超临界二氧化碳在工业上的应用

超临界二氧化碳在工业上的应用
超临界二氧化碳在工业上的应用

超临界二氧化碳在工业上的应用

摘要:超临界二氧化碳具有其他超临界流体不可比拟的优势,因此,引起了研究者广泛的兴趣。本文简单的介绍了超临界二氧化碳的优点,如具有两极性、良好的流动性和扩散性等。综述了超临界二氧化碳在降低高分子聚合物粘度中的应用以及在制备微孔塑料中应用、原理和研究进展,超临界二氧化碳作为绿色的介质,将会有更广阔的应用价值。

关键词:超临界二氧化碳增塑性发泡剂粘度

在最近几年来,超临界流体因对高分子聚合物的优异增塑作用、优良的传递性能和参数可调节性,使超临界流体得到了突飞猛进的发展,并具有更高的应用价值。在众多超临界流体中,超临界二氧化碳具有其他超临界流体不可比拟的优势,因为我们就与二氧化碳接触,其无毒、无味、非可燃性物质,并且二氧化碳的超临界条件比较低,工业上易于达到,并且超临界二氧化碳具有良好的流动性和扩散性。当超临界二氧化碳参与反应时,体现了优异的溶解速率和传质速率。超临界二氧化碳即可以与极性物质相容也可与非极性物质相容,由于超临界二氧化碳具有优良的特征,因此引起了的许多化学科研工作者地兴趣,到目前为止,超临界二氧化碳主要以优良的增塑性和发泡性应用于挤出成型中。

一、超临界二氧化碳在改变高分子聚合物粘度中的应用

众所周知,高分子聚合物的粘度的高时,加工高分子聚合物成型是不利的,因此,需要改变高分子聚合物的粘度,首先我们先到的是增加温度来降低高分子聚合物的粘度,但这是往往也会增加成本,增大能耗,如果向高分子聚合物中加入低粘度塑化剂来降低其粘度,但很难分离出低粘度塑化剂,这将成品的性能和质量,使成品存在许多缺陷[1]。但超临界二氧化碳能够降低高分子聚合物的粘度,这是因为二氧化碳的超临界条件比较低,很容易达到,在二氧化碳变为超临界流体,使高分子聚合物的粘度降低,同时在低温度下达到熔融状态,并具有等量的流体性质,从而提高熔体流动特性,使挤出速度增加[2]。在二氧化碳气体变为超临界流体时,在这个过程中,二氧化碳是吸收热量,使环境温度降低,熔体温度降低,挤出速度和热能吸收率都将增大,从而使挤出物的物理性能提高,并且还能降低能量损失。二氧化碳通过增大压力的方法可从成品中逸出,保证了产品的优良性能和质量。

超临界二氧化碳对高分子聚合物粘度的降低主要是两个机理:第一个机理是,高分子聚合物吸收二氧化碳,使链缠结降低,从而自由体积增加;第二个机理是,二氧化碳担任“分子润滑剂”角色,将这两个机理有机的结合在一起,便使高分子聚合物的粘度降低[1]。据数据表统计,超临界二氧化碳与超粘的高分子聚合物相溶成单一相时,对高分子聚合物粘度的降低可达到60%[3]。

Elkovitch M.D.[1]、Hung Y.L.[4]、Siobhan O.M.[5]、Will Strauss[6]、Jian X.Z.[7]等人都对超临界二氧化碳都有深入的研究,研究结果表明,高分子聚合物与超临界二氧化碳之间同时存在物理作用和化学作用;在较高的剪切速率条件下,超临界二氧化碳对高分子聚合物的影响将会消失,粘度趋于稳定;在一定条件下,超临界二氧化碳作为增塑剂,得到的致密的产品。

二、超临界二氧化碳在微孔塑料制中的应用

二氧化碳对压力非常敏感,当降低压力时,二氧化碳将从高分子聚合物中逸出,高分子聚合物处于过饱和状态,使系统的热力学处于不稳定状态,从而有固

超临界二氧化碳的研究进展

超临界二氧化碳的研究进展 李会峰陈秀芝 (北京理工大学理学院化学系 100081) E-mail. lhf9898@https://www.360docs.net/doc/554304369.html, 摘要 超临界CO2 具有气体的低粘度、高扩散系数和液体的高密度,且化学惰性,无毒无腐蚀,临界状态容易实现,是一种性能优良的环境友好溶剂。本文在超临界CO2 的萃取、超临界流体沉淀技术、以及化学反应等方面就目前的现状做了简介,指出了目前超临界CO2 的研究进展以及今后的研究方向。 关键词超临界二氧化碳萃取沉淀化学反应 1. 前言 自1822年Cagniard首次报道了物质的临界现象以来,超临界流体的研究被广泛关注。1869年Andrew测定了二氧化碳的临界参数。超临界二氧化碳是指温度和压力均高于其临界值(T=31.1℃ P=7.38MPa)的二氧化碳流体。在超临界状态下,二氧化碳具有类似液体的高密度和接近气体的低粘度,并且对人体和动植物无害、不燃、没有腐蚀性、对环境友好、原料易得、价格便宜和处理方便等优点,是目前使用最多的一种超临界流体。 超临界二氧化碳主要应用于热敏性物质和高沸点组分的萃取分离,超细特殊材料的制备,特殊化学反应的溶媒等方面。 2.超临界流体萃取(Supercritical Fluid Extraction,SFE) 与传统的分离方法相比,超临界二氧化碳萃取具有许多独特的优点:(1)超临界流体的萃取能力随其密度增大而提高,因而很容易通过调节温度和压力加以控制;(2)溶剂回收简单方便,不易产生溶剂残留或污染;(3)由于超临界二氧化碳化学性质稳定,无毒和无腐蚀,临界温度接近常温,所以特别适合食品及医药中的生理活性成分和热敏组分的分离[1]。因此,超临界二氧化碳萃取在医药、食品、化妆品、香料、化学工业及环保等领域得到了广泛的应用研究。超临界二氧化碳萃取主要应用于去处有害物质、分离有毒污染、提取有效成分以及回收有用物质[2]。 食品工业上,超临界二氧化碳萃取主要用于从天然中提取各种脂溶有效成分,其提取率优于有机溶剂萃取,且无溶剂残留,为纯天然产品。现已成功提取的物质有啤酒花浸膏、咖啡因、亚麻酸、农副产品植物油脂(如小麦胚芽油、米糠油、玉 - 1 -

二氧化碳的制备

二氧化碳的制备 一、单选题 1.实验室制取二氧化碳常用方法是() A.木炭在O2中燃烧 B.煅烧石灰石 C.大理石与稀盐酸反应 D.大理石与稀H2SO4反应 2.实验室制取二氧化碳一般有如下步骤:①检查装置气密性;②按要求组装实验装置; ③通过长颈漏斗加入酸液;④向锥形瓶内加入适量的石灰石;⑤收集气体。正确的操作顺序是() A.②①④③⑤B.①②③④⑤C.②③④①⑤D.①④②③⑤3.在实验操作考查中,小明抽到的题目是“二氧化碳的制取、收集和验满”。如图是他的主要实验步骤,其中操作有误的是 A.加入药品B.收集气体 C.检查装置气密性D.验满 4.厕所用清洁剂中含有盐酸,如果不慎洒到大理石地面上,会发出嘶嘶声,并有气体产生,这种气体是() A.二氧化碳B.氧气C.氢气D.二氧化硫5.下列实验目的对应的实验方法不正确的是()

二、简答题 6.目前市场上销售的汽水饮料大多数是碳酸饮料,其中溶有二氧化碳气体。打开汽水瓶盖时,汽水会自动喷出来,这是因为气体在水中的溶解度随_ ____。喝了汽水后,常常会打嗝,这是因为气体的溶解度随___ __。检验打开瓶盖时冒出来的气泡是二氧化碳气体的有关反应的文字表达式是__ ___。 三、实验题 7.(1)如图是某微型实验的装置图,试管中的反应发生后,a、b两处及烧杯中的现象是___ __ ___。 (2)采用微型实验装置的优点是_____ _______(答出一条即可)。 8.请结合如图所示实验装置回答有关问题: ①写出装置中标号仪器的名称:a__ ___。 ②写出过氧化氢制取氧气的文字表达式__ ___。根据该反应原理,可选择图中_____(填字母)与_____(填字母)组装一套制取氧气的装置。氧气检验方法是_ ____。 ③实验室制取二氧化碳所用药品__ ___和____ _(填名称),你所组装的上述制取氧气的装置_____(填“能”或“不能”)用于实验室制取二氧化碳。二氧化碳的验满方法__ ___。

超临界二氧化碳循环分析1

超临界二氧化碳动力循环与氦动力循环的比较 目前,世界上正在建设和研究的高温气冷堆都是使用He作为工质,这是因为He具有很好的稳定性、化学相容性及热传导性。但是,He作为工质存在一些不足,例如动力循环需要较高的温度、难于压缩等,给反应堆和换热部件的结构材料、叶轮机械的设计带来很多困难。出于降低反应堆结构材料要求、减少技术难度、提高反应堆的安全性与经济性等各方面的考虑,有学者进行了选取CO2作为循环工质的研究。CO2虽然在稳定性、热传导性方面比He稍差,但CO2具有合适的临界参数,不需要很高的循环温度就可以达到满意的效率,且具有压缩性好、储量丰富等优点。采用CO2作为循环工质可以降低循环温度和压缩功,从而提高反应堆的安全性,同时降低反应堆造价。超临界CO2的闭式布雷顿循环被推荐在铅冷快堆及钠冷快堆中使用。 1. 二氧化碳布雷顿循环分析 (1)二氧化碳布雷顿循环 CO2与He在动力循环中最大的不同点就是气体性质随压力、温度的变化差别很大(表1-1)。高压(7.5 MPa)环境中,CO2的导热系数λ、定压比热容c p 和压缩因子z均与低压(0.1 MPa)下的参数有很大差异;在循环工况下,He循环可以视为理想气体循环,除密度外,其余参数变化不大。动力循环的工况,CO2的工作参数在其临界点(7.377 MPa,31℃)附近;因此,CO2动力循环除与He循环有相同的决定因素外,还取决于动力循环的不同实际工况,即超临界压力、跨临界压力及亚临界压力3种循环工况(图1-1)。超临界循环:循环压力及温度均在临界参数以上;跨临界循环:循环高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力循环:循环压力均低于临界压力,工作于气相区。 表1-1 CO2和He热物性比较(35℃) 工质P/MPa ρ/kg·m-3 λ/W·(m·K)-1 C P/kJ·(kg·K)-1z CO2 7.5 277.6 0.03532 5.9306 0.463 0.1 1.95 0.01497 0.828 0.879

超临界二氧化碳循环分析2

超临界二氧化碳循环特性 作为第四代核能系统的候选堆型,超高温气冷堆和气冷快堆具有高安全性、高效率、用途广等特点,且均拟采用氦气作为反应堆直接循环工质。由于氦气具有稳定、无毒、无感生放射性、热容大等特点,因此,目前世界上的气冷堆广泛使用氦气作为直接闭式Brayton循环的工质及反应堆的冷却剂。但氦气循环需较高的循环最高温度(堆芯出口温度)才能达到满意的效率,因此,对反应堆的结构材料、燃料元件材料等提出了较高的要求,同时由于氦气密度低、可压缩系数小等缺点,氦气循环叶轮机械的制造也产生了一定困难。 与氦气相比,CO2因其密度大,且易于压缩,CO2的临界温度为304.19K,比环境温度略高,临界压力为7.3773MPa,在运行工况下,可利用其实际气体的性质减少压缩功等,采用CO2作为工质的循环所需的温度不需太高即可与氦气循环具有相当的效率,因此,使用CO2作为气冷堆循环的工质具有广阔的潜力。同时,CO2循环也被推荐使用于第4代核能系统中的钠冷快堆(SFR)和铅冷快堆(LFR)。 1. 二氧化碳动力循环 (1)简单超临界Brayton循环 与理想气体的Brayton循环类似,CO2的简单超临界Brayton循环如图1-1所示,分为以下几个部分:1至2为CO2在压缩机中被压缩至循环最高压力的过程;2至3为CO2在回热器中的吸热过程;3至4为CO2在中间换热器从反应堆堆芯或热源的吸热过程;4至5为CO2在透平中的膨胀做功过程;5至6为CO2回热器中的回热过程;6至1为CO2的预冷过程。其中,2至3及5至6的回热器的回热过程是Brayton循环的关键。回热器的存在使得Brayton循环的热量得以最大限度地利用,从而提高了循环的效率。

超临界CO2流体技术与纳米颗粒制备

超临界CO2流体技术与纳米颗粒制备 引言 纳米技术是21世纪最为活跃的研究领域之一。目前,对纳米的研究主要停留在对纳米材料制造方法的探索和纳米材料物性的表征水平上,其中超临界流体技术成功地被应用于纳米颗粒的制备尤为引人关注。 超临界流体技术在纳米材料制备的过程中主要采用了对环境无污染的CO2和H2O,以取代传统的制备方法中所用的大量的有机溶媒,这对于人们普遍所关心的日益严重的环境污染问题来说具有重要的意义。目前,有关超临界CO2的应用的报导比较多,这很大程度上是因为CO2的超临界操作条件比较容易实现(如下图所示): 物质名临界温度(K) 临界压力(BAR) CO2304.2 72.8 H2O 647.3 217.6 此外,因为超临界状态的H2O可以高速地分解有机物质,故其更多地被用于无机材料制备领域:比如说,用于制备金属氧化物的微粒和纳米多孔性物质。因此,相对於超临界的H2O 来说,超临界CO2更适合于有机纳米颗粒的制备过程。目前,该技术已被用于有机或高分子材料的制备,并取得了令人振奋的成果。 超临界流体 超临界流体(Supercritical Fluid ,SCF)是指物质处在临界温度和临界压力之上的状态, 介于气态和液态之间,兼有气体和液 体的某些物理性状:它即不是液体, 也不是气体,但它具有液体的高密度, 气体的低粘度,以及介入气液态之间 的扩散系数的特征。 一方面超临界流体的密度通常比 气体密度高两个数量级,因此具有较 高的溶解能力;另一方面,它表面张 力几近为零,因此具有较高的扩散性 能,可以和样品充分的混合、接触, 最大限度的发挥其溶解能力,又称为 超临界流体或高密度气体 (densegases)。 利用它的这种性质,在萃取分离过程中,溶解样品在气相和液相之间经过连续的多次的分配交换,从而达到分离的目的。 气体超临界流体液体 密度[Kg/m3] 0.6-1 200-900 1000 粘度[Ps.s] 10-510-5 -10-410-3 扩散系数[m2/s] 10-510-7 -10-8<10-9 热传导[W/mK] 10-310-3-10-110-1 目前,超临界流体作为一种技术已被广泛地用于对复杂物质比如天然产物的分离提取、食品加工、环境监测、工业分析、印染工业等各个领域。

二氧化碳的性质和制取(讲义及答案)

二氧化碳的性质和制取(讲义) ?知识点睛 1.二氧化碳的性质 (1)物理性质 无色、无味的气体,密度比空气大,能溶于水。 固态二氧化碳为白色雪花状固体,俗称,常用 作制冷剂,也可用于人工降雨。 (2)化学性质 ①不燃烧,也不支持燃烧 ②与水反应 化学方程式: 生成的碳酸能使紫色石蕊溶液变红; 碳酸不稳定,容易分解成二氧化碳和水。 化学方程式: ③与澄清石灰水反应(此反应用来检验二氧化碳) 化学方程式: 与氢氧化钠溶液反应(此反应用来吸收二氧化碳) 化学方程式: (3)用途 灭火、光合作用、气体肥料、制冷剂、人工降雨等。 2.二氧化碳的制取 (1)工业制取二氧化碳 反应原理: 【拓展】CaO 易与水发生反应,大量的热, 可用作干燥剂,反应的化学方程式:。 (2)实验室制取二氧化碳 ①药品:和 反应原理: a.不选用浓盐酸,因为浓盐酸易挥发产生, 导致收集到的CO2不纯。 b.不选用稀硫酸,因为反应生成的微溶于 水,会附着在大理石的表面阻止反应继续进行。 c.不选用碳酸钠粉末,因为碳酸钠粉末与稀盐酸 反应速率太,不方便收集。 (Na2CO3+2HCl 2NaCl+H2O+CO2↑)

②实验装置 实验室制取的CO2中常混有HCl 和水蒸气,可利用 如下装置进行净化。饱和NaHCO3溶液可除去HCl, 浓硫酸具有吸水性,可用作干燥剂,除去水蒸气。 【拓展】万能瓶的应用 图A:收集气体(根据气体密度选择合适的进气口); 图B(短进长出):收集气体(液体被挤入烧杯); 图C(长进短出):除去杂质(气体充分接触液体); 图D(长进长出):既能除杂质,又能收集气体。 ③二氧化碳的检验、验满 a.检验:通入澄清石灰水。 b.验满:燃着的木条放在集气瓶口。 ?精讲精练 1.下列有关二氧化碳的实验只能证明其物理性质的是() A. B. C. D.

超临界二氧化碳萃取技术在中药提取中的应用

超临界二氧化碳萃取技术在中药提取中的应用 引言:近年一些中药提取新技木以及一些新技术在中药制剂提取的应用大大促进了中药现代化的进程。其中,超临界流体萃取技术就是一个相当先进且极有应用前景的新技术。超临界流体萃取技木利用超临界流体扩散系数高.流动及传递性能好、溶解能力强的特点,已广泛应用于中药挥发油、生物碱、黄酮类等多种有效成分的提取分离。摘要:简要介绍了超临界流体萃取的基本原理及其在中药有效成分提取方面的优点,并从中药有效成分提取和中草药除杂两方面介绍了超临界流体萃取技术在中药开发中的应用。指出超临界流体萃取技术是一种新型高效分离技术,也是中药现代化的关键技术之一。在此基础上,提出了今后超临界流体萃取技术的主要研究方向。 关键词:超临界流体萃取; 中药; 应用; 研究方向 Abstract:Supercritical fluid extracti on ( SFE) is a new and high efficiency separati on technol ogy,which is one of the key technologies in Chinesemedicinemodernizati on . The princi and advantages of SFE in the extracti on of the effective components fromChinese herbalmedicine were si mp ly intr oduced, and the app licati on in the extracting of the effective components and removing theimpurity from herbalmedicine were als o introduced . Based on that, the main advanced research trends of SFE were pointed out . Key words: Supercritical fluid extracti on; Chinese herbalmedicine; App licati on; Advanced research trends

超临界二氧化碳萃取的过程及设备教学教材

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分

超临界二氧化碳制备微胶囊的研究进展

超临界二氧化碳制备微胶囊的研究进展 孙勤孙丰来杨阿三郑燕萍程榕 (浙江工业大学,杭州!"##"$) 摘要介绍了超临界流体快速膨胀法、超临界流体抗溶剂技术、浸渍法、化学反应法、雾化气体饱和溶液法等超临界%& ’ 技术制备微胶囊的原理和特点;着重介绍了国内外学者对这些方法的研究现状及应用实例;并对这些方法进行了分析和比较,同时指出了这些方法的使用特点。 关键词超临界%& ’ ,快速膨胀,抗溶剂技术,微胶囊,涂层 中图分类号()#’*+*文献标识码,文章编号"###-.."!(’##$)#/-#/0!-#0 微胶囊技术是一种用成膜材料包覆固体或液体形成微小颗粒的技术。微胶囊可以控制活性物质的释放、改善颗粒性质,广泛应用于医药、食品、涂料、油墨、黏合剂等行业。传统的微胶囊制备方法有溶剂挥发法、凝聚法、聚合法、喷雾干燥法、123-453法等["]。这些方法通常都使用有机溶剂,因而存在有机溶剂在产品中的残留和污染问题,且许多方法的操作温度相对较高,对大多热敏性物质,如药物、生物制品等并不适用。尽管123-453方法能形成较薄的涂层,但在浓缩时毛细现象容易使薄层卷曲或破裂,因此该法对于微颗粒、光纤等物料涂层时效果并不好。用超临界二氧化碳流体(6%7-%& ’ )作溶剂能很好地克服这些问题:! 6%7-%&’是无毒、不燃、环境友好的溶剂。超临 界%& ’ 技术可以减少或不使用有机溶剂,这种技术应用在医药、食品工业,可以大大减少有毒溶剂 在最终产品中的残留量;"%& ’ 的临界温度较低 (! 8 9!#$+’:),临界压力相对较小("89;+!; <=>),容易实现超临界状态,较低的操作温度有 利于处理热敏性物质;#6%7-%& ’ 表面张力、黏度和扩散系数都接近气体,因而能使液滴雾化得更加细小,粒径的分布范围更窄,更易实现对微颗粒 甚至纳米颗粒的包覆;$6%7-%& ’ 的扩散系数和 黏度介于气体和液体之间,使超临界%& ’ 溶液容易渗透到多孔物质内部,形成微胶囊。由于6%7-%&’有诸多优点,因此在一些化工过程中,有代替或减少使用有机溶剂的潜力。在萃取、干洗和喷漆方面已有使用超临界工业化的报道。在微颗粒制备[’%0]、微胶囊制备等方面也开始引起了人们越 来越多的重视,每年都有大量超临界%& ’ 应用和研究的文章和报道。本文着重介绍国内外用超临界%&’制备微胶囊的方法和研究情况。"超临界流体快速膨胀法(?@66过程) !"!#$%%过程的原理 ?@66即超临界流体快速膨胀(?>A B C@D A>E1B2E 2F6G A5H8H B I B8>3623G I B2E),是将溶质(包覆材料)溶于6%7-%& ’ 中,当超临界溶液经过微细喷嘴减压后快速膨胀,使溶质过饱和度骤然升高,在涂层室析出大量微核,并在极短的时间内微核快速生长,形成粒度均匀的亚微米以至纳米级微细颗粒,并在其他微小颗粒材料上形成包覆[.],见图"。 图"?@66过程示意图 "—%&’钢瓶;’—高压泵;!—萃取釜; $—涂层室;0—高压阀 !"&#$%%过程制备微胶囊的方法和应用 "+’+"?@66结合流化床 在涂层室进行?@66的包覆过程中,被包覆物是静止的,包覆的均匀性较差,尤其是细微颗粒更差,并且容易发生团聚现象,因此并不具备工业开发前景。为此有人将?@66过程与流化床相结合来解决这一问题,取得了较好的效果。 收稿日期’##!-"’-#!;修改稿日期’##$-#.-"0。 第一作者简介孙勤("/0*—),男,副教授,主要研究化学反应工程、热质传递及设备等领域。电话#0;"-**!’#.’;。 ? ! / ? ’##$年第’!卷第/期 化工进展 %J@

超临界二氧化碳换热器应用

超临界二氧化碳换热器应用 当温度和压力达到临界点时,二氧化碳就进入了临界状态,超临界状态下的二氧化碳出现为一种即非气体又非液体的状态。超临界二氧化碳具有特殊性质:粘度低、密度高,对高聚物具有很强的溶胀和扩散能力,安全非易燃易爆,无毒无腐蚀性。超临界二氧化碳的特殊性质直接促成它在各个领域中广泛使用,其在能源领域获得很好的应用效果。 作为环境友好型工质,CO2有着诱人的物理和输运特性,将超临界CO2用于布雷顿循环发电系统,通过消耗较低的压缩功,能够实现较高的系统热效率,在新一代核能、太阳能、地热、工业余热回收等领域具有极为广阔的应用前景。超临界二氧化碳循环模式包括取热器、高温回热器、低温回热器、冷却器等换热器。换热器作为超临界二氧化碳发电系统中的关键设备,是数量最多、体积最大、成本最高的设备,其综合性能对系统效率提升与安全稳定运行至关重要。 2018年中国科学院工程热物理研究所承担的我国首座“双回路全温全压超临界二氧化碳换热器综合试验测试平台”在廊坊中试基地建成。其高效紧凑印刷电路板式换热器可在极端环境下运行(温度高于900℃,压力高于60MPa),且比表面积大于2500m2/m3。相同热负荷条件下,PCHE体积大约为壳管式换热器的1/5。而且,换热器热侧出口温度和冷侧入口温度的差值能够接近1K,而壳管式换热器一般在12K以上。

图1超临界二氧化碳换热器综合试验测试平台 在相同的输出功率的情况下,超临界二氧化碳涡轮尺寸大约是蒸汽涡轮的1/10,从而导致整个系统结构紧凑、投资成本低。但由于整个系统运行压力高,且占地面积小,因而传统换热器,如壳管式换热器,板翅式换热器等,均不再适用。 2020年中国船舶集团有限公司七二五所联合中核集团原子能院、合肥通用机械研究院有限公司研制的我国首台液态金属钠-超临界二氧化碳印刷板式换热器(PCHE)顺利通过专家组验收,产品技术达到国际先进水平。PCHE作为一种颠覆性的紧凑高效微通道换热器,具有换热效率高、耐低温高温、耐高压、可靠性高等优势。 近年来杭州沈氏节能科技股份有限公司研发出高效紧凑式微通道换热器,具有高完整性扩散结合结构的高效换热器。扩散结合成就了换热器耐高低温和出色的机械性能,使其成为唯一可用于超临界二氧化碳(SCO?)循环中的最佳换热器。 图2高效紧凑式微通道换热器 特点:超耐高温高压,适用于高温高压等苛刻条件;换热面积大,可达1000m2/m3;采用扩散焊接技术,焊接强度大,机械性能出色;且耐腐蚀,可靠性高,体积小。适用于高温高压下的发电循环;印刷电路板式换热器作为一种新型微通道紧凑式换热器,适用于高温高压等苛刻条件,在新一代核能发电、太阳能光热发电、氢能等领域应用潜力巨大。

超临界co2流体的应用

超临界CO2流体的应用 随着环境的温度和压力变化,任何一种物质都存在三种相态-气相,液相,固相,三相成平衡态共存的点叫三相点.液,气两相成平衡状态的点叫临界点.在临界点时的温度和压力称为临界温度和临界压力,不同的物质其临界点的压力和温度各不相同.超临界流体(Super Critical fluid,简称SCF)是指温度和压力均高于其临界点的流体,常用来制备成的超临界流体有二氧化碳,氨,乙烯,丙烷,丙烯,水等.物体处于超临界状态时,由于气液两相性质非常相近,以致无法清楚分别,所以称之为「超临界流体」。 超临界流体具有类似气体的扩散性及液体的溶解能力,同时兼具低黏度,低表面张力的特性,如表1所示,使得超临界流体能够迅速渗透进入微孔隙的物质.因此用于萃取时萃取速率比液体快速而有效,尤其是溶解能力可随温度,压力和极性而变化. 超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的.当物质处于超临界状态时,成为性质介于液体和气体之间的单一相态,具有和液体相近的密度,黏度虽高于气体但明显低于液体,扩散系数为液体的10~100倍,因此对物料有较好的渗透性和较强的溶解能力,能够将物料中某些成分提取出来. 在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小,沸点高低和分子量大小的成分萃取出来.同时超临界流体的密度,极性和介电常数随着密闭体系压力的增加而增加,利用预定程序的升压可将不同极性的成分进行分步提取.当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压,升降温的方法使超临界流体变成普通气体或液体,被萃取物质则自动完全析出,从而达到分离提纯的目的,并将萃取与分离两过程合为一体,这就是超临界流体萃取分离的基本原理. 关于CO2超临界体 二氧化碳在温度高于临界温度Tc=31.26℃,压力高于临界压力Pc=72.9atm的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力.用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景.超临界二氧化碳是目前研究最广泛的流体之一,因为它具有以下几个特点: (1)CO2临界温度为31.26℃,临界压力为72.9atm,临界条件容易达到. (2)CO2化学性质不活泼,无色无味无毒,安全性好. (3)价格便宜,纯度高,容易获得. 所谓的二氧化碳超临界萃取是将已经压温加压成超临界状态的二氧化碳作为溶剂,以其极高的溶解力萃取平时不易萃取的物质,以下有几项关于萃取的说明: (1)溶解作用 在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性,沸点和分子量密切相关,一般来说有以下规律:亲脂性,低沸点成分可在104KPa(约1大气压)以下萃取,如挥发油,烃,酯,醚,环氧化合物,以及天然植物和果实中的香气成分,如桉树脑,麝香草酚,酒花中的低沸点酯类等;化合物的极性基团( 如-OH,-COOH等)愈多,则愈难萃取.强极性物质如糖,氨基酸的萃取压力则要在4×104KPa以上.另外化合物的分子量愈大,愈难萃取;分子量在200~400范围内的成分容易萃取,有些低分子量,易挥发成分甚至可直接用CO2液体提取;高分子量物质(如蛋白质,树胶和蜡等)则很难以二氧化碳萃取. (2)特点 将超临界二氧化碳大量地拿来做萃取之用是因为它具有以下几个萃取技术上的特点 A.超临界CO2流体常态下是无色无味无毒的气体,与萃取成分分离后,完 分子临界温度临界压力临界密度分子临界温度临界压力临界密度 完全没有溶剂的残留,可以有效地避免传统溶剂萃取条件下溶剂毒性的残留.同时也防止了提取过程对人体的毒害和对环境的污染,是一种天然且环保的萃取技术.

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

超临界二氧化碳在工业上的应用

超临界二氧化碳在工业上的应用 摘要:超临界二氧化碳具有其他超临界流体不可比拟的优势,因此,引起了研究者广泛的兴趣。本文简单的介绍了超临界二氧化碳的优点,如具有两极性、良好的流动性和扩散性等。综述了超临界二氧化碳在降低高分子聚合物粘度中的应用以及在制备微孔塑料中应用、原理和研究进展,超临界二氧化碳作为绿色的介质,将会有更广阔的应用价值。 关键词:超临界二氧化碳增塑性发泡剂粘度 在最近几年来,超临界流体因对高分子聚合物的优异增塑作用、优良的传递性能和参数可调节性,使超临界流体得到了突飞猛进的发展,并具有更高的应用价值。在众多超临界流体中,超临界二氧化碳具有其他超临界流体不可比拟的优势,因为我们就与二氧化碳接触,其无毒、无味、非可燃性物质,并且二氧化碳的超临界条件比较低,工业上易于达到,并且超临界二氧化碳具有良好的流动性和扩散性。当超临界二氧化碳参与反应时,体现了优异的溶解速率和传质速率。超临界二氧化碳即可以与极性物质相容也可与非极性物质相容,由于超临界二氧化碳具有优良的特征,因此引起了的许多化学科研工作者地兴趣,到目前为止,超临界二氧化碳主要以优良的增塑性和发泡性应用于挤出成型中。 一、超临界二氧化碳在改变高分子聚合物粘度中的应用 众所周知,高分子聚合物的粘度的高时,加工高分子聚合物成型是不利的,因此,需要改变高分子聚合物的粘度,首先我们先到的是增加温度来降低高分子聚合物的粘度,但这是往往也会增加成本,增大能耗,如果向高分子聚合物中加入低粘度塑化剂来降低其粘度,但很难分离出低粘度塑化剂,这将成品的性能和质量,使成品存在许多缺陷[1]。但超临界二氧化碳能够降低高分子聚合物的粘度,这是因为二氧化碳的超临界条件比较低,很容易达到,在二氧化碳变为超临界流体,使高分子聚合物的粘度降低,同时在低温度下达到熔融状态,并具有等量的流体性质,从而提高熔体流动特性,使挤出速度增加[2]。在二氧化碳气体变为超临界流体时,在这个过程中,二氧化碳是吸收热量,使环境温度降低,熔体温度降低,挤出速度和热能吸收率都将增大,从而使挤出物的物理性能提高,并且还能降低能量损失。二氧化碳通过增大压力的方法可从成品中逸出,保证了产品的优良性能和质量。 超临界二氧化碳对高分子聚合物粘度的降低主要是两个机理:第一个机理是,高分子聚合物吸收二氧化碳,使链缠结降低,从而自由体积增加;第二个机理是,二氧化碳担任“分子润滑剂”角色,将这两个机理有机的结合在一起,便使高分子聚合物的粘度降低[1]。据数据表统计,超临界二氧化碳与超粘的高分子聚合物相溶成单一相时,对高分子聚合物粘度的降低可达到60%[3]。 Elkovitch M.D.[1]、Hung Y.L.[4]、Siobhan O.M.[5]、Will Strauss[6]、Jian X.Z.[7]等人都对超临界二氧化碳都有深入的研究,研究结果表明,高分子聚合物与超临界二氧化碳之间同时存在物理作用和化学作用;在较高的剪切速率条件下,超临界二氧化碳对高分子聚合物的影响将会消失,粘度趋于稳定;在一定条件下,超临界二氧化碳作为增塑剂,得到的致密的产品。 二、超临界二氧化碳在微孔塑料制中的应用 二氧化碳对压力非常敏感,当降低压力时,二氧化碳将从高分子聚合物中逸出,高分子聚合物处于过饱和状态,使系统的热力学处于不稳定状态,从而有固

超临界二氧化碳

一、国外研究现状 1、美国桑迪亚国家实验室率先开展了超临界二氧化碳闭式循环的研究,通过实验对超临界二氧化碳闭式循环存在的包括压缩、轴承、密封、摩擦等问题进行了大量研究,循环实验装置获得了接近50%的发电效率。2011年3月4日桑迪亚实验室在其网站上正式宣布已经掌握了超临界二氧化碳闭式循环的关键技术。 该试验台在早期超临界二氧化碳压缩特性实验装置的基础上添加涡轮、浸入式电加热器和回热器等装置而成,其中电加热器的功率为260kW,压气机压比为1.8。 来自中国科学院国家科学图书馆《科学研究动态监测快报》“先进能源科技专辑” 2、麻省理工(MIT)提出了3 种热力循环参数方案: ①基本设计方案:最高压力20 MPa、堆芯出口温度550℃、净效率达43%; ②先进设计方案:最高压力20 MPa、堆芯出口温度650℃、净效率达47%; ③高性能设计方案:最高压力20 MPa、堆芯出口温度700℃、净效率可达49%。 S-CO2冷却快堆(GFR)的总体方案。 反应堆热功率为2400 MW,电功率约1200 MW,采用2 环路或4环路设置,设计寿命60 a;系统热效率51%,净效率47%;堆芯进、出口温度分别为485.5、650℃,运行压力20 MPa。 3、东京工业大学(TIT)——气冷堆:反应堆热功率为600MW,堆芯出口温度为650℃,反应堆出口运行压力约为7 MPa,系统效率为45.8%。 以S-CO2作为二回路能量转换工质的核反应堆一般采用液态金属或气体冷却,以达到较高的堆芯出口温度。美国对这方面的研究主要是利用S-CO2动力系统高效率、设备简化紧凑等特点开发多功能模块化中小型核反应堆。

二氧化碳的制取

年 级 初三 学 科 化学 编稿老师 李艳红 课程标题 二氧化碳的制取 一校 黄楠 二校 林卉 审核 张美玲 一、考点突破 1. 了解实验室中制取二氧化碳的反应原理。 2. 探究实验室中制取二氧化碳的装置,并利用设计的装置制取二氧化碳。 3. 了解实验室中制取气体的思路和方法。 二、重难点提示 重点是制取气体时实验仪器和收集方法的选择。 本节的知识导图: 1. 二氧化碳的实验室制法 (1)实验室制取二氧化碳的药品选择 稀盐酸和大理石或石灰石(主要成分是碳酸钙)。理由是反应速率适中,原料价廉易得。所以实验室大都用上述药品制取二氧化碳。 注意:①不能选用硫酸,因为硫酸与碳酸钙反应生成微溶于水的硫酸钙覆盖在碳酸钙的表面上,阻止了反应继续进行。 ②不能选用浓盐酸,因为浓盐酸易挥发,得不到纯净的CO 2气体。 ③不能用碳酸钠代替石灰石,因为反应太剧烈,产生的气体难以收集,反应速率的快慢与反应的物质的接触面积和质量分数有关。接触面积越大,反应物质的质量分数越大,反应速率就越快,反之,则越慢。 (2)实验室制取二氧化碳的原理 ↑++=+22232CO O H CaCl HCl CaCO (3)实验室制取二氧化碳的装置

①根据制取CO 2所用的反应物状态、反应条件(常温)和CO 2的性质等方面的因素,选择如下装置(图A 或图B )来制取CO 2。 A 装置用来制取较多的CO 2气体, B 装置用来制取较少的CO 2气体。 ②注意: a. 反应物为固体(块状)与液体,不需加热,气体密度比空气的大,能溶于水。可以采用与制氢气相同的装置,但收集方法不同。 b. 装置A 中的锥形瓶可用大试管、平底烧瓶、广口瓶等仪器代替。 c. A 中长颈漏斗末端必须插入到液面以下,否则生成的气体会从长颈漏斗口跑掉。 d. B 中导管伸入试管内无需太长,更不能插到液面以下,而导管伸入集气瓶时,末端必须插入到集气瓶底。 (4)实验室制取CO 2气体的实验操作过程 ①检验反应装置的气密性。 ②装入大理石、塞紧塞子、发生装置内导管刚露出塞子即可。(装入大理石时,平放试管,用镊子将大理石块放进试管口慢慢滑下。) ③把反应装置固定好 ④从长颈漏斗加入稀盐酸至浸没漏斗末端。 ⑤收集气体,导管末端插入集气瓶底部。 ⑥检验是否集满。 (5)二氧化碳的净化 实验室制得的CO 2往往含有少量的HCl 气体和水蒸气,若要得到纯净的CO 2,就必须要净化(如下图所示)。 注意:NaHCO 3溶液能除去HCl 气体,同时产生CO 2气体;浓H 2SO 4吸收水分,作干燥剂。 (6)二氧化碳的检验 利用澄清石灰水来检验CO 2。如下图所示。化学方程式为: O H CaCO OH Ca CO 2322)(+↓=+。具体方法:将气体通入澄清石灰水中,如果石灰水变浑浊,则通入的气体为CO 2;如果未变浑浊,则不是CO 2。

超临界二氧化碳

超临界二氧化碳在染整加工中的应用 摘要:针对传统水染工艺不能从根本上解决印染行业水环境污染严重及资源消耗、浪费大的问题,介绍了一种全新的清洁生产技术——超临界二氧化碳染色过程。文章综述了超临界二氧化碳应用于染整加工领域的研究进展,包括超临界二氧化碳的性质,其在前处理的应用、以超临界二氧化碳为介质染合技术的一般流程,染合成纤维及天然纤维相关内容等,并讨论了其利弊。 关键词:超临界流体:二氧化碳;染整; 前沿: 进入二十一世纪环境保护越来越受到人们的重视.可持续发展问题成为当今世界经济发展的主题,任何工业的发展都必须符合这一主题的要求。同时全球水资源环境问题日益尖锐,我国是严重缺水的国家,水污染使资源短缺问题变得更为突出,工业污染是造成水环境污染的主要污染源之一。而在纺织品染整加工过程中,大量使用了污染环境和对人体有害的染整剂,这些助剂生物降解性差,毒性大,游离甲醛含量高,重金属离子的含量超标。这些助剂大多以气体、液体、固体的形态排放而污染环境,严重危害人类的健康,因而,绿色染整加工技术成了近年来科研工作者追求的目标[16]。 近二十年来,超临界二氧化碳技术倍受青睐,它是采用二氧化碳来代替以水为介质的染整加工技术,工艺中无需清洗,无需烘干,二氧化碳可循环再利用。该技术可避免大量废水对环保带来严重污染问题。保护了水资源,省去还原清洗和烘干工序,降低了能源消耗,染色过程无有害气体排放,残余染料可循环使用,提高了染料利用率。它不仅无毒、无污染,不易燃烧,而且价格便宜,要求的操作温度和压力都较低,具有许多奇特的性能,以前较多地应用于食品及医药工业上。近几年来,超临界二氧化碳技术在高分子材料合成和加工以及纺织工业上的应用成为科技界关注的热点。下面介绍超临界二氧化碳的性质以及超临界二氧化碳技术在染整加工领域的一些应用。 1超临界二氧化碳的性质 常压下,物质在液相和气相间成平衡时,两相的物理性质如粘度、密度、导电度和介电常数等存在显著差别。当压力提高时,这种差别逐渐缩小,当达到某一温度和压力时,两相密度相等,气相和液相之间无明显的界限,而且仅有一相,称为临界状态。此时的温度和压力均称为临界温度和临界压力。超临界流体(SCF)是指在临界温度和临界压力以上的流体。处于超临界状态时,气液两相性质非常接近,以至于无法分辨。超临界流体本身具有如下特性[17]:①其扩散系数比气体

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

二氧化碳超临界萃取技术

二氧化碳超临界萃取技 术 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

超临界CO2萃取装置 ??? 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 ?超临界CO2萃取装置的主要技术指标 ??? 萃取釜:、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 ??? 分离釜:30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 ??? 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 ??? CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 ??? 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 ??? 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 ??? 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃??? 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±??? 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量??? 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。??? 其他:电源三相四线制380V/50Hz,CO2食品级≥,用户自备 ?超临界CO2萃取装置的基本流程 ??? 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; ??? 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; ??? 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; ??? 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 ?超临界CO2萃取装置的特点

相关文档
最新文档