小学奥数行程专题50道详解(九)

合集下载

(完整)奥数专题行程问题50道题目详解

(完整)奥数专题行程问题50道题目详解

奥数专题行程问题50道题目详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9—(3+4)=2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67。

5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

四年级下册数学试题-竞赛专题:第九讲-行程问题 (含答案)人教版

四年级下册数学试题-竞赛专题:第九讲-行程问题 (含答案)人教版

行程问题(二)火车长108米,每秒行12米,经过长48米的桥,要多少时间? 【解析】如图,从开始上桥到火车下桥一共走过的路程是一个车长+一个桥长,所以需要行驶的时间为(10848)121561213+÷=÷=(秒)。

开始结束火车行程问题及行船流水问题是行程问题中比较重要及特殊的一类题目。

在火车问题中特殊的地方在于路程,因为火车的长度不能忽略,此时的路程不仅与火车前进的距离有关,还与火车长、隧道长、桥长这些物体长度相关。

而行船问题要明确静水、逆水、顺水中船的三个速度间的关系。

流水问题关键是确定物体所运动的速度,过桥问题关键是确定物体所运动的路程,出现较复杂的此类问题时多利用线段图法帮助解题。

名师点题例1知识概述一、火车过桥问题:火车通过大桥是指从车头上桥到车尾离桥。

即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和。

二、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题。

流水问题还有两个特殊的速度,即 顺水速度=船速+水速 逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度。

水速是指水流的速度。

顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度。

已知船的顺水速度和逆水速度,可以求出船速和水速。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2甲、乙两港口间的水路长208千米,一艘船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流的速度。

【解析】要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水和逆水所行的时间求出。

最后再利用和差的逆运算关系求船速和水速。

顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)静水船速:(26十16)÷2- 21(千米/小时)水流速度:(26 -16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流的速度每小时5千米。

奥数行程问题大全

奥数行程问题大全

奥数行程问题大全HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】奥数行程问题一、多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程二速度X时间2.相遇问题:路程和=速度和X时间3.追击问题:路程差=速度差X时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

如“多人行程问题”,实际最常见的是“三人行程” 例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3 分钟和丙相遇。

问:这个花圃的周长是多少米分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。

第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)X3=228 (米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228+(38-36) =114 (分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)X114=8892 (米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。

总之,行程问题是重点,也是难点,更是锻炼思维的好工具。

只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!二、奥数行程:追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

小学奥数行程问题50道详解

小学奥数行程问题50道详解

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9- (3+4)二2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67. 5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75) X2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=2704- (67. 5-60)=36分钟,所以路程二36X (60+75)=4860 米.3、A, B两地相距540千米.甲、乙两车往返行驶于A, B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程. 所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份.第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540一3)X 4=180X4二720 千米,乙总共走了720X3二2160 千米.4、小明每天早晨6: 50从家岀发,7: 20到校,老师要求他明天提早6分钟到校.如果小明明天早晨还是6: 50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校.问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟. 这时每分钟必须多走25米所以总共多走了24X25二600米而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600三6二100米.总路程就是=100X30=3000 米.5、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3. 5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人己共同走了甲、乙两村距离的3倍,因此张走了3.5X3 = 10. 5 (千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2 = 8.5 (千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时, 两人己共同走了两村距离(3+2 + 2)倍的行程.其中张走了3.5X7=24.5 (千米),24. 5二8. 5 + 8. 5 + 7. 5 (千米).就知道第四次相遇处,离乙村8. 5-7. 5=1 (千米).答:第四次相遇地点离乙村1千米.行程专题50道详解二6、小王的步行速度是4. 8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10. 8千米/小时,从乙地到甲地去. 他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:王张李I -------------------- 1---------------------- 1 ---------------- 1甲 B 入乙,图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于(4.8 f 10.8)= (千米)这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5. 4-4. 8)千米/小时•小张比小王多走这段距离,需要的时间是1.34- (5. 4-4.8) X60=130 (分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10. 8千米/小时是小张速度5. 4千米/小时的2倍.因此小李从A到甲地需要1304-2=65 (分钟).从乙地到甲地需要的时间是130+65=195 (分钟)=3 小时15 分.答:小李从乙地到甲地需要3小时15分.7、快车和慢车分别从A, B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12. 5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12. 5-5=7. 5 (小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位. 慢车每小时走2个单位,快车每小时走3个单位.有了上而〃取单位〃准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B 停留1小时.快车行驶7小时,共行驶3X7=21 (单位).从B到C再往前一个单位到D 点.离A点15-1 = 14 (单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14=(2 + 3) =2.8 (小时).慢车从C到A返回行驶至与快车相遇共用了7. 5 + 0. 5 + 2. 8 = 10. 8(小时).答:从第一相遇到再相遇共需10小时48分.8、一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达. 那么甲、乙两地相距多少千米?解:设原速度是1.原时间=学,鹿耐间=学+ 2珈就得出,沁20%后,所用时间缩短1 _ 5到扇取圆的 1 + 20%_?这是具体地反映::距离固定,时间与速度成反比2 _ 片Cl-t> =6(小时)•□用原速行驶需要6J1 _ 4□同样道理,车遠提高25%,所用时间缩短到原来的1 + 25%_5\.换一句话说,缩短了]现在要充分利用这个;5 5如果一开始就加速25%,可少时间-360X | = 72 (分钟).现在只少了40分钟,72-40= 32 (分钟)•说明有一段路程耒加逮而没有少这个匸2分钟,它应是这的!因此这段路所用时间是32-|=160〔分钟).段路程所用时间 5 J真巧,$20760=160(分钟),120X (1+1)= 270 (千米)・原速的行程与加速的行程所用时间一样•因此全程长• 4 4答’甲、乙两地相距2®.壬米*9.—辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案

小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。

已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。

已知牛牛每分钟走50米,求甲、乙两地之间的路程。

(7)上学路上当当发现田田在他前面,于是就开始追田田。

当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。

问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。

15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

行程问题(题 答案)

行程问题(题 答案)

一、相遇与追及1、路程和路程差公式【例 1】如下图,某城市东西路与南北路交会于路口A.甲在路口A南边560米的B点,乙在路口A.甲向北,乙向东同时匀速行走.4分钟后二人距A的距离相等.再继续行走24分钟后,二人距A的距离恰又相等.问:甲、乙二人的速度各是多少?【考点】行程问题【难度】3星【题型】解答【关键词】2003年,明心奥数挑战赛【解析】本题总共有两次距离A相等,第一次:甲到A的距离正好就是乙从A出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140÷= (米/分)。

第二次:两人距A的距离又相等,只能是甲、乙走过了A点,且在A点以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了=,显然÷=(米/分),甲速+乙速140 42428+=(分钟),两人的速度差:5602820甲速要比乙速要快;甲速-乙速20=,解这个和差问题,甲速()(米/分),乙速1408060=-=(米/分).14020280=+÷=【答案】甲速80米/分,乙速60米/分2、多人相遇【例 2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题【难度】2星【题型】解答【解析】甲、丙6分钟相遇的路程:()+⨯=(米);1007561050甲、乙相遇的时间为:()÷-=(分钟);10508075210东、西两村之间的距离为:()+⨯=(米).1008021037800【答案】37800米3、多次相遇【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【考点】行程问题【难度】2星【题型】解答【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【答案】260千米二、典型行程专题1、火车过桥【例 4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【考点】行程问题之火车问题【难度】3星【题型】解答a)根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

小学奥数行程问题汇总

小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度X时间(S=v X t)速度=路程+时间(v=s+t)时间=路程+速度(t=s + v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程♦总时间(「平=’・: 一;;•・例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往” 与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90x2=180 (千米),摩托车“往”的速度是每小时30千米,所用时间是:90+30=3 (小时), 摩托车“返”的速度是每小时45千米,所用时间是:90+45=2 (小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90x2+ (90+30+90+45)=180+5=36 (千米/小时)1、?山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20 千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(;」上):2;路程一定2「1「二:(1"1 ।[:),牢记平均速度公式,就不会错。

二、相遇问题公式:相遇路程=速度和x相遇时间:(L+l)xt=S相遇时间=相遇路程♦速度和:S+(L+1)=t相遇路程+相遇时间=速度和:S+t=(L+\)甲的速度=速度和一乙的速度:,:=S+t—1二乙的速度=速度和一甲的速度:k=S+t—L重要概念:甲的时间=乙的时间=相遇时间:'l=2=t甲的路程+乙的路程=相遇路程:’1, 飞=s例题.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时行6千米,乙每小时走4千米,二人几小时后相遇?分析:根据(相遇路程)小(速度和)=相遇时间,要求相遇时间,首先要求相遇路程,再求速度和。

2024年小学五年级行程问题奥数题及答案

2024年小学五年级行程问题奥数题及答案
行程问题答案:
观察可知,老母牛一开始在火车的中心的左端。在相遇过程中,火车走了:2个桥长-1英尺;母牛走了:0.5个桥长-5英尺;在追及过程中:火车走了:3个桥长-0.25英尺;母牛走了:0.5个桥长+4.75英尺。则在相遇和追及过程中:火车共走了5个桥长-1.25英尺;同样的时间,母牛走了1个桥长-0.25英尺。所以火车的速度是母牛狂奔时的5倍。母牛的速度为90÷5=18英里/小时。又根据2个桥长-1英尺=2.5个桥长-25英尺所以0.5个桥长=24英尺。1个桥长=48英尺。
答案
1.解答:假设AB两地之间的距离为480÷2=240 (千米),那么总时间=480÷48=10 (小时),回来时的速度为240÷(10-240÷4)=60 (千米/时)。
2.解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4 小时,下山时间为12÷6=2 小时,上山、下山的平均速度为:12×2÷(4+2)=4 (千米/时),由于赵伯伯在平路上的速度也是4 千米/时,所以,在每天锻炼中,赵伯伯的平均速度为 4千米/时,每天锻炼3 小时,共行走了4×3=12 (千米)=12000 (米)。
答案解析:
第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
2024年小学五年级行程问题奥数题及答案

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

奥数行程问题

奥数行程问题

奥数行程问题有关奥数行程问题有关奥数行程问题1AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?解答:因为乙丙步行速度相等,所以他们两人步行路程和骑车路程应该是相等的。

对于甲因为他步行速度快一些,所以骑车路程少一点,步行路程多一些。

现在考虑甲和乙丙步行路程的距离。

甲多步行1千米要用1/5小时,乙多骑车1千米用1/20小时,甲多用1/5-1/20=3/20小时。

甲步行1千米比乙少用1/4-1/5=1/20小时。

,所以甲比乙多步行的路程是乙步行路程的:1/20/(3/20=1/3.这样设乙丙步行路程为3份,甲步行4份。

如下图安排:这样甲骑车行骑车的3/5,步行2/5.所以时间为:30*3/5/20+30*2/5/5=3.3小时。

有关奥数行程问题2奥数一直是小升初阶段的学习的一个重点。

而作为奥数七大模块之一的行程问题一直是奥数学习的一个重点和难点。

其中的流水问题被称为行程问题中的特殊情况,是值得深究的。

流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

小学数学奥数题-----行程问题-有答案32页文档

小学数学奥数题-----行程问题-有答案32页文档
小学数学奥数题-----行程问题-有答案
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——特 15、像房子一样,法律和法律都是相互依存的。——伯克
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联

【奥数专题】精编人教版小学数学6年级上册 行程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学6年级上册 行程问题(试题)含答案与解析

经典奥数:行程问题(专项试题)一.填空题(共10小题)1.一座大桥长2600米,一列火车以每分钟700米的速度通过大桥,从车头开上桥到车尾离开桥共需要4分钟,这列火车长米。

2.如图,A、B是圆直径的两端,乐乐在A点,欢欢在B点,同时出发反向行走,他们在C 点第一次相遇,C点离A点90米,他们以同样的速度继续前行,在D点第二次相遇,D 点离B点70米,那么这个圆的周长是米。

3.公交车从甲站到乙站每间隔5分钟一趟,全程走15分钟,某人骑自行车从乙站往甲站行走,开始时恰好遇见一辆公交车,行走过程中又遇见10辆,到甲站时又一辆公交车刚要出发,这人走了分钟.4.两辆汽车同时从相距600km的两地相对开出,4小时后相遇.已知两辆车的速度比是7:8,慢车每小时行驶千米.5.一个长方体长40厘米、宽30厘米、高20厘米.一只红蚂蚁从D出发沿着棱按照:D →A→B→C→D的方向跑圈,每秒跑5厘米;一只黑蚂蚁同时从F出发也沿着棱按照:F →B→C→G→F的方向跑圈,每秒跑4厘米.它们像这样一直跑下去,当他们第一次相遇在B点时,用时秒.6.甲、乙两车分别从A、B两地同时出发,相向而行.甲车每小时行45千米,乙车每小时行36千米.相遇以后继续以原来的速度前进,各自到达目的地后又立即返回,这样不断地往返行驶.已知途中第二次相遇地点与第三次相遇地点相距60千米.则A、B两地相距千米.7.两地相距198千米,甲、乙两车同时从两地相对开出,经过2时相遇.甲、乙两车的速度比是4:5,乙车平均每小时行千米.8.甲乙二人分别从A、B两地相向而行.甲行了全长的12%后乙才出发.当二人相遇时,甲行了3.6km.已知甲的速度比乙快20%,相遇时乙行了km.9.客车速度每小时72千米,货车速度每小时60千米,两列火车相向而行,货车每节车厢长10米,火车头与车尾的长相当于两节车厢,每节车厢装50吨含铁60%的铁矿石,客车司机发现这列货车从他身边过时共花时间12秒,问这货车装的铁矿石共可炼铁吨.10.一个铁路工人在路基下原地不动,一列火车从他身边驶过用了40秒,如果这个工人以每小时6千米的速度迎着火车开来的方向行走,则这列火车从他身边驶过只用37.5秒,则这列火车每小时行千米.二.应用题(共11小题)11.A、B两地相距600千米,王师傅和孙师傅分别驾车从A、B两地相对开出,王师傅行车速度是72千米/小时,孙师傅车速度是80千米/小时,两车中途相遇后继续行驶。

小学二年级奥数题《行程问题大全及答案》题库大全

小学二年级奥数题《行程问题大全及答案》题库大全

小学二年级奥数题《行程问题大全及答案》题库大全姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、操场的一侧插着10面彩旗,每两面彩旗之间的距离是2米,从第1面彩旗到第10面彩旗之间相距多少米?答案与解析:2x(10-1)=18(米)2、小朋友做早操,9个人排成一行,前后两人之间的距离是2米,从第一个小朋友到最后一个小朋友的距离是多少米?答案与解析:(9-1)x2=16(米)3、河岸边有一排柳树,张爷爷每天早晨锻炼,沿河边第1棵树走到第9棵树,一共走了72米。

平均每两棵树之间相隔多少米?答案与解析:72(9-1)=9(米)4、随着神七问天,我国航天员翟志刚成功完成了中国人太空行走第一步。

在19分35秒的时间里,翟志刚与飞船一起飞过了9165千米,约()千米。

答案与解析:92005、根据图意完成下面各题。

1.小英从家去超市,她应该先向()走()米到书店,再向()走()米到体育馆,最后向()走()米到超市。

2.小东从家去体育馆,要先向()走()米到银行,再向()走()米到邮局,最后向()走()米到体育馆。

3.小丽从家去书店,一共要走()米;小丰从家去邮局,一共要走()米。

4.小丰要去小丽家玩,他应该怎样走?他途经哪些地方?他总共要走多远的路程?答案与解析:1.东;350;南;100;东;300;2.西;370;北;330;西;200;3.600;550;4.先向东走150米,再向北走200米,再向东走300米,最后向北走200米到小丽家。

他途经敬老院、体育馆、超市。

总共要走850米。

6、看图回答问题。

(1)文文要从家去医院,先向()走()米到超市,再向()走()米到医院。

(2)文文从学校出发,向()走()米到(),再向()走()米到(),再向()走()米到(),最后向()走()米到自己家,他从学校回家总共要走()米。

三年级下册数学试题-竞赛专题:第九讲-行程问题-追及问题(含答案)人教版

三年级下册数学试题-竞赛专题:第九讲-行程问题-追及问题(含答案)人教版

知识概述1、追及问题的意义:两个物体同方向运动,在后面的速度较快的物体赶上前面速度较慢的物体称为追及。

2、追及问题的特点:①追及者的速度比被追及者的速度要快;②两人同时出发时,从出发到追上,两人所经历的时间相同;③从开始追到追上,两人所行路程差等于他们追及发生时相距的路程。

3、追及问题的基本量:速度差:两个运动物体在单位时间(秒、分、时)所走的路程差(快速-慢速);追及时间:速度快的运动物体从开始追到追上速度慢的物体所用的时间;追及路程(路程差):速度快的运动物体开始追时和速度慢的物体相距的距离。

4、追及问题的基本数量关系:追及路程(路程差)=速度差×追及时间行程问题(二)行程问题是反映物体匀速运动的应用题。

由于变化较多,而且又纷繁复杂,所以对于学习者而掌握涉及基本数量关系的追及行程问题,理解较复杂数量关系的追及行程问题;通过追及问题的学习掌握简单追及问题的解题思路和方法,培养学生分析解决问题的能力,提高思维能力;通过行程中追及问题的学习,培养学生学以致用的应用意识。

名师点题例1小红在小明前面100米,两人同时出发朝相同的方向行走。

(试着画一画)(1)小明要想追上小红,必须具备什么条件?(2)当小明追上小红时,他们两人所走的路程有什么关系?时间呢?【解析】(1)小明要追上小红,必须比小红的速度快,并且同向行驶在同一路线上。

(2)画线段图:发现追上小红时,他们各自走的路程,小明比小红多了100米,而时间必须在同一时间同时开始行程才可。

这样追上小红后,他们所走的时间相等。

例2甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【解析】追及时间=路程差÷速度差=150÷(75-60)=150÷15=10(分钟)例3甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒钟可以追上乙。

已知甲的速度是6米/秒,求乙的速度?【解析】乙的速度=甲的速度-速度差速度差=路程差÷追及时间=10÷5=2米/秒乙的速度=5-2=3米/秒【巩固拓展】1、姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?【解析】先求出路程差。

小学奥数行程专题50道详解(九)

小学奥数行程专题50道详解(九)

行程专题50道详解九40、两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时。

乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?【解】:先求出甲船往返航行的时间分别是:小时,小时。

再求出甲船逆水速度每小时千米,顺水速度每小时千米,因此甲船在静水中的速度是每小时千米,水流的速度是每小时千米,乙船在静水中的速度是每小时千米,所以乙船往返一次所需要的时间是小时。

41、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。

现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?分析与解:要求帆船往返两港的时间,就要先求出水速。

由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度。

在此基础上再用和差问题解法求出水速。

解:轮船逆流航行的时间:(35+5)÷2=20(小时),顺流航行的时间:(35-5)÷2=15(小时),轮船逆流速度:360÷20=18(千米/小时),顺流速度:360÷15=24(千米/小时),水速:(24-18)÷2=3(千米/小时),帆船的顺流速度:12+3=15(千米/小时),帆船的逆水速度:12-3=9(千米/小时),帆船往返两港所用时间:360÷15+360÷9=24+40=64(小时)。

答:机帆船往返两港要64小时。

42、某船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。

由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?分析与解:本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出。

但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行程专题50道详解九
40、两港相距560千米,甲船往返两港需105小时,逆流航行比顺流航行多用了35小时。

乙船的静水速度是甲船的静水速度的2倍,那么乙船往返两港需要多少小时?
【解】:先求出甲船往返航行的时间分别是:小时,小时。

再求出甲船逆水速度每小时千米,顺水速度每小时千米,因此甲船在静水中的速度是每小时千米,水流的速度是每小时千米,乙船在静水中的速度是每小时千米,所以乙船往返一次所需要的时间是小时。

41、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。

现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?
分析与解:要求帆船往返两港的时间,就要先求出水速。

由题意可以知道,轮船逆流航行与顺流航行的时间和与时间差分别是35小时与5小时,用和差问题解法可以求出逆流航行和顺流航行的时间.并能进一步求出轮船的逆流速度和顺流速度。

在此基础上再用和差问题解法求出水速。

解:轮船逆流航行的时间:(35+5)÷2=20(小时),顺流航行的时间:(35-5)÷2=15(小时),轮船逆流速度:360÷20=18(千米/小时),顺流速度:360÷15=24(千米/小时),水速:(24-18)÷2=3(千米/小时),帆船的顺流速度:12+3=15(千米/小时),
帆船的逆水速度:12-3=9(千米/小时),帆船往返两港所用时间:
360÷15+360÷9=24+40=64(小时)。

答:机帆船往返两港要64小时。

42、某船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。

由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?
分析与解:本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出。

但是由于暴雨的影响,水速发生变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度。

解:船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时)。

暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时)。

暴雨后水流的速度是:180÷9-15=5(千米/小时)。

暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时)。

答:逆水而上需要18小时。

43、一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞共用了20秒钟。

这列火车长多少米?
分析与解:画出示意图
如图:火车8秒钟行的路程是火车的全长,20秒钟行的路程是隧道长加火车长。

因此,火车行隧道长(360米)所用的时间是(20-8)秒钟,即可求出火车的速度。

解火车的速度是360÷(20-8)=30(米/秒)。

火车长30×8=240(米)。

答:这列火车长240米
44、铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?
【解】:分析:本题属于追及问题,行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。

火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。

如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)×22或(x-3)×26,由此不难列出方程。

法一:设这列火车的速度是x米/秒,依题意列方程,得
(x-1)×22=(x-3)×26。

解得x=14。

所以火车的车身长为(14-1)×22=286(米)。

法二:直接设火车的车长是x, 那么等量关系就在于火车的速度上。

可得:x/26+3=x/22+1
这样直接也可以x=286米
法三:既然是路程相同我们同样可以利用速度和时间成反比来解决。

两次的追及时间比是:22:26=11:13
所以可得:(V车-1):(V车-3)=13:11
可得V车=14米/秒
所以火车的车长是(14-1)×22=286(米)
答:这列火车的车身总长为286米。

45、一条单线铁路上顺次有A、B、C、D、E五个车站,它们之间的距离依次是48、40、10、70千米。

甲、乙两列火车分别从A、E两站相对开出,甲车先开4分钟,每小时行驶60千米,乙车每小时行驶50
千米。

两车只能在车站停车,互相让道错车。

两车应在哪一车站会车(相遇),才能使停车等候的时间最
短?先到的火车至少要停车多少时间?。

相关文档
最新文档