有序多分类逻辑斯蒂回归模型
逻辑斯蒂回归在分类问题中的应用
![逻辑斯蒂回归在分类问题中的应用](https://img.taocdn.com/s3/m/00ebc57d42323968011ca300a6c30c225901f038.png)
逻辑斯蒂回归在分类问题中的应用逻辑斯蒂回归(Logistic Regression)是一种常用的分类算法,尤其在二分类问题中得到广泛应用。
逻辑斯蒂回归通过将线性回归模型的输出映射到一个概率范围内,从而实现对样本进行分类。
本文将介绍逻辑斯蒂回归的原理、优缺点以及在分类问题中的具体应用。
### 一、逻辑斯蒂回归原理逻辑斯蒂回归是一种广义线性回归模型,其模型形式为:$$P(y=1|x) = \frac{1}{1+e^{-(w^Tx+b)}}$$其中,$P(y=1|x)$表示在给定输入$x$的情况下,输出为类别1的概率;$w$和$b$分别为模型的参数,$w$为权重向量,$b$为偏置项;$e$为自然对数的底。
逻辑斯蒂回归通过对线性回归模型的输出进行Sigmoid函数的映射,将输出限制在0到1之间,表示样本属于某一类别的概率。
### 二、逻辑斯蒂回归优缺点1. 优点:- 实现简单,计算代价低;- 输出结果具有概率意义,便于理解和解释;- 可以处理非线性关系。
2. 缺点:- 容易受到异常值的影响;- 对特征工程要求较高;- 无法很好地处理多分类问题。
### 三、逻辑斯蒂回归在分类问题中的应用逻辑斯蒂回归在分类问题中有着广泛的应用,以下是一些常见的应用场景:1. 金融风控在金融领域,逻辑斯蒂回归常用于信用评分和风险控制。
通过构建逻辑斯蒂回归模型,可以根据客户的个人信息、财务状况等特征,预测其违约概率,从而制定相应的风险控制策略。
2. 医疗诊断在医疗领域,逻辑斯蒂回归可用于疾病诊断和预测。
通过医疗数据的特征提取和逻辑斯蒂回归模型的构建,可以帮助医生判断患者是否患有某种疾病,提前进行治疗和干预。
3. 市场营销在市场营销中,逻辑斯蒂回归可用于客户分类和营销策略制定。
通过分析客户的购买行为和偏好,构建逻辑斯蒂回归模型,可以预测客户的购买意向,从而制定个性化的营销方案。
4. 文本分类在自然语言处理领域,逻辑斯蒂回归可用于文本分类任务。
多分类有序logit模型的模型结果解释
![多分类有序logit模型的模型结果解释](https://img.taocdn.com/s3/m/0dfa8bb37d1cfad6195f312b3169a4517723e506.png)
标题:深入探讨多分类有序logit模型的模型结果解释在统计学和机器学习领域,多分类有序logit模型是一种常用的模型,用来处理有序分类变量的预测和解释。
在本文中,我们将深入探讨多分类有序logit模型的模型结果解释,帮助读者更好地理解其原理和应用。
1. 多分类有序logit模型的基本原理多分类有序logit模型是一种广义线性模型,用于对有序分类变量进行建模和预测。
它建立在logistic函数的基础上,通过最大似然估计对模型参数进行拟合,从而推断不同自变量对特定有序分类变量的影响。
其基本原理是将有序分类变量转化为一组二分类变量,然后使用logistic回归模型进行建模。
这种方法可以有效地处理有序分类变量,对于解释性强的场景非常适用。
2. 模型结果解释的重要性和方法在使用多分类有序logit模型进行建模和预测时,模型结果的解释至关重要。
在解释模型结果时,我们可以使用各种方法,比如变量的边际效应、相对风险比、转移概率等。
这些方法可以帮助我们理解不同自变量对有序分类变量的影响程度,从而更好地理解模型的预测能力和应用场景。
图表和统计检验也是解释模型结果的常用方法,可以直观地展现变量之间的关系和影响程度。
3. 在多分类有序logit模型中如何解释模型结果在多分类有序logit模型中,我们可以通过计算变量的边际效应来解释模型结果。
边际效应可以反映出自变量对因变量的影响程度,帮助我们理解模型的预测能力。
相对风险比是另一种重要的解释方法,可以告诉我们不同自变量水平之间的风险差异。
转移概率可以帮助我们理解不同分类变量之间的转移规律,从而为决策提供参考。
4. 个人观点和理解在使用多分类有序logit模型进行建模和解释时,我认为深入理解模型结果和解释方法是非常重要的。
只有通过对模型结果的全面解释,我们才能更好地理解自变量对有序分类变量的影响,从而做出合理的预测和决策。
在解释模型结果时,我倾向于使用边际效应和相对风险比这两种方法,因为它们可以直观地展现变量之间的关系和影响程度,帮助我更好地应用模型进行预测和分析。
有序logit回归
![有序logit回归](https://img.taocdn.com/s3/m/52d5eec9f71fb7360b4c2e3f5727a5e9856a271e.png)
有序logit回归前言Logistic模型属于非线性回归分析,它的研究主要是针对于因变量二分类或多分类变量结果与某些影响因素之间的一种多重回归方法,本学堂已有推文已经介绍了Logistic回归的作用,在这里就不再赘述。
我们常见的因变量为二分类变量,即因变量只有两种取值,如某病发生记为1,不发生记为,这或许是平常最常见也是使用最多的形式。
但是Logistic回归还包括条件Logistic回归,有序Logistic 回归,无序多分类Logistic回归。
这次我将给大家分享的是有序Logistic回归。
有序Logistic回归应用条件1. 与二分类Logistic不同的是,有序Logistic回归适用于因变量为等级或者程度差别的资料,如因变量满意度分为不满意记为1,满意记为2,非常满意记为3。
2. 自变量可以使任意类型的变量,如定量变量、二分类变量、无序多分类变量或者是有序分类变量等等。
有序Logistic回归注意事项1. 对于自变量的取值要求、样本含量的计算、变量的选择等方面与二分类一致,在这里就不赘述。
2. 有序Logistic回归独有的一个对于模型的检验是平行性假设检验,我将在后面讲解模型的时候阐述。
如果平行性假设不成立,就换用其他不需要进行平行性假设的模型,或者使用无序多分类Logistic 回归。
3. 按照OR的意义,常指病例组中暴露人数与非暴露人数的比值除以对照组中暴露人数与非暴露人数的比值,OR=1,表示该因素没有作用,OROR>1,表示该因素为危险因素,其是流行病学研究的一个常用指标。
我们常常对因变量Y的赋值要根据专业知识,将最有利的等级赋予最高等级,最不利的赋予最低等级,如因变量满意度分为不满意记为1,满意记为2,非常满意记为3。
有序Logistic回归几种模型实现有序Logistic回归的模型有很多种,我列出我所见过的四种模型,欢迎大家补充。
1.累积Logit模型:因变量Y包含g个类别,自变量X包含m个,为各自变量的回归系数。
第6章逻辑斯蒂回归模型
![第6章逻辑斯蒂回归模型](https://img.taocdn.com/s3/m/9990db4ffe4733687e21aa8a.png)
Logistic回归模型
多元logistic模型参数的估计 –采用极大似然估计方法 –假设n次观测中,对应( xi1 , , xik ) 的观测有 ni 个, 其中观测值为1的有 ri 个,观测值为0的有 ni ri 个,则参数β 0 , β1 , , β k 的似然函数:
p ln = 11.536 + 0.124 A + 0.711M 1 0.423M 2 + 0.021M 3 1 p
含有有序数据的logit
Logit模型的协变量也可以是有序数据 对有序数据的赋值可以按顺序用数0,1,2,3,4分别 表示 【例5.8】某地某年各类文化程度的死亡人数见表 5.33,试建立logit模型. 建立死亡率关于年龄和文化程度的logit模型
多项logit模型
预测变量为x的基线-类别logit模型为:
πj ln( ) = α j + β j x, j = 1, , J 1 πJ
模型共有J-1个方程,每个方程有不同的参数,这 些效应依据与基线配对的类别而变化; 软件可以同时拟合模型中的所有方程; 不管哪个类别作为基线,对于同一对类别都会有 相同的参数估计;即基线类别的选择是任意的;
然后,将x1和x3的取值代入上式,可以进一步对三个属性之间的关系加 以分析. – 学校2与学校3的学生在自修与上课两种学习方式上偏好相同; – 学校1比学校2和3更偏好上课(1.727>0.593); – 课程计划中,常规课程与附加课程相比,常规课程学生更偏好自修; – 小组与上课相比,三个学校没有差别;常规课程学生更偏好小组学 习.
Logistic回归的推断
模型的检验
–比较特定模型与更复杂模型
Logistic回归模型基本知识
![Logistic回归模型基本知识](https://img.taocdn.com/s3/m/8ad8f4f0d5bbfd0a79567354.png)
Logistic 回归模型1 Logistic 回归模型的基本知识 1.1 Logistic 模型简介主要应用在研究某些现象发生的概率p ,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是Logit 变换被提出来:ppp Logit -=1ln)( (1)其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT XT T ee p Xppp Logit βββ+=⇒=-=11ln )( (2)模型(2)的基本要求是,因变量(y )是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而Tk x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,Tk ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x k x k x kk eep x x pp βββββββββ+++++++=⇒+++=- 11011011011ln (3)显然p y E =)(,故上述模型表明)(1)(lny E y E -是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为Logistic 线性回归。
Logistic 线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
掌握多元logistic回归分析,看这篇就够了
![掌握多元logistic回归分析,看这篇就够了](https://img.taocdn.com/s3/m/33f0a9e4b8f3f90f76c66137ee06eff9aff84970.png)
掌握多元logistic回归分析,看这篇就够了01. 概念多元 logistics 回归(multinomial logistics regression)又称多分类logistics 回归。
医学研究、社会科学领域中,存在因变量是多项的情况,其中又分为无序(口味:苦、甜、酸、辣;科目:数学、自然、语文、英语)和有序(辣度:微辣、中辣、重辣)两类。
对于这类数据需要用多元 logistics 回归。
多元logistics 回归实际就是多个二元logistics 回归模型描述各类与参考分类相比各因素的作用。
如,对于一个三分类的因变量(口味:酸、甜、辣),可建立两个二元logistics回归模型,分别描述酸味与甜味相比及辣味与酸味相比,各口味的作用。
但在估计这些模型参数时,所有对象是一起估计的,其他参数的意义及模型的筛选等与二元logistics类似。
02.条件因变量:三个及以上分类变量自变量:分类或连续变量协变量:分类变量03.案例及操作【例】为了研究饮食口味偏好的影响因素,分析年龄、婚姻情况、生活态度在饮食口味类型偏好(1=酸、2=甜、3=辣)中的作用,共挑选被试30人,结果见下表,试进行多元logistics回归。
说明:本案例数据纯属编造,结论不具有参考性和科学性,仅供操作训练使用。
⑴ 建立数据文件口味偏好,sav,见下图每个被试有一个口味偏好因变量taste和3个自变量age、married、inactive。
⑵对口味偏好 taste 加权单击【数据】→【加权个案】,打开加权个案对话框,加权口味偏好,见下图(3)选择【分析】→【回归】→【多项logistics】,打开多项logistics回归主对话框,见图。
⌝【因变量】:分类变量,本例选择“taste”⌝【因子】:可选择多个变量作为因子,本例选择“age”、“married”、“inactive”⌝【协变量】:可选择多个变量作为协变量,本例未选择(4)单击【参考类别】按钮,打开参考类别对话框,见图⌝【参考类别】:可选择【第一类别】、【最后类别】或【定制】,本例选择【最后类别】⌝【类别顺序】:可选择【升序】或【降序】(5)单击【模型】按钮,打开模型对话框,见下图:本例主要考察自变量age、married、inactive的主效应,暂不考察它们之间的交互作用,然后点击【继续】;(6)单击【statistics】按钮,打开统计对话框,见图:设置模型的统计量。
第6章逻辑斯蒂回归模型
![第6章逻辑斯蒂回归模型](https://img.taocdn.com/s3/m/5ea474e9b8f67c1cfad6b854.png)
–其中probit变换是将概率变换为标准正态分布的 z −值, 形式为:
Logistic回归模型
–双对数变换的形式为:
f ( p ) = ln(− ln(1 − p ))
• 以上变换中以logit变换应最为广泛。 • 假设响应变量Y是二分变量,令 p = P(Y = 1) ,影响Y 的因素有k个 x1 ,L xk ,则称:
β • 其中, 0 , β1 ,L , β k 是待估参数。根据上式可以得到 优势的值: p β + β x +L+ β x
1− p
=e
0
1 1
k k
• 可以看出,参数 βi是控制其它 x 时 xi 每增加一个 单位对优势产生的乘积效应。 • 概率p的值: e β + β x +L+ β x
p=
0 1 1 k k
含有名义数据的logit
• 前例中的协变量为定量数据,logistic回归模型的 协变量可以是定性名义数据。这就需要对名义数 据进行赋值。 • 通常某个名义数据有k个状态,则定义个变量 M 1 ,L , M k −1 代表前面的k-1状态,最后令k-1变量均 为0或-1来代表第k个状态。 • 如婚姻状况有四种状态:未婚、有配偶、丧偶和 离婚,则可以定义三个指示变量M1、M2、M3, 用(1,0,0)、 (0,1,0) 、(0,0,1) 、(0,0,0)或(-1,-1,-1) 来对以上四种状态赋值。
G 2 = −2 ∑ 观测值[ln(观测值/拟合值)]
• 卡方的df应等于观测的组数与模型参数的差,较小的统计量的 值和较大的P-值说明模型拟合不错。 • 当至多只有几个解释变量且这些解释变量为属性变量,并且所 有的单元频数不少于5时,以上统计量近似服从卡方分布。
logistic回归模型的分类及主要问题
![logistic回归模型的分类及主要问题](https://img.taocdn.com/s3/m/bcaee543eef9aef8941ea76e58fafab069dc448f.png)
Logistic回归模型的分类及主要问题一、引言逻辑回归是一种广泛应用于分类问题的统计方法,用于预测某个实例属于特定类别的概率。
尽管其简单易懂并具有很好的可解释性,但在应用过程中仍然会遇到一些问题。
本文将详细讨论逻辑回归模型的分类及其主要问题。
二、逻辑回归模型的分类1. 二元逻辑回归:这是最简单也是最常见的逻辑回归形式,用于解决二分类问题(例如,电子邮件是否为垃圾邮件)。
在这种模型中,我们尝试找到一条线或一个超平面,以最大化正类和负类之间的分离度。
2. 多项式逻辑回归:当与线性回归模型相比,数据的特性更复杂时,可以使用多项式逻辑回归。
在这种情况下,我们使用非线性函数来映射自变量和因变量之间的关系。
3. 次序逻辑回归:当输出变量是有序的(例如,评级为1到5)时,可以使用次序逻辑回归。
这种模型可以估计有序概率比(OR),即成功的概率与失败的概率之比。
三、逻辑回归模型的主要问题1. 多重共线性:逻辑回归模型假设自变量之间不存在线性关系。
然而,在现实世界的数据集中,这种假设往往不成立,导致多重共线性问题。
多重共线性会导致模型系数的不稳定,影响模型的解释性和预测准确性。
2. 类别不平衡:在处理类别不平衡的数据时,逻辑回归模型可能会遇到问题。
例如,在垃圾邮件检测中,垃圾邮件的数量通常远少于非垃圾邮件。
这种情况下,模型可能会过于倾向于预测为非垃圾邮件,导致预测性能下降。
3. 忽略交互效应:逻辑回归模型默认自变量之间没有交互效应。
然而,在现实中,自变量之间可能存在复杂的交互关系。
忽略这些交互效应可能会导致模型的预测性能下降。
4. 精度-复杂性权衡:逻辑回归模型的一个关键问题是找到精度和复杂性之间的最佳平衡。
一方面,我们希望模型尽可能精确;另一方面,我们也希望模型尽可能简单,以便解释和应用。
然而,过度复杂的模型可能会导致过拟合,而过于简单的模型则可能无法捕捉到数据的真实结构。
四、总结逻辑回归是一种强大的分类工具,但在使用过程中需要注意以上提到的问题。
logit模型的原理与应用
![logit模型的原理与应用](https://img.taocdn.com/s3/m/4f4bd02380eb6294dc886c4c.png)
谢谢大家!
2.线性概率模型(Tobit)
然而这样做是有问题的。假设预测某个事件发生的概率等于 1,但是实际中
该事件可能根本不会发生。反之,预测某个事件发生的概率等于 0,但是实
际中该事件却可能发生了。虽然估计过程是无偏的,但是由估计过程得出的
预测结果却是有偏的。
由于线性概率模型的上述缺点,希望能找到一种变换方法,(1)使解释
OR e0.6373 1.89 ,解释为:当母亲的文化程度提高一个等级时,儿童智力提高一个 或一个以上等级的可能性将增加 0.89 倍。
常数项又称为分割系数,因为它们将 logit 分布进行了分割,以对应于不同类的概 率:
P(y i x)
1
1
1
exp
i
h
i
xi
1
exp
i
1
h
i
xi
1Leabharlann 1 e1.22540.6373
0.3062
y
4 的概率为: P( y
4
x)
1
1
1 e3.56300.6373
0.0509
实际上, x 1时, y 1, 2,3, 4 的观察频率为: 57 454 0.1256 , 236 454 0.5198 ,
135 454 0.2974, 26 454 0.0573 。理论概率与实际频率很接近。
3.Logit 模型----多分类
有些协变量为定量数据,logistic回归模型的协变 量可以是定性名义数据。这就需要对名义数据进行 赋值。
通常某个名义数据有k个状态,则定义变量 M1, ,Mk1 代表前面的k-1状态,最后令k-1变量均为0或-1来 代表第k个状态。
如婚姻状况有四种状态:未婚、有配偶、丧偶和离 婚,则可以定义三个指示变量M1、M2、M3,用 (1,0,0)、 (0,1,0) 、(0,0,1) 、(0,0,0)或(-1,1,-1)来对以上四种状态赋值。
有序多分类Logistic回归,我见过的最详细SPSS教程!
![有序多分类Logistic回归,我见过的最详细SPSS教程!](https://img.taocdn.com/s3/m/aee5cff7541810a6f524ccbff121dd36a22dc458.png)
有序多分类Logistic回归,我见过的最详细SPSS教程!一、问题与数据研究者想调查人们对“本国税收过高”的赞同程度:Strongly Disagree——非常不同意,用“0”表示;Disagree——不同意,用“1”表示;Agree--同意,用“2”表示;Strongly Agree--非常同意,用“3”表示。
另外,研究者也调查了一些其它情况,包括:是否是“雇主”(biz_owner:Yes——是,用“0”表示;No——否,用“1”表示)、年龄(age)和党派(politics:Lib——党派1,用“1”表示;Con——党派2,用“2”表示;Lab——党派3,用“3”表示)。
部分数据如下图:二、对问题的分析使用有序Logistic进行回归分析时,需要考虑4个假设。
•假设1:因变量唯一,且为有序多分类变量,如城市综合竞争力等级可以分为高、中、低;某病的治疗效果分为痊愈、有效、无效等。
•假设2:存在一个或多个自变量,可为连续、有序多分类或无序分类变量。
•假设3:自变量之间无多重共线性。
•假设4:模型满足“比例优势”假设。
意思是无论因变量的分割点在什么位置,模型中各个自变量对因变量的影响不变,也就是自变量对因变量的回归系数与分割点无关。
有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量“本国的税收过高”的赞同程度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)、(0+1+2 vs 3),均是较低级与较高级对比。
在有序多分类Logistic回归中,假设几个二元Logistic回归中,自变量的系数相等,仅常数项不等,结果也只输出一组自变量的系数。
因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即“比例优势”假设)进行检验(又称平行线检验)。
如果不满足该假设,则考虑使用无序多分类Logistic回归。
spssau 多分类logistic回归
![spssau 多分类logistic回归](https://img.taocdn.com/s3/m/16d9724ef705cc17552709bc.png)
Logistic回归之多分类logistic回归分析目录1多分类logistic回归分析基本说明 (2)2 如何使用SPSSAU进行多分类logistic回归操作 (5)3 多分类logistic相关问题? (8)第1点:出现奇异矩阵或质量异常 (9)第2点:提示“Y的选项过少或过多”? (9)第3点:OR值的意义 (9)第4点:wald值或z值 (10)第5点:McFadden R 方、Cox & Snell R 方和Nagelkerke R 方相关问题? (10)Logistic回归分析(logit回归)一般可分为3类:分别是二元Logistic回归分析、多分类Logistic回归分析和有序Logistic回归分析。
logistic回归分析类型如下所示。
Logistic回归选择Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。
如果Y有两个选项,如愿意和不愿意、是和否,那么应该使用二元Logistic回归分析(SPSSAU进阶方法->二元logit);●如果Y有多个选项,并且各个选项之间可以对比大小,例如,1代表“不愿意”,2代表“无所谓”,3代表“愿意”,这3个选项具有对比意义,数值越高,代表样本的愿意程度越高,那么应该使用多元有序Logistic回归分析(SPSSAU进阶方法->有序logit);●如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“淘宝”,2代表“天猫”,3代表“京东”,4代表“亚马逊中国”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多元无序Logistic回归分析(SPSSAU进阶方法->多分类logit)。
1多分类logistic回归分析基本说明只要是logistic回归,都是研究X对于Y的影响,区别在于因变量Y上,logistic回归时,因变量Y是看成定类数据的,如果为二元(即选项只有2个),那么就是二元logistic回归;如果Y 是多个类别且类别之间无法进行对比程度或者大小,则为多分类logistic回归;如果Y是多个类别且类别之间可以对比程度大小(也称为定量数据,或者有序定类数据),此时则使用有序logistic回归。
【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)
![【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)](https://img.taocdn.com/s3/m/a15806ff5ff7ba0d4a7302768e9951e79b89698d.png)
【机器学习速成宝典】模型篇03逻辑斯谛回归【Logistic回归】(Python版)⽬录 ⼀元线性回归、多元线性回归、Logistic回归、⼴义线性回归、⾮线性回归的关系 什么是极⼤似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(sklearn库) 通过上图(插图摘⾃周志华《机器学习》及互联⽹)可以看出: 线性模型虽简单,却拥有着丰富的变化。
例如对于样例,当我们希望线性模型的预测值逼近真实标记y时,就得到了线性回归模型:。
当令模型逼近y的衍⽣物,⽐如时,就得到了对数线性回归(Log-linear regression)模型,这样的模型称为“⼴义线性回归(Generalized linear regression)模型”。
什么是极⼤似然估计(Maximum Likelihood Estimate,MLE) 引例 有两个射击运动员,⼀个专业⽔平,⼀个业余⽔平,但是不知道哪个是专业的哪个是业余的。
那么如何判断呢?让两个运动员都打⼏枪,A运动员平均⽔平9.8环,B运动员平均⽔平2.2环,那我们就判断了:A远动员是专业的,B运动员是业余的。
因为射击成绩已经产⽣了9.8环,当未知参数=专业⽔平时,射击成绩=9.8环的概率最⼤。
这就是极⼤似然法。
极⼤似然法:事情已经发⽣了,当未知参数等于多少时,能让这个事情发⽣的概率最⼤,执果索因。
百度百科定义 极⼤似然估计,只是⼀种概率论在统计学的应⽤,它是参数估计的⽅法之⼀。
说的是已知某个随机样本满⾜某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若⼲次试验,观察其结果,利⽤结果推出参数的⼤概值。
极⼤似然估计是建⽴在这样的思想上:已知某个参数能使这个样本出现的概率最⼤,我们当然不会再去选择其他⼩概率的样本,所以⼲脆就把这个参数作为估计的真实值。
上⼀节讨论了如何使⽤线性模型进⾏回归学习,但若要做的是分类任务该怎么办?答案就蕴含在Logistic模型中。
有序logistic回归分析教程与结果解读
![有序logistic回归分析教程与结果解读](https://img.taocdn.com/s3/m/620fbdc6ee06eff9aff807bf.png)
Logistic回归分析(logit回归)一般可分为3类,分别是二元logistic回归分析、多分类Logistic回归分析和有序Logistic回归分析。
logistic回归分析类型如下所示。
Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。
如果Y有两个选项,如愿意和不愿意、是和否,那么应该使用有序logistic回归分析(SPSSAU进阶方法->二元logit);如果Y有多个选项,并且各个选项之间可以对比大小,例如,1代表“不愿意”,2代表“无所谓”,3代表“愿意”,这3个选项具有对比意义,数值越高,代表样本的愿意程度越高,那么应该使用多元有序Logistic回归分析(SPSSAU进阶方法->有序logit);如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“淘宝”,2代表“天猫”,3代表“京东”,4代表“亚马逊中国”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多元无序Logistic回归分析(SPSSAU进阶方法->多分类logit)。
1、有序logistic回归分析基本说明进行有序logistic回归时,通常需要有以下步骤,分别是连接函数选择,平行性检验,模型似然比检验,参数估计分析,模型预测准确效果共5个步骤。
1) 连接函数选择SPSSAU共提供五类连接函数,分别如下:SPSSAU默认使用logit连接函数,如果模型没有特别的要求,应该首选使用logit连接函数,尤其是因变量的选项数量很少的时候。
连接函数可能会对平行性检验起到影响,如果平行性检验无法通过时,可考虑选择更准确的连接函数进行尝试。
正常情况下使用默认的logit连接函数即可。
2) 平行性检验一般来说,模型最好通过平行性检验,但在研究中很可能出现无法通过的现象。
(整理)多项分类Logistic回归分析的功能与意义1.
![(整理)多项分类Logistic回归分析的功能与意义1.](https://img.taocdn.com/s3/m/e8cffa7e0b4e767f5acfceee.png)
多项分类Logistic回归分析的功能与意义我们经常会遇到因变量有多个取值而且无大小顺序的情况,比如职业、婚姻情况等等,这时一般的线性回归分析无法准确地刻画变量之间的因果关系,需要用其它回归分析方法来进行拟合模型。
SPSS的多项分类Logistic回归便是一种简便的处理该类因变量问题的分析方法。
例子:下表给出了对山东省某中学20名视力低下学生视力监测的结果数据。
试用多项分类Logistic回归分析方法分析视力低下程度(由轻到重共3级)与年龄、性别(1代表男性,2代表女性)之间的关系。
并单击向右的箭头按钮使之进入“因变量”列表框,选择“性别”使之进入“因子”列表框,选择“年龄”使之进入“协变量”列表框。
还是以教程“blankloan.sav"数据为例,研究银行客户贷款是否违约(拖欠)的问题,数据如下所示:上面的数据是大约700个申请贷款的客户,我们需要进行随机抽样,来进行二元Logistic 回归分析,上图中的“0”表示没有拖欠贷款,“1”表示拖欠贷款,接下来,步骤如下:1:设置随机抽样的随机种子,如下图所示:选择“设置起点”选择“固定值”即可,本人感觉200万的容量已经足够了,就采用的默认值,点击确定,返回原界面、2:进行“转换”—计算变量“生成一个变量(validate),进入如下界面:在数字表达式中,输入公式:rv.bernoulli(0.7),这个表达式的意思为:返回概率为0.7的bernoulli分布随机值如果在0.7的概率下能够成功,那么就为1,失败的话,就为"0"为了保持数据分析的有效性,对于样本中“违约”变量取缺失值的部分,validate变量也取缺失值,所以,需要设置一个“选择条件”点击“如果”按钮,进入如下界面:如果“违约”变量中,确实存在缺失值,那么当使用"missing”函数的时候,它的返回值应该为“1”或者为“true",为了剔除”缺失值“所以,结果必须等于“0“也就是不存在缺失值的现象点击”继续“按钮,返回原界面,如下所示:将是“是否曾经违约”作为“因变量”拖入因变量选框,分别将其他8个变量拖入“协变量”选框内,在方法中,选择:forward.LR方法将生成的新变量“validate" 拖入"选择变量“框内,并点击”规则“设置相应的规则内容,如下所示:设置validate 值为1,此处我们只将取值为1的记录纳入模型建立过程,其它值(例如:0)将用来做结论的验证或者预测分析,当然你可以反推,采用0作为取值记录点击继续,返回,再点击“分类”按钮,进入如下页面在所有的8个自变量中,只有“教育水平”这个变量能够作为“分类协变量” 因为其它变量都没有做分类,本例中,教育水平分为:初中,高中,大专,本科,研究生等等, 参考类别选择:“最后一个”在对比中选择“指示符”点击继续按钮,返回再点击—“保存”按钮,进入界面:在“预测值"中选择”概率,在“影响”中选择“Cook距离” 在“残差”中选择“学生化”点击继续,返回,再点击“选项”按钮,进入如下界面:分析结果如下:1:在“案例处理汇总”中可以看出:选定的案例489个,未选定的案例361个,这个结果是根据设定的validate = 1得到的,在“因变量编码”中可以看出“违约”的两种结果“是”或者“否” 分别用值“1“和“0”代替,在“分类变量编码”中教育水平分为5类,如果选中“为完成高中,高中,大专,大学等,其中的任何一个,那么就取值为1,未选中的为0,如果四个都未被选中,那么就是”研究生“ 频率分别代表了处在某个教育水平的个数,总和应该为489个1:在“分类表”中可以看出:预测有360个是“否”(未违约)有129个是“是”(违约)2:在“方程中的变量”表中可以看出:最初是对“常数项”记性赋值,B为-1.026,标准误差为:0.103那么wald =( B/S.E)²=(-1.026/0.103)² = 99.2248, 跟表中的“100.029几乎接近,是因为我对数据进行的向下舍入的关系,所以数据会稍微偏小,B和Exp(B) 是对数关系,将B进行对数抓换后,可以得到:Exp(B) = e^-1.026 = 0.358, 其中自由度为1,sig为0.000,非常显著1:从“不在方程中的变量”可以看出,最初模型,只有“常数项”被纳入了模型,其它变量都不在最初模型内表中分别给出了,得分,df , Sig三个值, 而其中得分(Score)计算公式如下:(公式中(Xi- X¯) 少了一个平方)下面来举例说明这个计算过程:(“年龄”自变量的得分为例)从“分类表”中可以看出:有129人违约,违约记为“1”则违约总和为129,选定案例总和为489那么:y¯ = 129/489 = 0.2638036809816x¯ = 16951 / 489 = 34.664621676892所以:∑(Xi-x¯)² = 30074.9979y¯(1-y¯)=0.2638036809816 *(1-0.2638036809816 )=0.19421129888216 则:y¯(1-y¯)* ∑(Xi-x¯)² =0.19421129888216 * 30074.9979 = 5 840.9044060372 则:[∑Xi(yi - y¯)]^2 = 43570.8所以:=43570.8 / 5 840.9044060372 =7.4595982010876 = 7.46 (四舍五入)计算过程采用的是在EXCEL 里面计算出来的,截图如下所示:从“不在方程的变量中”可以看出,年龄的“得分”为7.46,刚好跟计算结果吻合!!答案得到验证~1:从“块1” 中可以看出:采用的是:向前步进的方法,在“模型系数的综合检验”表中可以看出:所有的SIG 几乎都为“0”而且随着模型的逐渐步进,卡方值越来越大,说明模型越来越显著,在第4步后,终止,根据设定的显著性值和自由度,可以算出卡方临界值,公式为:=CHIINV(显著性值,自由度) ,放入excel就可以得到结果2:在“模型汇总“中可以看出:Cox&SnellR方和Nagelkerke R方拟合效果都不太理想,最终理想模型也才:0.305 和0.446,最大似然平方的对数值都比较大,明显是显著的似然数对数计算公式为:计算过程太费时间了,我就不举例说明计算过程了Cox&SnellR方的计算值是根据:1:先拟合不包含待检验因素的Logistic模型,求对数似然函数值INL0 (指只包含“常数项”的检验)2:再拟合包含待检验因素的Logistic模型,求新的对数似然函数值InLB (包含自变量的检验)再根据公式:即可算出:Cox&SnellR方的值!提示:将Hosmer 和Lemeshow 检验和“随机性表” 结合一起来分析1:从 Hosmer 和Lemeshow 检验表中,可以看出:经过4次迭代后,最终的卡方统计量为:11.919,而临界值为:CHINV(0.05,8) = 15.507卡方统计量< 临界值,从SIG 角度来看:0.155 > 0.05 , 说明模型能够很好的拟合整体,不存在显著的差异。
逻辑斯蒂回归模型参数估计
![逻辑斯蒂回归模型参数估计](https://img.taocdn.com/s3/m/70ab5127640e52ea551810a6f524ccbff021ca74.png)
逻辑斯蒂回归模型参数估计1. 引言逻辑斯蒂回归是一种常用的分类算法,用于预测二分类问题。
在逻辑斯蒂回归模型中,我们需要估计一组参数,以便能够预测新的观测数据的类别。
本文将介绍逻辑斯蒂回归模型的参数估计方法。
2. 逻辑斯蒂回归模型逻辑斯蒂回归模型是一种广义线性模型,它通过一个S形函数(通常为逻辑函数)将线性方程的输出转换为概率。
假设我们有一个二分类问题,其中类别标签为0和1。
给定输入变量x,我们希望预测y=1的概率。
逻辑斯蒂回归模型可以表示为:P(y=1|x)=11+e−z其中z表示线性方程:z=β0+β1x1+β2x2+...+βn x n3. 参数估计方法在实际应用中,我们需要通过已知观测数据来估计逻辑斯蒂回归模型中的参数。
常用的参数估计方法有最大似然估计和梯度下降法。
3.1 最大似然估计最大似然估计是一种常用的参数估计方法,它通过最大化观测数据出现的概率来估计模型参数。
对于逻辑斯蒂回归模型,我们可以将观测数据的联合概率表示为:L(β)=∏PNi=1(y i|x i;β)其中N表示观测数据的数量。
为了方便计算,我们通常使用对数似然函数:l(β)=∑logNi=1P(y i|x i;β)我们的目标是找到使得对数似然函数最大化的参数值。
为了实现这一点,我们可以使用优化算法(如牛顿法)来求解。
3.2 梯度下降法梯度下降法是另一种常用的参数估计方法,它通过迭代更新参数值以使损失函数最小化。
对于逻辑斯蒂回归模型,我们可以使用交叉熵损失函数:J(β)=−1N∑[y i logP(y i|x i;β)+(1−y i)log(1−P(y i|x i;β))] Ni=1其中N表示观测数据的数量。
我们的目标是找到使得损失函数最小化的参数值。
梯度下降法通过计算损失函数对参数的梯度来更新参数值:β(t+1)=β(t)−α∇J(β)其中β(t)表示第t次迭代的参数值,α表示学习率,∇J(β)表示损失函数对参数的梯度。
4. 模型评估在完成参数估计后,我们需要评估逻辑斯蒂回归模型的性能。
spssau 有序logistic回归
![spssau 有序logistic回归](https://img.taocdn.com/s3/m/fb2f5393192e45361066f5bf.png)
Logistic回归之有序logistic回归分析目录1有序logistic回归分析基本说明 (2)2 如何使用SPSSAU进行有序logistic回归操作 (3)3 有序logistic相关问题? (4)第1点:出现奇异矩阵或质量异常 (5)第2点:无法通过平行性检验? (5)第3点:OR值的意义 (5)第4点:wald值或z值 (5)第5点:McFadden R方、Cox & Snell R方和Nagelkerke R方相关问题? (5)Logistic回归分析(logit回归)一般可分为3类,分别是二元logistic回归分析、多分类Logistic回归分析和有序Logistic回归分析。
logistic回归分析类型如下所示。
Logistic回归选择Logistic回归分析用于研究X对Y的影响,并且对X的数据类型没有要求,X可以为定类数据,也可以为定量数据,但要求Y必须为定类数据,并且根据Y的选项数,使用相应的数据分析方法。
●如果Y有两个选项,如愿意和不愿意、是和否,那么应该使用有序logistic回归分析(SPSSAU进阶方法->二元logit);●如果Y有多个选项,并且各个选项之间可以对比大小,例如,1代表“不愿意”,2代表“无所谓”,3代表“愿意”,这3个选项具有对比意义,数值越高,代表样本的愿意程度越高,那么应该使用多元有序Logistic回归分析(SPSSAU进阶方法->有序logit);●如果Y有多个选项,并且各个选项之间不具有对比意义,例如,1代表“淘宝”,2代表“天猫”,3代表“京东”,4代表“亚马逊中国”,数值仅代表不同类别,数值大小不具有对比意义,那么应该使用多元无序Logistic回归分析(SPSSAU进阶方法->多分类logit)。
1、有序logistic回归分析基本说明进行有序logistic回归时,通常需要有以下步骤,分别是连接函数选择,平行性检验,模型似然比检验,参数估计分析,模型预测准确效果共5个步骤。
机器学习算法系列(3):逻辑斯谛回归
![机器学习算法系列(3):逻辑斯谛回归](https://img.taocdn.com/s3/m/e8523315ee06eff9aef807b3.png)
回归预测。
LR 模型多⽤用于解决⼆二分类问题,如⼴广告是否被点击(是/否)、商品是否被购买(是/否)等互联⽹网领域中常⻅见的应⽤用场景。
但是实际场景中,我们⼜又不不把它处理理成“绝对的”分类问题,⽽而是⽤用其预测值作为事件发⽣生的概率。
这⾥里里从事件、变量量以及结果的⻆角度给予解释。
我们所能拿到的训练数据统称为观测样本。
问题:样本是如何⽣生成的?⼀一个样本可以理理解为发⽣生的⼀一次事件,样本⽣生成的过程即事件发⽣生的过程。
对于0/1分类问题来讲,产⽣生的结果有两种可能,符合伯努利利试验的概率假设。
因此,我们可以说样本的⽣生成过程即为伯努利利试验过程,产⽣生的结果(0/1)服从伯努利利分布。
这⾥里里我们假设结果为1的概率为h θ(x ),结果为0的概率为1−h θ(x )。
那么对于第i 个样本,概率公式表示如下:P (y (i )=1|x (i );θ)=h θ(x (i ))P (y (i )=0|x (i );θ)=1−h θ(x (i ))将上⾯面两个公式合并在⼀一起,可得到第i 个样本正确预测的概率:P (y (i )|x (i );θ)=(h θ(x (i ))y (i ))·(1−h θ(x (i )))1−y (i )上式是对⼀一个样本进⾏行行建模的数据表达。
对于所有的样本,假设每条样本⽣生成过程独⽴立,在整个样本空间中(N 个样本)的概率分布(即似然函数)为:P (Y |X ;θ)=N∏i =1h θx (i )y (i )1−h θx (i )1−y (i )通过极⼤大似然估计(Maximum Likelihood Evaluation ,简称MLE )⽅方法求概率参数。
具体地,第三节给出了了通过随机梯度下降法(SGD )求参数。
2.2.3 概率解释(()(()))三、模型参数估计3.1 Sigmoid 函数上图所示即为sigmoid函数,它的输⼊入范围为−∞→+∞,⽽而值域刚好为(0,1),正好满⾜足概率分布为(0,1)的要求。
B2-有序多分类Logistic回归模型
![B2-有序多分类Logistic回归模型](https://img.taocdn.com/s3/m/403848f60242a8956bece420.png)
Ordinal logistic回归模型
应变量Y 有3个等级:无效0、有效1、治愈2
影响因素:性别X1(0男;1女);治疗方法 X2 ( 0新药; 1传统) ;取值大的类别为参 照组。 某分类变量的回归系数为正时,则暴露组 (如新药)为更高的等级(如治愈)的可能 性大于参照组(传统药) 某连续变量的回归系数为正时,则随着该变 量的变量值增加,应变量为更高等级的可能 性也增加。
probable Negative:Lower categories more probable Probit:Latent variable is normally distributed Cauchit:Latent variable has many extreme values
Link:
拟合优度检验:各种取值水平组合中其 观察频数为0的比例较高时,该检验不 可靠。本例P 值均大于0.05,拟合较好。
Goodness-of-Fit Chi-Square Pearson 1.910 Deviance 2.712 Link function: Logit. df 4 4 Sig. .752 .607
有序多分类logistic回归模型 Ordinal Regression
暨南大学医学院医学统计学教研室 林汉生
表1 性别和两种疗法对某病疗效的影响
性别
男
治疗方法
新药疗法(X2=0)
疗效(Y) 痊愈2 有效1 无效0 5 2 7
X1=0 传统疗法(X2=1)
女 新药疗法(X2=0)
1
16
0
5106源自X1=1 传统疗法(X2=1)
Test of Parallel Lines
a
-2 Log Model Likelihood Chi-Square df Null Hypothesis 23.598 General 22.128 1.469 2 The null hypothesis states that the location parameters (slope coefficients) are the same across response categories. a. Link function: Logit.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Logit 变换的分别为p1、p1+p2、p1+p2 +p3,对k 个自变量拟
合三个模型如下:
log it[ p( y 1)]
常数项不同,回归系
log it(
p1 )
ln
1
p1 p1
ln
p2
p1 p3
p4
数完全相同的
1 1x1 2 x2 k xk
• 累积概率的模型并不利用最后一个概率,因为它必然等于1
14.1 有序回归的基本思想
log
it(
pj
)
ln
1
p
jpBiblioteka j
j
1x1
2 x2
n xn
pj = p(y≤j | x),它表示 y 取前 j 个值的累积概率。
累积概率函数:
pj p( y
j
x)
ln
p1 p2 p3 1 ( p1 p2 p3 )
ln
p1
p2 p4
p3
3 1x1 2 x2 k xk
张文彤版本的常数项 前均为负号
• 根据上述公式,可以分别求出:
• 由上述建立的模型可以看出,这种模型实际上是依次
14.1 有序回归的基本思想
• 有序回归模型的类型:
当定性因变量y取k个顺序类别时,记为1,2,…,k,这 里的数字1,2,…,k仅表示顺序的大小。
因变量y取值于每个类别的概率仍与一组自变量x1,x2,…,xk 有关,对于样本数据 (xi1,xi2,…,xip ;yi),i=1,2,…,n ,顺序类别回 归模型有两种主要类型, •位置结构(Location component)模型,位置模型,定位模型 •规模结构(Scale component)模型,尺度模型,定量模型
第一个模型表示了y 取第一个值的概率p1与x的关系;第二个模 型表示了y 取前两个值的累积概率p2与x的关系。这两个模型的 常数项不同,回归系数完全相同的。 y 取第一个值的概率
p(1)=p1 ,y 取第二个值的概率p(2)=p2 -p1,y 取第三个值的概率 p(3)=1- p2 。它们的截距不同,斜率相同,所以是J-1条平行直线 族。多值因变量logistic回归模型要求进行数据的平行性检验。
1
exp( j exp(
x) j x)
,当1
j
k
1
1,当j k
J等级分为两类:{1,,j } 与 { j+1,,k}
在这两类的基础上定义的 logit 表示:属于后 k-j 个等级的累积 概率与前j个等级的累积概率的优势的对数,故该模型称为累 积优势模型 (cumulative odds model)。
• 平行性检验(只适用于位置模型/位置参数/斜率系数)
• 当因变量维多值变量时,模型包含多个回归方程。Logistic回 归分析要求这多个回归方程中自变量的系数是相等的。因此 需要做平行行检验,也称为比例比数假设检验(test fo the proportional odds assumption),使用的方法是计分检验法。 当P>a时,接受平行的原假设。否则,应该将因变量的某些 值进行合并,减少因变量的取值个数,使得多值变量logistic 回归模型平行性成立。还可以尝试其他链接函数。
将反应变量按不同的取值水平分割成两个等级,对这
两个等级建立反应变量为二分类的Logistic 回归模型。
不管模型中反应变量的分割点在什么位置,模型中各
自变量的系数都保持不变,所改变的只是常数项。此
时求出的OR 值表示自变量每改变一个单位,反应变量
提高一个及一个以上等级的比数比。 OR exp(i )
• 如果各种连接函数都无法满足平行性假定,则需要考虑回归 系数是否会随着分割点而发生改变。此时最好使用无序多分 类的Logistic 回归进行模型拟合,然后再根据系数估计值考 虑如何进行处理。
• 以4 水平的反应变量为例,假设反应变量的取值为1 、2 、3 、
4 ,相应取值水平的概率为p1、p2、p3、p4,则此时进行
• 与名义多分类因变量有所不同,定性有序多分类因变量采用 累积logit模型,该模型可利用有序这一特点,得到比基线类别有更简单解释的模型。
• Y的累积概率是指Y落在一个特定点的概率,对结果为类别j 时,其累积概率为:
p(Y j x) p1 p2 pj , j 1,, k • 累积概率满足: p(Y 1) p(Y k) 1
• 设因变量 y 表示治疗效果,0=不愈、1=有效、2=痊愈。 设自变量x1表示绷带种类,自变量 x2 表示包扎方式。
• 对于多值因变量模型,平行性假设决定了每个自变量的 OR值对于前k-1个模型是相同的。例如,变量x1的 OR=5.172,它表示使用第一种绷带治愈腿溃疡的可能性 是使用第二种绷带的5.172倍;它也表示使用第一种绷带 至少有效的可能性是使用第二种绷带的5.172倍。
log
it[ p( y
2)]
log
it( p1
p2 )
ln
1
p1 p2 ( p1 p2
)
ln
p1 p3
p2 p4
2 1x1 2 x2 k xk
log
it[
p( y
3)]
log
it(
p1
p2
p3 )
• Logistic回归
因变量
二项Logistic回归
多项Logistic回归
有序回归 Probit回归
第14章 有序回归
(有序多分类因变量Logistic回归)
• 14.1 有序回归的基本思想 • 14.2 有序回归的案例分析
14.1 有序回归的基本思想
• 研究中常遇到反应变量为有序多分类(k>2)的资料,如城 市综合竞争力等级、满意度等可以划分为低、中、高。
• 张文彤认为,这里拟合的模型中常数项之前的符号应
当是“负号”,原因在于此处的常数项正好表示低级
别和高级别相比的情况,且必然有
, 但由
于研究者主要关心的是各参数(系数)的大小,因此
这种差异影响不大。并且由SPSS给出的系数无需再添
加符号。
• 某大学医院外科采用两种不同的绷带和两种不同的包扎 方式进行腿溃疡的治疗处理。治疗的结果分三种:不愈、 有效和痊愈。试分析治疗方法对治疗效果的影响。