小升初数学专题讲练--行程问题(二):过桥问题行船问题
行程问题——流水问题、过桥问题
行程问题教案(行程问题)行程问题(二)行船问题和过桥问题行船问题:船在水中航行,比一般的行程问题又多了一个流水的影响,研究路程、速度和时间的数量关系称为流水问题,又叫行船问题。
船顺水航行时,一方面按照船本身的速度即船速(船在静水中的速度)在水上行驶,同时水面又有水流动的速度在前行,水也带着船行进,因此顺水速度是船速与水速的和。
流水问题中各数量关系是:(1)顺水速度=静水速度(船速)+水速(2)逆水速度=静水速度(船速)-水速(3)(顺水速度+逆水速度)÷2=船速(4)(顺水速度-逆水速度)÷2=水速其余的和行程问题是一样的,也是:速度×时间=路程,以及由此相关的其他两个公式。
【例1】一只船静水中每小时行8千米,逆流2小时行了12千米,水速是多少?【解题分析】逆水速度:12÷2=6(千米)水流速度:8-6=2 (千米)【静水速度(船速)-逆水速度=水速】答:水速是每小时2千米。
【例2】两个码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9 千米,逆水比顺水多用多少小时?【解题分析】根据:“两个码头相距432千米,轮船顺水行这段路程需要16小时”可以求出顺水速度:432÷16=27(千米),再根据:“逆水每小时比顺水少行9千米”可以求出逆水速度:27-9=18(千米),由此可以求出逆水时间:432÷18=24(小时),那么24-16=8(小时)答:逆水比顺水多用8小时。
【例3】一条轮船在两码头间航行,顺水航行需4小时,逆水航行需5小时,水速是每小时2千米,求这条轮船在静水中的速度。
【解题分析】因为没有两码头间的距离,所以我们只能假设,但数据必须是4和5共有的倍数,有20、40、60、80……,通过尝试,顺水速度:80÷4=20(千米)逆水速度:80÷5=16(千米)而20-2=18(千米),静水速度16+2=18(千米)答:这条论村在静水中的速度是18千米。
小升初专题复习-行程问题和工程问题(课件)人教版六年级下册数学
队每天完成工作总量的115,也就是说甲、乙的工作效率分别是110、115。 工作总量减去甲、乙两队合干的工作量得到剩下的工作量,再除以乙队 的工作效率得到乙队单独干剩下的工作量所需的时间。 【答案】 [1-(110+115)×2]÷115=10(天) 答:剩下的工程由乙队单独完成还需要 10 天。
用了 1 小时,小刚往返的平均速度是每小时( B )。
A.5 km B.10 km C.430 km D.30 km
5.(广东·深圳)在比例尺 1∶6000000 的地图上,甲、乙两地相距 8 cm,
一列客车和一列货车分别从甲、乙两地同时开出,相向而行,4 小时后相 遇。已知客车与货车的速度比是 8∶7,货车的速度是( A )千米/时。
解:设乙每小时生产 x 个零件。 18∶x=3∶5 x=30 12×30=360(个)
3 360×3+5=135(个) 答:甲一共生产了 135 个零件。
3.甲、乙两个码头相距 130 km,汽船从乙码头逆水行驶 6.5 小时到达甲 码头,汽船在静水中每小时行驶 23 km。汽船从甲码头顺流开到乙码头需
要几小时?
23-130÷6.5=3(千米/时) 130÷(23+3)=5(小时) 答:汽船从甲码头顺流开到乙码头需要 5 小时。
工程问题 (北京)单独干某项工程,甲队需要 10 天完成,乙队需要 15 天完成。 甲、乙两队合干 2 天后,剩下的工程由乙队单独完成还需要多少天? 思路点拨:解决工程问题时,把工作总量看作单位“1”,理解工作总量、 工作时间和工作效率的对应关系。如果这项工作由几个人共同完成,则
答:这段路甲队单独修需要 36 天完成。
小升初典型应用题精练行程问题附详细解答
典型应用题精练(行程问题)1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4 、小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
7、甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
(小升初培优讲义)专题14 列车过桥与流水行船--2022-2023六年级一轮复习
(小升初培优讲义)专题14 列车过桥与流水行船--2022-2023六年级一轮复习(知识点精讲+达标检测)【知识点精讲】一、列车过桥列车过桥问题是解决列车在一个桥上通过的时间和距离。
列车过桥问题属于速度、时间和距离的应用问题,需要用到简单的等式来解决。
列车过桥问题主要有以下几种情况:1. 同向问题:当一列火车在一座桥上运行时,桥本身有一定的长度,而火车也有一定的长度。
如果桥的长度为L,火车本身的长度为l,火车在行驶中若完全通过整座桥所需要的时间t,若列车速度为v,则此时T=t+vL/(v-u)(u为行驶在桥上时火车相对于桥的速度)。
列车完全通过桥所需的时间为T。
2. 相向问题:当两列火车相向而行时,当火车相向而行时,列车速度的相对速度就是两个列车速度之和。
设两列火车的速度分别为v1和v2,当列车通过完整的桥所需要的时间为t1和t2,则此时L=(v1+v2)(t1+t2)。
3. 碰面问题:当两列火车相向而行时,如何特定时间和距离下,两个火车能够相遇,需要用到列车的相对速度和距离。
设车A 和车B相对距离为D,速度分别为v1和v2,它们向对移动,相遇的时间为t,则此时D=(v1+v2)t。
二、流水行船流水行船是解决运动物体在水中运动的问题。
在水中运动的物体会受到水流的影响,因此需要考虑水流的影响。
流水行船问题主要有以下几种情况:1. 顺流行驶:当船沿着水流方向航行时,船的速度可以看做是叠加了水流的速度和船的速度。
如果沿着水流方向行驶,则速度为V= v + u(u为水流速度)。
此时船的速度为V。
2. 逆流行驶:当船逆向行驶时,水流的速度对船的速度产生了抵消的作用。
如果沿着水流相反方向行驶,则速度为V= v - u (u为水流速度)。
此时船的速度为V。
3. 相向行驶:当两艘船相向而行,如何特定时间和距离下,两艘船能够相遇,需要用到船的相对速度和距离。
设船A和船B相对距离为D,船速度为v1和v2,此时D=(v1+v2)t。
小升初数学专题讲练--行程问题(二):过桥问题 行船问题
行程问题(二)火车过桥问题流水行船问题火车过桥问题【基本公式】过桥地时间(桥长车长)÷车速过桥地路程桥长车长车速(桥长车长)÷过桥时间【典型例题】、一列火车长米,每秒钟行米.全车通过长米地大桥,需要多长时间?、一列火车长米,以每秒米地速度通过一条隧道,从车头进洞到车尾离洞,一共用了秒.这条隧道长多少米?、一列火车长米,它以每秒米地速度行驶,小华以每秒米地速度从对面走来,经过几秒钟后火车从小华身边通过?、一列火车通过米地桥需要秒钟,以同样地速度穿过米地山洞需要秒钟.求这列火车地速度是每秒多少米?车长多少米?、某人沿着铁路边地便道步行,一列火车从身后开来,在身旁通过地时间是秒钟,客车长米,每小时速度为千米.求步行人每小时行多少千米?、铁路旁有一条小路,一列长为米地火车以每小时千米地速度向南驶去,点时追上向南行走地一名军人,秒后离他而去,点分迎面遇到一个向北走地农民,秒后离开这个农民,问军人与农民何时相遇?【课堂演练】、一列火车长米,它以每秒米地速度穿过米长地隧道,从火车头进入隧道到车尾离开隧道共需多少秒?、一支队伍米长,以每分钟米地速度行进.队伍前面地联络员用分钟地时间跑到队伍末尾传达命令.问联络员每分钟行多少米?、一人以每分钟米地速度沿铁路步行,一列长米地客车对面开来,从他身边通过用了秒钟,列车地速度是锋线秒多少米?、一列火车通过米地桥需要秒,以同样地速度穿过米地隧道需要秒,这列火车地速度和车身长各是多少?、一人以每分钟米地速度沿铁路边步行,一列长米地客车从他身后开来,从他身边通过用了秒钟,求列车地速度.【课后演练】、一座铁路桥全长米,一列火车开过大桥需花费秒,火车开过路旁电杆,只需花费秒,那么火车全长是多少米?、两列火车,一列长米,每秒行米;另一列长米,每秒行秒,两车相向而行,从车头相遇到车尾离开需要几秒钟?、有两列火车,一列长米,每秒行主;一列长米,每秒行米,两车同向而行,从第一列车追及第二列车到两车离开需要几秒?、快车长米,每秒行米;慢车长米,每秒行米.两车同向而行,当两车车头齐时,快车几秒可赿过慢车?、一人以每分钟米地速度沿铁路边跑步,一列长米地火车从对面开来,从他身边通过用了秒钟,求列车地速度..一列火车长米,它以每秒米地速度穿过长米地隧道,从车头进入隧道到车尾离开隧道共需多长时间?、一列长米地火车以每分钟米地速度通过一座大桥.从车头开上桥到车尾离开桥一共需分钟.这座大桥长多少米?、一列火车长米,通过一座长米地大桥,从车头上桥到车尾离开桥共用分钟,已知米,求这列火车每分钟行驶了多少米?.一列火车,通过米长地隧道,已知由车头开始进入山洞口到车尾进入洞口共用秒钟,又过了秒钟,火车刚好全部通过隧道.求这列火车地长?、一列特快列车车长米,一列慢车车长米.两列火车相向而行,轨道平行.坐在慢车上地人看着快车驶过地时间是秒,那么坐在快车上地人看着慢车驶过是多少秒?、两人沿着铁路线边地小道,从两地出发,两人都以每秒米地速度相对而行.一列火车开来,全列车从甲身边开过用了秒.分钟后,乙遇到火车,全列火车从乙身边开过只用了秒.火车离开乙多少时间后两人相遇?、马路上有一辆车身为米地公共汽车,四东向西行驶,车速为每小时千米,马路一旁地人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上甲,秒钟后汽车离开了甲,半分钟后汽车遇到迎面跑来地乙,又过了秒钟,汽车离开了乙.问再过多少秒后,甲、乙两人相遇?.有两列火车,一列长米,每秒行米,另一列长米,每秒行米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?流水行船问题【基本公式】顺水速度船速+水速逆水速度船速-水速船速(顺水速度+逆水速度)÷水速(顺水速度-逆水速度)÷【典型例题】、某船从地航行到地需小时,返回时只需小时.已知、两地相距米,则两船地静水速度和水速分别是多少?、晓雪同学制作了一只船模在河边进行试航,它逆水分钟航行地距离为米,顺水分钟航行了米,若晓雪把航模放在静水中航行,分钟能够航行多少米?、静水中甲、乙两船地速度分别为千米、千米,两船先后自港口顺水开出,乙比甲早出发小时,若水速是每小时千米,问甲开出后几小时可追上乙?、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距千米,假定小船地速度是每小时千米,水流速度是每小时千米,那么他们追上水壶需要多少时间?、一只小船,第一次顺流航行千米,逆流航行千米,共用小时二次用同样地时间顺流航行千米,逆流航行千米.这只小船在静水中地速度和水流速度各是多少?、一只帆船地速度是米分,船在水流米分地河中,从上游地一个港口到下游地某一地,再返回到原地,共用小时分,这条船从上游港口到下游某地共走了多少米?【课堂演练】、甲、乙两船分别从、两地同时相向出发,甲船静水速度为千米小时,乙船静水速度为毛糙小时.小时后两船相遇,则、两地地距离是多少千米?、一艘快艇往返于、两地,去时顺水速度千米小时,返回时千米小时,往返一共用了小时,则、两地是多少千米?、甲、乙两船分别从港逆水而上,静水中甲船每小时行千米,乙船每小时行千米,水速为每小时千米,已船出发小时后,甲船才开始出发,当甲船追上乙船时,已离开港多少千米?、一只轮船往返于相距千米地甲、乙两港之间.顺流地速冻是每小时千米,逆流地速度是每小时千米.一艘汽艇地速度是每小时千米.这艘汽艇往返于两港之间共需多少小时?、某河有相距千米地上下两码头,每天定时有甲、乙两艘船速相同地客轮分别从两码头同时出发相向而行,一天甲船从上游码头出发时掉下一物,此物浮于小面顺水飘下,分钟后,与甲船相距千米,预计乙船出发后几小时可以与此物相遇【课后演练】、一学生顺风跑米和逆风跑米均用了秒,求出在无风地情况下参加百米竞赛地成绩?、一只船在河里航行,顺流而下,每小时行千米,船下行小时与上行小时地路程相等,则船地静水速度和水速分别是多少?、河是地支流,河水地水速为每小时个千米,河水地水速是每小时千米.一艘船沿酒有别肠顺水航行小时,行了千米到达河,在河还要逆水航行千米,问这艘船还要航行几小时?、王红地家离学校千米,他每天早晨骑车上学都以每分钟米地速度骑,正好能准时到校.一天早晨,因为逆风,风速为每分钟千米,开始千米,他仍以每分钟米地速度骑,那么,剩下地千米,他应以每分钟多少米地速度才能准时到校?一条大河,河中间(主航道)水速每小时千米,沿岸边水速为每小时千米.一条船在河中间顺流而下,小时行驶千米,求这条船沿岸边返回原出发地点,需要多少小时?甲、乙两个码头相距千米,一只船从乙码头逆水而上,行了小时到达甲码头.已知船速是水速地倍,这只船从甲码头返回乙码头需要几小时?、一艘轮船沿江从港顺流行驶到港,比从港返回港少用小时,若船速为每小时千米,水速为每小时千米,则港和港相距多少千米?、两艘游艇在河流中同时相向出发,艇静水速度为千米小时,艇逆流而上为千米小时.若水速为千米小时,则相遇时艇行驶地路程是艇行驶地路程地几倍?、已知从河中地到海口千米,如船顺流而下,小时可到海口.已知水速为每小时千米,船返回已航行小时后,因河水涨潮,由海向河地水速为每小时千米,此船回到原地,还需再行多少小时?、甲、乙两港相距千米,一轮船往返两港需要小时,逆流航行比顺流航行多花小时,另一只帆船每小时行千米,这只帆船往私家两港需要多少小时?、乙船顺水航行小时,行了千米,返回原地用了.甲船顺水航行同一段水路,用了小时.甲船返回原地比去时多用了几小时?、已知一艘轮船顺水行千米需小时,逆水行千米需小时.现在轮船从上游城到下游城,已知两城地水路长千米,开船时一旅客从窗口投出一块木板,问船到城时木板离城还有多少千米?、一只小船第一次顺流航行千米,逆水航行千米,共用小时;第二次用同样地时间,顺流航行千米,逆流航行千米,则这只船地静水速度和水速分别是多少?。
人教版六年级下册数学小升初行程问题综合复习(课件)
4
90÷(6-0.5)=1611(分)
4
答: 1611分钟之后时针与分针第一次重合。
行程问题之流水行船
5.一艘轮船顺流航行90千米,逆流航行24千米共用7小时;
顺流航行54千米,逆流60千米共用8小时。求水流的速度。
将逆流路程变相同,找逆流路程的最小公倍数,顺流路程也同样做变化
的河中逆水而行用了11小时。求返回原处需用(
A.4
B.6
这只船的逆水速度为:176÷11=16(千米/时)
水速为:30-16=14 (千米/时)
返回原处所需时间为:176÷(30+14)=4 (小时)
C.8
)小时。
出门测
2.甲乙两地相距200千米,小强去时的速度是10千米/小时,
回来的速度是40千米/小时,小强往返的平均速度是(
行程问题之环形跑道
1.一条环形跑道长400米,甲骑自行车每分钟骑450米,乙
跑步每分钟250米,两人同时从同地同向出发,经过多少分
钟两人相遇?
400÷(450-250)=2(分钟)
答:经过2分钟两人相遇。
行程问题之相遇追及
2.甲、乙两车分别从相距360千米的A、B两城同时出发,相
对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,
火车完全过桥:时间=(桥长+车长)÷车速
②指针旋转一周是360度,每个大格
火车完全在桥上:时间=(桥长-车长)÷车速
30度,每个小格6度
火车过人:相遇时间=车长÷(车速+人速)
2 速度
时针 =0.5度/分
追及时间=车长÷(车速-人速)
分针 =6度/分
3 位置关系
流水行船
小升初行程问题专项训练之火车过桥问题流水行船问题
小升初行程问题专项训练之火车过桥问题流水行船问题火车过桥问题【基本公式】过桥的时间=(桥长+车长)÷车速过桥的路程=桥长+车长车速=(桥长+车长)÷过桥时间【典型例题】1、一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多长时间?2、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?3一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?4、一列火车通过530米的桥需要40秒钟,以同样的速度穿过380米的山洞需要30秒钟。
求这列火车的速度是每秒多少米?车长多少米?5某人沿着铁路边的便道步行,一列火车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米。
求步行人每小时行多少千米?6.铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民,问军人与农民何时相遇?【课堂演练】1、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从火车头进入隧道到车尾离开隧道共需多少秒?2、一支队伍1200米长,以每分钟80米的速度行进。
队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。
问联络员每分钟行多少米?3、一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是锋线秒多少米?4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒,这列火车的速度和车身长各是多少?5、一人以每分钟60米的速度沿铁路边步行,一列长144米的客车从他身后开来,从他身边通过用了8秒钟,求列车的速度。
【课后演练】1、一座铁路桥全长1200米,一列火车开过大桥需花费75秒,火车开过路旁电杆,只需花费15秒,那么火车全长是多少米?2、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15秒,两车相向而行,从车头相遇到车尾离开需要几秒钟?3、有两列火车,一列长102米,每秒行20主;一列长120米,每秒行17米,两车同向而行,从第一列车追及第二列车到两车离开需要几秒?4、快车长182米,每秒行20米;慢车长1034米,每秒行18米。
行程问题————过桥问题行船问题
行程问题————过桥问题公式:例1、一座大桥长1200米,火车长300米,火车以每秒25米的速度在桥上行使,火车从上桥到离桥需多长时间?例2、一列火车长380米,它经过路边的扳道工人用19秒,它以同样的速度通过一个山洞,从火车进山洞到车尾离开共用50秒钟。
求这个山洞的长?例3、某列车通过528米的隧道用了29秒,接着通过396米的隧道用了23秒。
这列火车与另一列长226米,速度为每秒20米的货车错车而过,需要多少秒钟?练习:1、一列长150米的火车,通过200米长的山洞用了25秒钟,这列火车每秒钟行多少米?2、一列火车长230米,每秒行15米,全车通过一座大桥用38秒钟,求这座大桥长多少米?3、在上、下行的轨道上,两列火车相对开来,一列火车长190米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?4、一列长780米的火车以每秒23米的速度,连续通过一座桥和一个山洞,共用2分,已知桥长960米,山洞长多少米?5、小强站在铁路边,一列火车从他身边开过用了2分钟,已知这列火车长720米,以同样的速度通过一座大桥,用了5分钟。
这座大桥长多少米?6、火车通过长为368米的桥用了26秒,如果火车的速度加快1倍,它通过长为440米的隧道只用了15秒。
求火车原来的速度和它的长度。
7、慢车车身长164米,车速度为每秒18米,快车车身长121米,车速为23米每秒。
慢车在前面行使,快车在后面从追上到完全超过需要多少时间?8、少先队员366人排成两路纵队去参观博物馆。
队伍行进的速度是24米每分,前后两人都相距1米,现在队伍要通过一座长658米的大桥,整个队伍从上桥到离桥共需多少分?9、刚刚坐在行使的列车上,从窗口往外看,看到一列长168米的货车通过一座长209米的桥用了29秒,而迎面开来从他眼前经过用6秒钟。
列车每秒钟行多少米?10、快慢两列火车相对开来,慢车长180米,快车长135米,两列火车交错而过用9秒钟,当快车到达目的地返回时有追上了慢车,从追上慢车到离开慢车用了105秒钟,快、慢两列火车的速度分别是多少?行程问题————行船问题公式:例1、甲、乙两港相距286千米,一只船从甲港开往乙港,顺水11小时到达;从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流的速度?例2、甲、乙两港相距240千米,一艘轮船顺流而下要15小时,逆流而上要24小时;一艘汽艇逆流而上要10小时,如果汽艇顺流而下要几个小时?例3、甲、乙两个码头相距224千米,一只船从乙码头逆水而上,行了16小时到达甲码头,已知船速是水速的15倍,这只船从甲码头返回乙码头需要几个小时?例4、一艘轮船顺水行96千米需6小时,逆水行96千米需8小时。
2020年小升初数学专题复习训练—拓展与提高:行程问题(2)(知识点总结+同步测试)
2020年小升初数学专题复习训练—拓展与提高行程问题(2)知识点复习一.钟面上的追及问题 【知识点归纳】1.时钟问题-钟面追及问题: 基本思路:封闭曲线上的追及问题. 关键问题:(1)确定分针与时针的初始位置; (2)确定分针与时针的路程差; 2.基本方法:(1)分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格.分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走121分格. (2)度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转60360度,即6°,时针每分钟12360×60度,即0.5度. 3.在钟面上总是分针追赶时针的局面,或是分针超越时针的局面.这里的转动角度用度数来表示,相当于行走的路程.因此钟面上两针的运动是一类典型的追及行程问题.【命题方向】例1:现在是下午3点整,再过( )分时针与分针第一次重合.A 、25B 、20C 、18D 、16114 分析:解这个问题的难处在于时针转过多大的角度,这就要弄清楚时针与分针转动速度的关依据这一关系列出方程,可以求解.解:设从3点开始,经过x分钟,时针和分针第一次重合.此时时针与分针之间的夹角是30×3=90°.【命题方向】例1:一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A、1200×2+200B、1200×2-200C、(1200+200)×2D、(1200-200)×2 分析:从车头上桥到车尾离开桥一共用2分钟,则火车等于是跑了桥的全长加车的长度,于是,我们用2分钟所行驶的距离再减去车长200米就是桥的长度.解:1200×2-200=2400-200=2200(米),故选:B.点评:解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.三.发车间隔问题【知识点归纳】(1)一般间隔发车问题.用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)求到达目的地后相遇和追及的公共汽车的辆数.标准方法是:画图--尽可能多的列3个好使公式--结合s全程=v×t--结合植树问题数数.(3)当出现多次相遇和追及问题--柳卡.【命题方向】例1:公交车从甲站到乙站每间隔5分钟一趟,全程走15分钟,某人骑自行车从乙站往甲站行走,开始时恰好遇见一辆公交车,行走过程中又遇见10辆,到甲站时又一辆公交车要出发,这人走了()分钟.A、35B、40C、50D、45分析:因为是相向而行,所以骑自行车的时间加上公交车的时间应等于(10+1)×5=55(分钟),又因为公交车走全程需15分钟,所以骑自行车的时间为:55-15=40(分钟)解:由题意可得(10+1)×5-15=55-15=40(分钟).答:他从乙站到甲站共用了40分钟.故选:B.点评:此题属于多次相遇问题,考查了学生“相向而行”这一知识点,以及分析问题的能力.四.错车问题【知识点归纳】列车错车问题最终都是转化为直线上的相遇或追及问题;相向而行错车相当于相遇问题,同向而行错车相当于追及问题.但在实际解题过程中我们会发现:同样是错车,如果给出的题设条件不同,则错车时所计算的路程与车长有关.【命题方向】例1:甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整列火车经过甲身边用了18秒,2分后又用了15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身后,甲、乙两人还需要多少时间才能相遇?分析:(1)设火车的长度为S,火车速度为V1,甲乙的速度为V2,因为火车经过甲用的时间长,所以甲与火车同向而行,而乙与火车相对而行;则火车经过甲的速度为V1-V2,经过乙的速度V1+V2,由于经过的距离同是火车的长度,由此可得:(V1-V2)×18=(V1+V2)×15,整理后得:V1=11V2,即火车速度为甲的速度的11倍.(2)经过甲后,火车行了2分钟即120秒才与乙相遇,当火车经过了乙,火车一共行驶了120+15秒=135秒.此时甲行走了135秒,火车在此时间段行走了135×V1的路程,甲走了135×V2的路程.那么火车经过乙以后甲乙之间的距离为135V1-135V2=1350V2.所以甲乙走这段路程所需要的时间为1350V2÷(V2+V2)=675秒.即火车经过乙675秒后甲乙两人相遇.解:(1)设火车的长度为S,火车速度为V1,甲乙的速度为V2,由此可得:(V1-V2)×18=(V1+V2)×1518V1-18V2=15V1+15V2,3V1=33V2,V1=11V2.答:火车速度为甲的速度的11倍.(2)2分钟=120秒,135V1-135V2=135×11V2-135V2,=1485V2-135V2,=1350V2.1350V2÷(V2+V2),=1350V2÷2V2,=675(秒).答:火车经过乙身后,甲、乙工人还需要675秒才能相遇.点评:本题为相遇问题与追及问题的综合,完成问题(2)时要注意从火车经过的距离中减去甲行的距离.同步测试一.选择题(共6小题)1.一辆小汽车每秒行20米,刚驶入隧道时,发现一辆客车正在前面180米处行驶.如果两车速度保持不变,1.5分钟后两车同时驶出隧道,那么客车每秒行驶()米.A.10B.16C.18D.202.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200B.1200×2﹣200C.(1200+200)×2D.(1200﹣200)×23.一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要()秒.A.110B.100C.90D.854.早上6时10分1路车和2路车同时发车,1路车每隔10分发一辆车,2路车每隔15分发一辆车,第二次同时发车的时间是()A.6:20B.6:30C.6:40D.6:505.公交车从甲站到乙站每间隔5分钟一趟,全程走15分钟,某人骑自行车从乙站往甲站行走,开始时恰好遇见一辆公交车,行走过程中又遇见10辆,到甲站时又一辆公交车要出发,这人走了()分钟.A.35B.40C.50D.456.(北京市第一实验小学学业考)现在是下午3点整,再过()分时针与分针第一次重合.A.25B.20C.18D.16二.填空题(共8小题)7.从时钟指向4点开始,再经过分钟,时针正好与分针重合.8.有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃.中午12点整,电子钟响铃又亮灯.则下一次既响铃又亮灯是点钟.9.一列长360米的火车以30米/秒的速度全车通过一段隧道,一共用了45秒,这段隧道长米.10.(北京市第一实验小学学业考)如图,等边三角形ABC的边长为100米,甲自A点,乙自B点同时出发,按顺时针方向沿着三角形的边行进.甲每分钟走60米,乙每分钟走90米,在过每个顶点时各人都因转弯而耽误10秒钟,那么乙在出发秒之后追上甲.11.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行使,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要秒.12.小明从家到学校上课,开始时以每分钟50米的速度走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,肯定要迟到8分钟.于是他立即加快速度,每分钟多走10米,结果小明早到了5分钟.小明家到学校的路程是米.13.一列火车长1000米,以每秒20米的速度通过一座长2400米的大桥,从上桥到下桥共需要秒.14.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔分发一辆车.三.应用题(共4小题)15.一列火车以20米/秒的速度行驶,经过了一个隧道用了5分钟.列车长700米,你知道隧道有多长吗?16.一列火车长是200米,每秒行驶32米.如果这列火车经过一座大桥时,从车头上桥到车尾离开桥共用104秒.这座大桥长是多少米?17.有甲、乙两列火车,甲车长116米,每秒行驶10米;乙车长124米,每秒行驶14米.两车相遇后,从甲车与乙车车头相遇到车尾分开需要多少秒?18.有A,B两站,每隔相同时间发出一辆汽车,A,B之间有一人骑自行车,发现每隔4分钟迎面开来一辆车,每隔12分钟后面开来一辆汽车并超过他,若人与车的速度都是匀速的,问A,B两站每隔多少分钟发一次车?四.解答题(共4小题)19.一铁路隧道长2000米,一列火车从车头进入隧道到车尾离开隧道用了一分钟,整列火车完全在隧道内的时间是40秒.求火车的车长及其行驶的速度.20.甲、乙两地相距120千米.一辆大客车从甲地出发前往乙地.开始时每小时行50千米,中途减速为每小时行40千米.大客车出发1小时后,一辆小轿车也从甲地出发前往乙地,每小时行80千米,结果两辆车同时到达乙地,问大客车从甲地出发多少时间后才降低速度?21.12点整时,钟面上的时针、分针、秒针刚好重合.请你计算,再过多长时间,钟面上的时针与分针再次重和?重和时,时针、分针分别走了几圈几格?22.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分钟有一辆公共汽车超过小光,每隔20分由一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔多少分钟?参考答案与试题解析一.选择题(共6小题)1.【分析】因为小汽车的速度是20米每秒,行驶1.5分钟=90秒后,行驶了20×90=1800米,因为客车在小汽车的前面180米处,所以客车行驶的路程就是1800﹣180=1620米,再除以行驶的时间90秒,据此即可求出客车行驶的速度.【解答】解:1.5分=90秒,(20×90﹣180)÷90,=1620÷90,=18(米/秒),答:客车每小时行驶18米.故选:C.【点评】根据小汽车行驶的速度和时间求出行驶的路程,再减去客车与小汽车的距离,即可得出客车行驶的路程,再利用速度=路程÷时间即可解答.2.【分析】从车头上桥到车尾离开桥一共用2分钟,则火车等于是跑了桥的全长加车的长度,于是,我们用2分钟所行驶的距离再减去车长200米就是桥的长度.【解答】解:1200×2﹣200=2400﹣200=2200(米),故选:B.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.3.【分析】从车头上桥到车尾离开桥所走路程为:2000+200=2200(米),于是,我们所行驶的距离除以火车的速度,就是所用时间.【解答】解:(2000+200)÷20=2200÷20=110(秒)答:火车从上桥到离开桥需要110秒.故选:A.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.4.【分析】1路车每隔10分发一辆车,2路车每隔15分发一辆车,那么两车同时发车的时间间隔应是10与15的最小公倍数,10与15的最小公倍数为30,所以30分钟后,两车第二次同时发车,即6点10分+30分=6点40分.【解答】解:10和15的最小倍数为:3×2×5=30.所以每隔30分钟,两车都同时发车一次,则第二次同时发车的时间是:6点10分+30分=6点40分.故选:C.【点评】在此类问题中,两车同时发车的时间间隔是两车各自发车时间间隔的最小公倍数.5.【分析】因为是相向而行,所以骑自行车的时间加上公交车的时间应等于(10+1)×5=55(分钟),又因为公交车走全程需15分钟,所以骑自行车的时间为:55﹣15=40(分钟).【解答】解:由题意可得(10+1)×5﹣15=55﹣15=40(分钟).答:他从乙站到甲站共用了40分钟.故选:B.【点评】此题属于多次相遇问题,考查了学生“相向而行”这一知识点,以及分析问题的能力.6.【分析】解这个问题的难处在于时针转过多大的角度,这就要弄清楚时针与分针转动速度的关系.每一小时,分针转动360°,而时针转动30°,即分针每转动1°时针转动()°;依据这一关系列出方程,可以求解.【解答】解:设从3点开始,经过x分钟,时针和分针第一次重合.此时时针与分针之间的夹角是30×3=90°.则:6x﹣0.5x=90,5.5x=90x=16答:从现在起时针和分针在3时16分第一次重合.故选:D.【点评】考查钟表分针所转过的角度计算.钟表里的分钟与时针的转动问题基本上与行程问题中的两人追及问题非常相似.行程问题中的距离相当于这里的角度;行程问题中的速度相当于这里时(分)针的转动速度.二.填空题(共8小题)7.【分析】(1)方法一:时钟指向4点即时针从12点走到4点共走了20个小格(一分钟为一格),所以20÷(1﹣)=20×=21(分钟);(2)方法二:时钟指向4点即时针从12点走到4点共走了4个大格(一小时为一格).所以4÷(12﹣1)=(小时)=21(分钟).【解答】解:我们知道:时针1小时走1格,分针1小时走12格,所以从4点开始分针与时针重合所用时间为:4÷(12﹣1)=(小时)=21(分钟).【点评】注意:此题的解法类似于“行程问题”.8.【分析】中午12点整,电子钟响铃又亮灯.那么到1点又响一次铃,即每隔60分响一次铃;则下一次既响铃又亮灯的时间间隔应是60和9的最小公倍数,只要求出60和9的最小公倍数,再根据12点向后推算即可得出答案.【解答】解:60=2×2×3×5,9=3×3,60和9的最小公倍数:2×2×3×3×5=180(分钟)=3小时;中午12时+3小时=下午3点;答:下一次既响铃又亮灯是下午3点钟.故答案为:下午3.【点评】本题考查了发车时间间隔问题,关键是理解距离下一次都同时钟响铃又亮灯的时间间隔应是60和9的最小公倍数.9.【分析】根据速度×时间=路程,求出火车过隧道所行驶的路程,再根据火车过隧道所经过的路程是车身长加隧道长,由此用火车过隧道所行驶的路程减去火车的长度就是隧道的长度.【解答】解:30×45﹣360=1350﹣360=990(米)答:这段隧道长990米.故答案为:990.【点评】解答此题的关键是知道火车过隧道所经过的路程是车身长加隧道长,由此再根据基本的数量关系解决问题.10.【分析】乙要追上甲的话,乙比甲会多经过一次转弯,而甲和乙所用的总时间相同,乙转弯的时间比甲多10秒,根据时间关系可以列出方程.【解答】解:设甲运动x米后,乙追上甲,则乙运动了(x+100)米,甲运动的时间(不包括转弯)是分=x秒,乙运动的时间(不包括转弯)是分=秒,甲的运动时间比乙多10秒,列出方程为:x﹣=10,解得x=230,所以甲运动了230米,运动用时230秒,转弯用时20秒,用的总时间是230+20=250秒故答案为:250.【点评】此题属于复杂的追及应用题,此类题的解答方法是根据“追及(拉开)路程÷(速度差)=追及(拉开)时间”,代入数值,计算即可.11.【分析】根据题意,快车在后面追上慢车的车尾到完全超过慢车,那么快车比慢车多行了这两辆车身的长度,也就是追及路程是125+140=265米,再除以两车的速度差即可求出追及时间.【解答】解:(125+140)÷(22﹣17)=265÷5=53(秒)答:快车从追上慢车的车尾到完全超过慢车需要53秒.故答案为:53.【点评】本题的关键是求出追及路程,然后再根据追及路程÷速度差=追及时间进行解答.12.【分析】设析:迟到8分钟,说明在规定时间内少走了50×8=400米,早到5分钟,说明在规定时间内可以比实际多走5×(50+10)=300米.根据“分配对象=(盈+亏)÷(两次分得的差),可以求出规定时间(不含已经走的2分钟)为(300+400)÷10=70(分),如果按50米的速度,总路程为:50×2+50×(70+8)=4000米,如果按60米的速度,总路程为:50×2+(50+10)×(70﹣5)=4000米.【解答】解:[50×8+5×(50+10)]÷10=70(分钟)总路程为:50×2+50×(70+8)=4000(米)或50×2+(50+10)×(70﹣5)=4000(米)答:小明家到学校的路程是4000米.故答案为:4000.【点评】本题根据分配对象=(盈+亏)÷(两次分得的差),可以求出规定时间是完成本题的关键.13.【分析】火车从上桥到车尾巴离开桥所行的路程是:桥长+车长=2400+1000=3400米,然后根据“时间=路程÷速度”,列式为:3400÷20=170(秒),据此解答.【解答】解:(2400+1000)÷20=3400÷20=170(秒)答:从上桥到下桥共需要170秒.故答案为:170.【点评】解答这类应用题,必须考虑到车身的长度,这就是说,列车运动的总路程是桥长加上车长,这是解答过桥问题应用题的关键.14.【分析】因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的,所以设车速为x,则(x﹣4)×=(x+4)×,求出车速32千米,再(32﹣4)×÷32即可.【解答】解:设汽车每小时x千米.由题意得:(x﹣4)×=(x+4)×,(x+4)×7=(x﹣4)×9,解得:x=32.则发车分钟数:(32﹣4)×÷32×60=(分钟).故答案为.【点评】此题属于行程问题,先求出汽车的速度,再求发车的时间.三.应用题(共4小题)15.【分析】根据关系式:速度×时间=路程,可知这列火车5分钟行驶的距离是:20×5×60=6000米,它包括车身的长度和隧道的长度,所以这条隧道长(6000﹣700)米,据此解答.【解答】解:20×5×60﹣700=6000﹣700=5300(米)答:这个隧道长5300米.【点评】本题关键是明确5分钟行驶的距离是车身的长度和隧道的长度.16.【分析】从车头上桥到车尾离开桥一共用104秒,则火车行驶的路程等于桥的全长加车的长度,于是,我们用104秒所行驶的距离再减去车长200米就是桥的长度.【解答】解:104×32﹣200=3328﹣200=3128(米)答:这座大桥长是3128米.【点评】解答此题的关键是知道:火车过桥走过的路程=桥长+车身长,再根据基本的数量关系解决问题.17.【分析】本题属于错车问题,从两车头相遇到车尾分开两车共行了甲乙两车的长度和,即116+124米,由于两车的速度和是10+14米,则从两车头相遇到车尾分开需要:(116+124)÷(10+14)米.【解答】解:(116+124)÷(10+14)=240÷24=10(秒)答:从甲车与乙车车头相遇到车尾分开需要10秒钟.【点评】完成本题要注意从两车头相遇到车尾分开两车共行了甲乙两车的长度和,而不是单个列车的长度.18.【分析】把间隔时间内车行驶的距离看作单位“1”,由题意可得,发现背后每隔12分钟开过来一辆汽车,看作追及问题人车的速度差就是;同理,迎面每隔4分钟有一辆汽车驶过去,看作相遇问题,则人车的速度和是,所以车的速度是(+)÷2=,然后用1除以车的速度就是车站每隔多少分钟发一辆车.【解答】解:(+)÷2==1=6(分钟)答:A,B两站每隔6分钟发一次车.【点评】本题考查了行程问题和工程问题的综合应用,关键是理解人与同向行驶的车是追击问题,相对行驶的车可以看成相遇问题,由此找出速度和与差解决问题.四.解答题(共4小题)19.【分析】设火车的长度为x米,一列火车从车头进入隧道到车尾离开隧道用了一分钟(即60秒),所行的路程为(2000+x)米,则速度为米/秒;整列火车完全在隧道内的时间是40秒,所行的路程为(2000﹣x)米,则速度为米/秒,由于火车的速度是不变的,所以可得=,解方程即可求得火车的长度,进而求得火车的速度.【解答】解:设火车的长度为x米,根据题意得:=(2000+x)×40=(2000﹣x)×6080000+40x=120000﹣60x100x=40000x=400(2000﹣400)÷40=1600÷40=40(米/秒)答:车长400米,行驶速度40米/秒.【点评】此题考查的知识点是一元一次方程的应用,关键是用两个时间表示出火车的速度列方程.20.【分析】据题意可知,小汽车行完全程用时:120÷80=1.5(小时),由于两车同时到达乙地,所以大客车用时1+1.5=2.5(小时),由此可设大客车从甲地出发x小时后开始降速,由此可得等量关系式:50x+40(2.5﹣x)=120,解此方程即可.【解答】解:轿车用时:120÷80=1.5(小时);则货车用时:1+1.5=2.5(小时);设x小时后变速,得方程:50x+40×(2.5﹣x)=12010x+100=120,x=2.答:大客车从甲地出发2小时后才降低速度.【点评】完成本题的关健是先据小汽车行完全程的时间求出大车所用时间从则列出等量关系式.21.【分析】分针每分钟走=6°,时针每分钟走=0.5°,因此再次重合分针超时针360°,分针与时针再次重合时,分针与时针相差360°,可设再过x分钟时针和分针再次重合,列方程解答即可求出再过多长时间;60分钟分针走1圈,重合时间减去60分钟,就是分钟与时针走的小格数.【解答】解:设再过x分钟时针和分针再次重合.6x﹣0.5x=3605.5x=3605.5x÷5.5=360÷5.5x=6565﹣60=5(分),此时分钟走了1圈5 格(小格),时针走了5格(小格)答:设再过65分钟时针和分针再次重合;重合时此时分钟走了1圈5格(小格),时针走了5格(小格).【点评】此题是考查时间与钟面问题,关键弄清分针、时针每分钟走的度数,再次复合时,分针比时针多走一圈.22.【分析】本题可以看作两个追及问题分别是公共车和小光,公共车和小明,设每两辆公共车间隔(即追及路程)为1,由此可以得出公共汽车与小光的速度之差为:1÷10=,;公共汽车与小明的速度差为:1÷20=.由此可求得人的速度为:(﹣)÷2=,由此即可解决问题.【解答】解:设每两辆公共汽车间隔(即追及路程)为1,由此可以得出公共汽车与小光的速度之差为:1÷10=,公共汽车与小明的速度差为:1÷20=.因为小明骑车速度是小光速度的3倍,所以小光的速度为:(﹣)÷(3﹣1)=÷2=,则公共汽车的速度是+=,1÷=1×8=8(分钟),答:每隔8分钟发一辆车.【点评】此题考查了追及问题中,间隔距离、速度差与追及时间之间关系的灵活运用.。
(完整版)小升初行程问题
行程问题考点一:一般行程问题公式,速度X时间=路程路程:时间=速度路程:速度=时间考点二:相遇问题公式,速度和X相遇时间=相遇路程相遇路程:相遇时间=速度和相遇路程:速度和=相遇时间考点三:追及问题公式,速度差X追及时间=追及距离追及距离:追及时间=速度差追及距离:速度差=追及时间考点四:火车过桥公式:火车速度X过桥时间=车长+桥长考点五:流水行船公式,顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度):2水速=(顺水速度-逆水速度):2顺水速度=逆水速度+水速X2逆水速度=顺水速-水速X2考点六:环形行程问题公式,封闭环形上的相遇问题,利用关系式:环形周长:速度和=相遇时间封闭环形上的追及问题,利用关系:环形周长:速度差=追及时间【例1】甲乙二人同时从两地出发,相向而行。
走完全程,甲需要60分钟,乙需要40分钟。
出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。
甲再次出发,多长时间后两人相遇?【例2】两列火车从甲、乙两地相向而行,慢车从甲地到乙地需要8小时,比快车从乙地到甲地多用3的时间。
如果两车同时开出,那么相遇时快车比慢车多行40千米。
求甲、乙两地的距离。
【例3】一艘轮船顺流航行120千米,逆流航行80千米共用了16小时,逆流航行120千米也用了16小时。
求水流速度。
【例4】已知某铁路长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用了120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
【例5】甲乙二人在操场的400米跑到上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙。
假设两人的速度都保持不变,问:出发时甲在乙身后多少米?【例6】甲乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶。
已知甲车速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇的地方与第四次相遇的地点恰好相距100千米。
小升初行程问题例题及答案
小升初行程问题例题及答案小升初行程问题例题及答案【第一篇:流水行船求时间】某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。
【解】:物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3小时【拓展】甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B站驶去,与此同时乙轮船自B站出发逆水向A站驶来。
7.2时后乙轮船与自漂水流测试仪相遇。
已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离。
【解】:因为测试仪的漂流速度与水流速度相同,所以若水不流动,则7.2时后乙船到达A站,2.5时后甲船距A站31.25千米。
由此求出甲、乙船的航速为31.25÷2.5=12.5(千米/时)。
A,B两站相距12.5×7.2=90(千米)。
【第二篇:流水行船求船速】江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。
又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。
则游船在静水中的速度为每小时多少千米?【解】:此题可以分为几个阶段来考虑。
第一个阶段是一个追及问题。
在货舱追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米。
由于两者都是顺水航行,故在静水中两者的速度差也是3千米。
在紧接着的1个小时中,货船开始领先游船,两者最后相距3*1=3千米。
小升初-行程问题
行程问题(一) 【知识点讲解】基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间= 相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
相遇问题:例1、甲乙两车同时从AB 两地相对开出,第一次相遇后两车继续行驶,各自到达对方出发点后立即返回,第二次相遇时离B 地的距离是AB 全程的51。
已知甲车在第一次相遇时行了120千米。
AB 两地相距多少千米?例2、甲、乙两车分别从A 、B 两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点35千米,已知甲车比乙车每小时多行10千米。
问A 、B 两城相距多少千米?例3、甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?例4、甲乙两站相距470千米,一列火车于中午1时从甲站出发,每小时行52千米,另一列火车下午2时30分从乙站开出,下午6时两车相遇,求乙站开出的那辆火车的速度是多少?例5、小李从A城到B城,速度是50千米/小时,小兰从B城到A城,速度是40千米/小时。
两人同时出发,结果在距A、B两城中点10千米处相遇。
求A、B两城间的距离。
例6、绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以每小时4千米的速度每走1小时休息5分钟,小张以每小时6千米的速度每走5分休息10分钟.两人出发后多长时间第一次相遇?追及问题例7、甲、乙两人同时从A地到B地,乙出发3小时后甲才出发,甲走了5小时后,已超过乙2千米,已知甲每小时比乙多行4千米。
【小升初】小学数学《行程问题专题课程》含答案
17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(二)火车过桥问题流水行船问题
火车过桥问题
【基本公式】
过桥的时间=(桥长+车长)÷车速
过桥的路程=桥长+车长
车速=(桥长+车长)÷过桥时间
【典型例题】
1、一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多长时间?
2、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?
3、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?
4、一列火车通过530米的桥需要40秒钟,以同样的速度穿过380米的山洞需要30秒钟。
求这列火车的速度是每秒多少米?车长多少米?
5、某人沿着铁路边的便道步行,一列火车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米。
求步行人每小时行多少千米?
6、铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民,问军人与农民何时相遇?
【课堂演练】
1、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从火车头进入隧道到
车尾离开隧道共需多少秒?
2、一支队伍1200米长,以每分钟80米的速度行进。
队伍前面的联络员用6分钟的时间跑到队伍末尾传达命令。
问联络员每分钟行多少米?
3、一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是锋线秒多少米?
4、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒,这列火车的速度和车身长各是多少?
5、一人以每分钟60米的速度沿铁路边步行,一列长144米的客车从他身后开来,从他身边通过用了8秒钟,求列车的速度。
【课后演练】
1、一座铁路桥全长1200米,一列火车开过大桥需花费75秒,火车开过路旁电杆,只需花费15秒,那么火车全长是多少米?
2、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15秒,两车相向而行,从车头相遇到车尾离开需要几秒钟?
3、有两列火车,一列长102米,每秒行20主;一列长120米,每秒行17米,两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
4、快车长182米,每秒行20米;慢车长1034米,每秒行18米。
两车同向而行,当两车车头齐时,快车几秒可赿过慢车?
5、一人以每分钟120米的速度沿铁路边跑步,一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度。
6.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多长时间?
7、一列长300米的火车以每分钟1080米的速度通过一座大桥。
从车头开上桥到车尾离开桥一共需3分钟。
这座大桥长多少米?
8、一列火车长300米,通过一座长940米的大桥,从车头上桥到车尾离开桥共用3分钟,已知940米,求这列火车每分钟行驶了多少米?
9.一列火车,通过300米长的隧道,已知由车头开始进入山洞口到车尾进入洞口共用9秒钟,又过了10秒钟,火车刚好全部通过隧道。
求这列火车的长?
10、一列特快列车车长150米,一列慢车车长250米。
两列火车相向而行,轨道平行。
坐在慢车上的人看着快车驶过的时间是6秒,那么坐在快车上的人看着慢车驶过是多少秒?
11、两人沿着铁路线边的小道,从两地出发,两人都以每秒1米的速度相对而行。
一列火车开来,全列车从甲身边开过用了10秒。
3分钟后,乙遇到火车,全列火车从乙身边开过只用了9秒。
火车离开乙多少时间后两人相遇?
12、马路上有一辆车身为15米的公共汽车,四东向西行驶,车速为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。
某一时刻,汽车追上甲,6秒钟后汽车离开了甲,半分钟后汽车遇到迎面跑来的乙,又过了2秒钟,汽车离开了乙。
问再过多少秒后,甲、乙两人相遇?
13.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?
流水行船问题
【基本公式】
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
【典型例题】
1、某船从A地航行到B地需5小时,返回时只需4小时。
已知A、B两地相距120米,则两船的静水速度和水速分别是多少?
2、晓雪同学制作了一只船模在河边进行试航,它逆水11分钟航行的距离为88米,顺水11分钟航行了242米,若晓雪把航模放在静水中航行,2分钟能够航行多少米?
3、静水中甲、乙两船的速度分别为22千米、18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?
4、小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?
5、一只小船,第一次顺流航行48千米,逆流航行8千米,共用10小时tx二次用同样的时间顺流航行24千米,逆流航行14千米。
这只小船在静水中的速度和水流速度各是多少?
6、一只帆船的速度是60米/分,船在水流20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
【课堂演练】
1、甲、乙两船分别从A、B两地同时相向出发,甲船静水速度为30千米/小时,乙船静水速度为24毛糙/小时。
2小时后两船相遇,则A、B两地的距离是多少千米?
2、一艘快艇往返于A、B两地,去时顺水速度36千米/小时,返回时24千米/小时,往返一共用了15小时,则A、B两地是多少千米?
3、甲、乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,已船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港多少千米?
4、一只轮船往返于相距120千米的甲、乙两港之间。
顺流的速冻是每小时26千米,逆流的速度是每小时18千米。
一艘汽艇的速度是每小时20千米。
这艘汽艇往返于两港之间共需多少小时?
5、某河有相距45千米的上下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行,一天甲船从上游码头出发时掉下一物,此物浮于小面顺水飘下,4分钟后,与甲船相距1千米,预计乙船出发后几小时可以与此物相遇/
【课后演练】
1、一学生顺风跑90米和逆风跑70米均用了10秒,求出在无风的情况下参加百米竞赛的成绩?
2、一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3 小时的路程相等,则船的静水速度和水速分别是多少?
3、A河是B的支流,A河水的水速为每小时个千米,B河水的水速是每小时2千米。
一艘船沿A酒有别肠顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,问这艘船还要航行几小时?
4、王红的家离学校0千米,他每天早晨骑车上学都以每分钟250米的速度骑,正好能准时到校。
一天早晨,因为逆风,风速为每分钟50千米,开始4千米,他仍以每分钟250米的速度骑,那么,剩下的6千米,他应以每分钟多少米的速度才能准时到校?
5一条大河,河中间(主航道)水速每小时8千米,沿岸边水速为每小时6千米。
一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原出发地点,需要多少小时?
6甲、乙两个码头相距112千米,一只船从乙码头逆水而上,行了8小时到达甲码头。
已知船速是水速的15倍,这只船从甲码头返回乙码头需要几小时?
7、一艘轮船沿江从A 港顺流行驶到B港,比从B港返回A港少用3小时,若船速为每小时26千米,水速为每小时2千米,则A港和B港相距多少千米?
8、两艘游艇在河流中同时相向出发,A艇静水速度为35千米/小时,B艇逆流而上为25千米/小时。
若水速为5千米/小时,则相遇时A艇行驶的路程是B艇行驶的路程的几倍?
9、已知从河中A地到海口60千米,如船顺流而下,4小时可到海口。
已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行多少小时?
10、甲、乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花5小时,另一只帆船每小时行12千米,这只帆船往私家两港需要多少小时?
11、乙船顺水航行2小时,行了120千米,返回原地用了4。
甲船顺水航行同一段水路,用了3小时。
甲船返回原地比去时多用了几小时?
12、已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时。
现在轮船从上游A 城到下游B城,已知两城的水路长72千米,开船时一旅客从窗口投出一块木板,问船到B 城时木板离B城还有多少千米?
13、一只小船第一次顺流航行56千米,逆水航行20千米,共用12小时;第二次用同样的时间,顺流航行40千米,逆流航行28千米,则这只船的静水速度和水速分别是多少?。