2020/11/2
五、 单纯形方法
2、判别向量与判别数: (的b)判λ别N=向CN量-C,BB其-1中N为任对一应分基量Bλ的j=c所j-C有BB非-1基Aj变量XN 为-非---基-, 变n。量xj关于基B的判别数,j=m+1,m+2, ----(c)所有基变量的判别向量是零向量,所有基变
(一)人工变量消除法——M法 2、M法的辅助线性规划问题:
原问题:
Max z=c1x1+c2x2+……+cnxn s.t. a11x1+a12x2+……+a1nxn=b1 a21 x1+ a22x2+…… +a2nxn =b2
……
am1x1+am2x2+……+amnxn=bm x1,x2, ……,xn ≥ 0
函数值Z/ >0,则原问题无解。 [证明](请同学们自己做一做)。 (3)辅助问题在最优基B下目标函数的值Z/=0,此时有 两种情况:第一种情况,若辅助问题的最优基B对应的 基变量中无人工变量,则该最优基也是原问题的可行 基,这时候只要在单纯形表中去掉人工变量所在的列 和最后一行,即可得到原问题的初始可行单纯形表。
9 2020/11/2
五、 单纯形方法
(三)单纯形方法:表上作业法
1、单纯形表的构造
方法1:C-CBB-1A=(CB,CN)-CBB-1(B,N) =(0,CN-CBB-1N)
两边同乘上X得:
(C-CBB-1A)X= (0,CN-CBB-1N)X,化简得: Z=CBB-1b+(CN-CBB-1N) XN
3 X2 1.5 0.5 1 0.25 0

运筹学之单纯形法.ppt

运筹学之单纯形法.ppt
x1 ,x2 ,… ,xn ≥ 0
2.基本过程:
1)加入人工变量;
2)通过单纯形法的迭带,将虚拟的人 工变量从原来的基变量中替换出去, 变成非基变量,使每一个人工变量都 等于0.反之,如果不能都变为非基变 量,表明原问题无可行解.
(一)、大M法:
2.4 单纯形法补遗
2.4.1 进基变量的相持及其突破
Y
结束
N
沿边界找新
的基本可行解
2.1 单纯形法的基本思想
单纯形法的三种形式:1)方程组形式; 2)表格形式;3)矩阵形式。
2.1.1 方程组形式的单纯形法
maxZ=3X1 +5X2
X1
+X3
=8
2X2 +X4 =12
3X1+4X2
+X5 =36
X1 … X5 0
解:(1)、确定初始可行解
B=(a3 a4 a5)=I Z -3X1-5X2 =0 X3 =8- X1 X4=12-2X2
此时可以确定X5为离基变量
Z
+1/2X4 +X5 =42
X3 +2/3X4 -1/3X5 =4
X2 +1/2X4 =6
X1 -2/3X4+1/3X5=4
令X4 =X5 =0
X =(4, 6, 4, 0, 0)T Z =42
。此时4=1/2, 5=1, Z值不
再增大了,X值是最优基本解
即:X*=(4,6)T,Z*=42
X6
X7
CB XB -36 M -M -6 -M -4 0
0
M
0
0
0
X3 100
2
3
1
00
0

运筹学(3)1-3_单纯形法第1部分

运筹学(3)1-3_单纯形法第1部分
运 筹 学
运 筹 帷 幄 之 中
Operations Research
决 胜 千
线性规划
Linear Programming
里 之 外
第四节 单纯形法
线性规划单纯形(Simplex)法
单纯形法(Simplex Method)是美国人丹捷 格 (G.Dantzig)1947年创建的 这种方法简捷、规范,是举世公认的解决线 性规划问题行之有效的法。 单纯形法的表现形式:
⑤根据max{j|j>0}=k原则,确定xk为换入变量(进基 变量),再按规则计算:=min{bi/aik| aik >0}=bl/ aik 确定xBl为换出变量。建立新的单纯形表,此时基变量 中xk取代了xBl的位置。
⑥以aik为主元素进行迭代,把xk所对应的列向量变为单位列 向量,即a 变为1,同列中其它元素为0,转第③ 步。

Z
( 0)
0
(x4=3,x5=9), 三种产品的总利润为0!
第四步:分析两个基本表达式,看看目 标函数是否可以改善?
① 分析用非基变量表示目标函数的表达式
Z 2 x1 3x2 3x3
非基变量前面的系数均为正数,所以任何一 个非基变量进基都能使Z值增加 通常把非基变量前面的系数叫“检验数”;
Z 2 x1 3 x2 3x3 2(3 x2 x3 x4 ) 3 x2 3 x3 6 x2 x3 x4
可得相应的目标函数值为Z(1)=6
检验数仍有正的
返回①进行讨论。
Z c j x j c j x j cni xni c j x j cni (bi aij x j )
m
令Z 0 cnibi ,
i 1

运筹学 线性规划 单纯形法

运筹学 线性规划 单纯形法
量,alk为主元素
1.xk替换xl 2.列出新的单纯形表
① 对主元素行(第l行)
bl bl / alk , alj alj / alk
②其它行i(i≠l)
bi bi aik bl / alk , aij aij aik alj / alk
唯一最优解
例1:某糖果厂用原材料A、B、C加工成三种不同牌号的糖 果甲、乙、丙。已知各种牌号的糖果中A、B、C含量,原 料成本,各种原料每月限制用量,三种牌号糖果的单位加 工费及售价如下表所示。问该厂每月生产这三种牌号糖果 多少kg,使该厂获利最大。试建立该问题的LP的数学模型。
解:若用变量 xij 表示捷运公司在第 i(i 1,2,3,4)个月初签定的租借期为
j( j 1,2,3,4)个月的仓库面积的合同(单位为100 m)2 。因5月份起该公司不需 要租借仓库,x24 x33 x34 x42 x43 x44 均为零。该公司希望总的租借费用为最
小,故有如下的数学模型:
10 x1 2 1 0 1 1 1 1
8 x2 2 0 1 2 1 2 1
cjzj 0 0 1 2 6 M+2
答:最优解为 x1=2, x2=2, x3=0, OBJ=36
3.大M法的一些说明
(1)人工变量被迭代出去后一般就不会再成为基变量
(2)大M法实质上与原单纯形法一样,M 可看成一
个很大的常数 (3)当检验数都满足最优条件,但基变量中仍有人工
添加松弛变量、人工变 量 列出初始单纯形表
3.对目标函数求极大值标准型线性规 划问题,单纯形法计算步骤的框图
计算各列检验数бj
所有бj0
基变量中

有非零的 人工变量

某非基变

第五章 单纯形法ppt课件

第五章 单纯形法ppt课件

➢ x2+x5=250
→ 0=250?
➢ 显然不能得到相应的解。
编辑版pppt
9
一、问题的提出
➢ 为什么令x2=0,x5=0时不能得到解? ➢ 因为其余三个变量的系数列向量为
110
201
000
➢ 该矩阵是非可逆矩阵,即去掉x2和x5后的三个约束 方程线性相关,这种情况下得不到解。
编辑版pppt
10
编辑版pppt
24
二、单纯形法的基本思路和原理
➢ 3、那有没有办法在求出解之前保证我 们取得的基为可行基?
➢ 解决办法:保证右端项非负,找到一个 单位矩阵,必定是一个可行基。
编辑版pppt
25
二、单纯形法的基本思路和原理
➢ 如范例系数阵:
右端项非负
1 1 1 0 0 300 2 1 0 1 0 400 0 1 0 0 1 250
❖ 我们首先将最优解缩小在一个有限的❖ 回顾图解法,我们知道:最优解必定在可行域的顶 点上取得,而顶点的个数总是有限的。
❖ 多维线性规划问题的可行域也存在有限个顶点。
❖ 如果能够从一个顶点开始,通过某种方式向更优顶 点转移,总会找到最优点。
❖ 首先面临的问题: ❖ 如何通过代数方法找到第一个顶点?
存在3阶单位阵
编辑版pppt (初始可行基)
26
二、单纯形法的基本思路和原理
➢ 基本可行解为(0,0,300,400,250) ➢ 此可行基称为初始可行基。 ➢ 对应的解称为初始基本可行解。
➢ 初始基本可行解在上页矩阵中一目了然。
编辑版pppt
27
二、单纯形法的基本思路和原理 ➢第二步:最优性检验
不存在 (200,0,100,0,50) (300,0,0,-200,-50) (0,250,50,150,0) (0,400,-100,0,150) (0,300,0,100,-50)

大学运筹学经典课件第五章——单纯形法

大学运筹学经典课件第五章——单纯形法

j 1, 2,, n
x j j m 1, m 2,, n
以下用 xi i 1,2,, m 表示基变量,用 表示非基变量。





14
§2 单纯形法的表格形式
把第i个约束方程移项,就可以用非基变量来表示基变量xi, xi bi ai ,m1 xm1 ai ,m2 xm2 ai ,n xn
x1 x2 s1 300, 2 x1 x2 s2 400, x2 s3 250.
在第二步中已经知道x2为入基变量,我们把各约束方程中x2的为正的系数除 对应的常量,得
b1 300 300, a12 1
b2 400 400, a22 1
管 理 运 筹 学





2
§1 单纯形法的基本思路和原理
1 1 1 0 0 A ( p1 , p 2 , 它的系数矩阵p3 ,,p 4 , p5 ) 2 1 0 1 0 0 1 0 0 1
其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变
量的个数n,为了找到一个初始基本可行解,先介绍以下几个线性规划的
第五章 单 纯 形 法
• §1 单纯形法的基本思路和原理 • §2 单纯形法的表格形式 • §3 求目标函数值最小的线性规划的问题的 单纯形表解法 • §4 几种特殊情况





1
单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优
解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此 点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的

运筹学-单纯形法1课件

运筹学-单纯形法1课件

例2:
cj CB XB 0 x3 0 x4
σj 0 X3 1 x1
σj
maxZ x 1 x 2
s.t.
2x 1 x1
x2 x2
100 50
x1,x2 0
1
1
00
bi x1 x2 x3 x4
100 -2 1
1
0
50 [ 1 ] -1 0 1
11
0
0
200 0 -1 1 2
50 1 -1 0 1
唯一最优解;
• a4<0,a5<0, a6≥0
无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
无界;
• a6≥0,a5>0,a2≤0, a3≤0
无可行解;
• a4≤0,a5≤0, x4或x2为人工变量, a6≥0 ;
非最优,继续换基: X3换入,x2换出
• x1为人工变量, a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
-M 0 0 x2入, x6出
1 -1 0 1 -1 1 0 -
3 -3 1 1
3M -1/2
0 1/2
-4M 0 1/2 -1/2 0 1/3 -1/2 1/6
x1入, x7出 9 3/2
3/2 -M-3/2 -M+1/2 x3入, x1出
28.09.2024
11
练习: 列出初始单纯形表,并求解第2小题 的最优解
P55,2.2(1) 2.
28.09.2024
12
单纯形表

运筹学单纯形法

运筹学单纯形法

X2
Q4 3 2 1
0
x1+2x2 =8 4x1=16
Q3
4x2=12
Q2
Q1
X1
1
2
3
4
解: 首先:将该问题化成标准形
max z 2x1 3x2 0x3 0x4 0x5
x1 2x2 x3 8
s.t
.
4 4
x1 x2

x4 x5
16 12
xj 0, j 1, 2 ,, 5
基向量、非基向量、基变量、非基变量: 称pj(j=1,2,…,m)为基向量,其余称为非基向量; 与基向量pj(j=1,2,…,m)对应的xj称为基变量,其全体写成 XB=(x1,x2,…,xm)T;否则称为非基变量,其全体经常写 成XN。
基解:对给定基B,设XB是对应于这个基的基变量 XB=(x1,x2,…,xm)T; 令非基变量xm+1=xm+2=…=xn=0, 由(2)式得出的解X=(x1,x2,…,xm,0,…,0)T 称为基解。
(xi0 aij )Pi Pj b
(5)
i 1
由(5)式可以找到满足约束方程的另一个点X(1),其中是点X(1)的第j 个坐标值
X (1) x10 - a1j xm0 - amj 0 0
j
要使X(1)是一个基本可行解,则要求 xi0 - aij 0
§3 单纯形法(Simplex Method)
线性规划问题的最优解,可以从基可行解中找到 图解法有局限性; 枚举法计算量大;
§3.1 单纯形法的引入
例子:求解线性规划问题
max z 2x1 3x2
x1 2x2 8

运筹学单纯形法

运筹学单纯形法

问题:本例的A中一共有几个基? —— 6个。
一般地,m×n 阶矩阵A中基的个数最多有多少个?
——Cm个。 n
(3)基本解与基本可行解
当A中的基B取定后,不妨B设表示中的前m列,则可记
A=(B N),相应地 X= (XB XN)T
约束中的 AX=B
可表示为
B
N
XB XN

b,
即 BB X NN X b
①将目标函数转化为求极大型,即得
②对第一个约束添加松弛变量x4≥0,得 ③对第二个约束减去剩余变量x5≥0,得 ④对自由变量x3,令
原规划化为标准型:
练习3: minZ=x1+2x2-3x3
x1+x2+x3 ≤9 -x1-2x2+x3 ≥2 3x1+x2-3x3=5 x1≤0,x2≥0, x3无约束
解:本例中A, 12
2 1
1 0
10,A中的2阶可逆子阵有
1
B 1
0
10,其相应的基向P量3 , P为4 ,基变量为 x 3 ,
x
,X
4
B1
x3 ; x4
1
B 2
2
21,
其相应的基向量P为 , P
1
2
,
基变量为x , 1
x
2
,
X
B2
x1 。 x2
k
j
j
k
令 l m i i ni
(B 1b)

i
(B 1P)
ki
(B 1P) ki
0 对应 P l出 的 基
称作检验比。 i
以例1为例,可按上述单纯形法的步骤求出其最 优解,其大致的过程如下。

运筹学 单纯形法

运筹学 单纯形法

The Essence of the Simplex Method
• A positive rate of improvement in Z implies that the adjacent CPF solution is better than the current CPF solution (since we are assuming maximization), whereas a negative rate of improvement in Z implies that the adjacent CPF solution is worse. • Therefore, the optimality test consists simply of checking whether any of the edges give a positive rate of improvement in Z. If none do, the current CPF solution is optimal.
The Essence of the Simplex Method
• Iteration 1: Move to a better • Between the two edges of the adjacent CPF solution, (0,6), feasible region that emanate by performing the from (0,0), choose to move following three steps.
(0,9)
• Optimality Test: Conclude that (2,6) is an optimal solution, so stop. (None of the adjacent CPF solutions are better.)

运筹学05-单纯形法

运筹学05-单纯形法

定义 在基本解中,若该基本解满足非负约束, 1 即 XB B b 0 ,则称此基本解为基本可行解, 简称基可行解;对应的基B称为可行基。
基本解中最多有m个非零分量。
n! 基本解的数目不超过 C 个。 m!n m !
m n
定义 在线性规划问题的一个基本可行解中,如果 所有的基变量都取正值,则称它为非退化解,如 果所有的基本可行解都是非退化解。称该问题为 非退化的线性规划问题;若基本可行解中,有基 变量为零,则称为退化解,该问题称为退化的线 性规划问题。
3 5 B12 6 2 5 1 B23 2 0
2 4
3 0 B14 6 1
1 0 B34 0 1
由于所有|B|≠ 0, 所以有6个基阵和 6个基本解。
4! 4 3 2 1 C 6 2!4 2! 2 1 2 1
令 x2 0 x4 0
X 0 0 5 0
T
为基本可行解,B13为可行基,为退化解
1 0 对于基阵 B14 1 1 x1 5 则 x1 x4 0
令 x2 0 x3 0
X 5 0 0 5
T
1 1 对于基阵 B23 1 0 令 x1 0 x4 0 x2 x3 5 T 则 X 0 0 5 0 x 2 0
BX B b NX N
X B B 1b B 1 NX N
B 1b B 1 NX N X XN
令 则
XN 0
B 1b X 0
定义 在约束方程组(2) 中,对于 一个选定的基B,令所有的非基变 量为零得到的解,称为相应于基B 的基本解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
page 13 25 January 2014
7/4
1
-1/4
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(14)
7 / 4 13 / 4 min , min 7 / 6,13 / 6 7 / 6, r 1 3/ 2 3/ 2
Operations Research
第九讲
修正单纯形法(11)
将(t1)' 临时放入表格中,以便求出支点行, a1 1 4 b 5 13 e1 1 0 e2 0 1
e1 e2
5 18 1 1 min{5/1,13/4} = 13/4 r = 2。支点元素为t’21, 进行变换使(t1)’列中:t’21 =1,t’11 =0,z’1 - c’1 = 0,得:
i tis / trs i r,i 1,, m 0 ( z s cs ) / trs
最后,用as取代旧表格Vr中表示的基矢量。
page 7 25 January 2014
Prof. Wang School of Economics & Management
Operations Research
T 3
t '13 3 / 2 3 1 1 / 4 3 (t )' Ua t 'ห้องสมุดไป่ตู้0 1/4 6 3 / 2 23
3
将(t3)'加入修正单纯形表格中,并求出支点行r。 a3 b e1 e2 1 -1/4 e1 3/2 7/4 0 1/4 a1 3/2 13/4 3/2
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(7)
求出支点行后,就可进行修正单纯形表格的转换,其表 格转换元素的计算只需计算后面m+1列,即: 新行r = (原行r)/trs 新行i (i r) = (原行i) - i(原行r) 其中: (11) (12)
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(4)
下面来阐述表格的迭代过程。在一般单纯形表格法中, 每次检验元素 zj -cj全部算出,然后寻找支点列,而在修 正单纯形表格中,不需一次计算全部检验元素,而是逐 个计算。设j属非基础集,则:
page 12 25 January 2014
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(13)
3 3 z '3 c'3 y ' a c'3 1 1 / 4 0 0 2 6
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(16)
现判断非基矢量a2是否应进入基础解集。
19 10 2 z 2 y a , 4 3 3 5
1 2 3 1 0 5 A' ,b' , 4 5 6 0 1 13
page 8 25 January 2014
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(9)
Operations Research
第九讲
修正单纯形法(5)
xi x ji ti 0 (i 1, ,m)
其最小费用为z0和最优对偶解为yT。

(7)
否则,计算zj(按6式),找出zj > cj,并令j = s,然后处理 如下:
首先,计算单纯形表的支点列s:
tis uik aks
第九讲
修正单纯形法(8)
[例1-23] 已知线性规划为:
AX b,x 0, C T X min 1 A 4 2 5 3 5 T , b , C 7, 1, 1 6 13
[解] 1)应用阶段1,求出初始基础可行解 构成新规划:A' X ' = b ' ,X '≥0, C'TX'=min
C T C1 , C 2 , C3 , C S1 , C S 2 0 0 0 1 1 X 'T x1 , x2 , x3 , s1 , s 2
令人工变量作为第1个基础可行解之基础变量,其对应的 表格为: b e1 e2 e1 e2 5 13 18 1 0 1 0 1 1
page 9 25 January 2014
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(15)
2 )现进行阶段 2 ,阶段 2 的第 1 个表格可借用阶段 1 的最 后表格,仅仅将最后一行加以修改。此时:A,B,C恢 复到原问题数值,这时CT=(7,1,1)。其初始表格为: b e1 e2 其中, 7/6 2/3 -1/6 m 1 3/2 -1 1/2 Z 0 ti 0 c i 7 / 6, 3 / 2 7 35 / 3 i 1 35/3 -19/3 10/3
a3 a1
1 y1 ui1 c i 2 / 3, 1 7 19 / 3 i 1 m 1 y2 ui 2 c i 1 / 6, 1 / 2 7 10 / 3 i 1
m
page 15 25 January 2014
3
7/6 3/2
35/3
2/3 -1
-19/3
-1/6 1/2
10/3
将a2对应的t2列变为t12=1,t22=0,z2-c2=0 得出新表格为:
page 17 25 January 2014
z j yi ai j
i 1
m
(6)
如果zj > cj,则令j = s,并作为支点列。 如果zj ≤cj,则去试探其它非基础列j,假若所有非基础 列j的zj ≤cj,则已达到最优解,其最优解值为:
page 4 25 January 2014
Prof. Wang School of Economics & Management
Prof. Wang School of Economics & Management
Operations Research
第九讲
修正单纯形法(10)
检验非基础变量a1,a2,a3能否进基,可按任何次序检验。 先检验a1: 1 T 1 z '1 y ' a 1 1 5 4
25 January 2014
School of Economics & Management
Operations Research
第九讲
修正单纯形法(2)
t10
· · ·
u11

u1m
tm0
z0
um1 … umm y1 … y m
(2)
其中:ti0——给出当前基础解 uij——给出当前基础阵之逆 z0——给出当前基础解费用 yi——给出当前基础阵之联立方程解
T 2
z 2 c2 4 1 3 0, 故a 2可进入B, 即s 2 1 2 1 2 t12 3 6 2 又 Ua 2 有非负项 t 22 1 1 5 1 2 2 7/6 3 / 2 min , min 7 / 3,3 7 / 3 r 1, 1/2 1 / 2
z '1 c'1 5 0 , a1可以进基 t '11 1 0 1 1 1 (t )' U ' a 0 1 4 4 t '21
1
page 10 25 January 2014
Prof. Wang School of Economics & Management
m i 1
费用
cos t C T X ( ) C T X (0) ( zs c s )当 , cos t
若存在tis>0,可求出支点行:
(9)
tr 0 / trs min ti 0 / tis:tis 0
(10)
page 6 25 January 2014
Operations Research
第九讲
第五讲 修正单纯形法(1)
大约在1954年,Dantzig和他的同事就发现了更有效的单 纯形法。 我们知道,在单纯(扩展)表格中,共有3组元素,分别 与矢量组“a1,…,an”,“b”及“e1……em”相对应,如 果说 前面讲的习惯用的一般单纯形表格法可只采用左边两组 的话,那么,修正单纯形法在运算迭代中只应用右边两 组,下面就具体阐述该种方法。 仍假设: AX=b, X≥0, CTX=min (1) 且A、b、C已知,属非退化情形,计算过程,将始终 用到A,B,C这些原始数据,故需保存。每一个阶段仍 用单纯形表格迭代,只用右边两组,即m+1列,每个表 page 格与当前基础解集相对应( 1 j1,…,jm): Prof. Wang
相关文档
最新文档