高二期中试题
山东省泰安市2023-2024学年度上学期高二期中考试语文试题【含答案】
山东省泰安市2023-2024学年度上学期高二期中考试语文试题高二语文试题2023.11本试卷共150分,考试时间150分钟。
注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(37分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:就广义的书写而言,胜迹所关联的历史、文学、宗教甚至神话、民俗都至关重要,但最终既体现“文”而又显现为“迹”的,无疑是具有物质性的题刻,尤其是摩崖石刻。
题刻的原始动力可能来自文本,但促使人们前往观赏的却不仅文本,还有作为遗迹的文字书写。
对于胜迹而言,题刻显然不仅具有指认的作用,对其塑造也有一定的意义,尤其是山东境内那些以摩崖石刻著名的山川:泰山经石峪金刚经、四山摩崖与云峰山刻石。
尽管宋人已经注意到泰山经石峪所刻的《金刚经》并留下题名,但文人的到访与题刻,在旅游成为风气的明代嘉隆以后才明显增多。
而由于金石学在清代的风行,这些摩崖题刻甚至超越地方风景的图绘与刊印,在胜迹的塑造中起到直接的作用。
在更多的情形下,摩崖与环境可能并不是一种协作的关系,而是互相提示的关系。
摩崖石刻的特点在于不可移动,因而是真正嵌入自然山水之中的文字,与名胜的关系更为密切。
诚如白谦慎先生所说,摩崖与特定的历史时间和地理空间联系,从而成为一个地区的历史文化遗产。
可见,要准确解释摩崖石刻的文字形式,我们确需将之置诸环境之中加以观察。
嘉庆二年(1797)二月初,黄易访碑岱麓,他不仅关心摩崖,也关心“奇观”,从他的描述中,我们发现他一会儿看自然风光,一会儿看石刻。
在登山时,他记录了道路两侧山石树木,奇峭逼人,有愈上愈妙之感。
嗣至玉皇顶,俯视周边山峦,盛称此乃“天下奇观”。
高二数学期中考试试卷
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
2024高二数学期中考试题及答案
2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
2023-2024学年北京通州区高二(上)期中数学试题和答案
2023北京通州高二(上)期中数 学本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 直线20x y -+=的倾斜角为( )A.π4B.π3C.2π3D.3π42. 已知()2,3,1A --,()6,5,3B -,则AB =( )A. B. C. D. 123. 已知()2,3,1a =-,()1,3,0b =,()0,0,1c = ,则()a b c ⋅+ 等于( )A. -4B. -6C. -7D. -84. 已知圆1C :222880x y x y +++-=,圆2C :()()222210x y -+-=,则圆1C 与圆2C 的位置关系是( )A. 外离B. 外切C. 相交D. 内含5. 设直线1l :240ax y +-=,2l :()120x a y +++=.则“1a =”是“12l l //”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件6. 已知ABCD 为矩形,4,1,AB AD ==点P 在线段CD 上,且满足AP BP ⊥,则满足条件的点P 有( )A. 0个B. 1个C. 2个D. 4个7. 如图,四面体ABCD 中,AB a=,AC b = ,AD c = ,M 为BD 的中点,N 为CM 的中点,则AN =( )A. 111444a b c ++B. 111442a b c ++C. 111222a b c ++ D. 111424a b c ++ 8. 在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则AM 和CN 夹角的余弦值为( )A.23C.13D. 23-9. 如图,在平行六面体1111ABCD A B C D -中,4AB AD ==,1AA =,60BAD ∠=︒,1145DAA BAA ∠=∠=︒,AC 与BD 相交于点O .则1OA 的长为( )B. 2C. D. 10. 过直线1y x =-上一点P 作圆()2252x y -+=的两条切线1l ,2l ,切点分别为A ,B ,当直线1l ,2l 关于1y x =-对称时,线段PA 的长为( )A. 4B. D. 2第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为_____________.12. 在正三棱柱111ABC A B C -中,12AB AA ==,则直线1AA 到平面11BB C C 的距离为_______13. 在空间直角坐标系Oxyz 中,已知()2,0,0AB = ,()0,2,0AC = ,()0,0,2AD = .则CD 与CB的夹角的余弦值为___________;CD 在CB的投影向量a = ___________.14. 若直线y x b =+与曲线y =恰有一个公共点,则实数b 的一个可能取值是_________.15. 在棱长为1的正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈.给出下列四个结论:①所有满足条件的点P 组成的区域面积为1;②当1μ=时,三棱锥1P A BC -的体积为定值;③当1λ=时,点P 到1A B 距离的最小值为1;④当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P .则所有正确结论的序号为__________.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 已知直线1:280l x y +-=,直线2:20l x y -+=,设直线1l 与2l 的交点为A ,点P 的坐标为()2,0.(1)求点A 的坐标;(2)求经过点P 且与直线1l 平行的直线方程;(3)求以AP 为直径的圆的方程.17. 已知直线10x y -+=,圆22:420C x y x y m +--+=.(1)若直线与圆相交,求实数m 的取值范围;(2)在(1)的条件下,设直线与圆交于A ,B 两点.(i )求线段AB 的垂直平分线的方程;(ii )若AB =m 的值.18. 如图,在五面体ABCDEF 中,平面ABCD 为正方形,平面ABFE 平面CDEF EF =,AD ED ⊥.注:如果选择多个条件分别解答,按第一个解答计分.(1)求证://CD 平面ABFE ;(2)若1EF ED ==,2CD EF =,再从条件①、条件②这两个条件中选择一个作为已知,求平面ADE 与平面BCF 夹角的大小.条件①:CD EA ⊥;条件②:CF =.19. 如图,在正方体1111ABCD A B C D -中,,,,E F G H 分别是棱AB ,11B C ,11C D ,1D D 的中点.(1)求证:,,,E F G H 四点共面;(2)求1B D 与平面EFGH 所成角的正弦值;(3)求点1B 到平面EFGH 的距离.20. 已知四边形ABCD 为正方形,O 为AC ,BD 的交点,现将三角形BCD 沿BD 折起到PBD 位置,使得PA AB =,得到三棱锥P ABD -.(1)求证:平面PBD ⊥平面ABD ;(2)棱PB 上是否存在点G ,使平面ADG 与平面ABD ?若存在,求PG GB;若不存在,说明理由.21. 长度为6的线段PQ ,设线段中点为G ,线段PQ 的两个端点P 和Q 分别在x 轴和y 轴上滑动.(1)求点G 的轨迹方程;(2)设点G 的轨迹与x 轴交点分别为A ,B (A 点在左),与y 轴交点分别为C ,D (C 点在上),设H 为第一象限内点G 的轨迹上的动点,直线HB 与直线AD 交于点M ,直线CH 与直线=3y -交于点N .试判断直线MN 与BD 的位置关系,并证明你的结论.参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 【答案】A【分析】根据解析式可得直线斜率为1k =,再由倾斜角与斜率之间的关系可得π4θ=.【详解】设直线的倾斜角为θ,将直线20x y -+=化为斜截式可得2y x =+,即直线斜率为1k =;所以tan 1k θ==,又[)0,πθ∈,所以π4θ=.故选:A 2. 【答案】D【分析】由空间向量模长的坐标表示代入计算即可求得结果.【详解】由()2,3,1A --,()6,5,3B -可得()8,8,4AB =-,所以12AB == .故选:D 3. 【答案】B【分析】根据空间向量的坐标运算法则进行运算即可.【详解】因为()2,3,1a =- ,()1,3,0b =,()0,0,1c = ,所以(1,3,1)b c +=,则()21(3)3116a b c ⋅+=⨯+-⨯+⨯=-,故选:B 4. 【答案】C【分析】依题意将圆的一般方程化为标准方程求出两圆圆心和半径,比较圆心距与两半径之差、之和的关系即可得出结论.【详解】根据题意将1C 化为标准方程可得()()221425x y +++=,即圆心()11,4C --,半径15r =;由()()222210x y -+-=可知圆心()22,2C ,半径2r =;此时圆心距为12C C ==,121255r r r r +=+-=-;显然1212122r r C C r r -+<<,即两圆相交.故选:C 5. 【答案】C【分析】求出12l l //时a 的值,即可判定.【详解】因为直线1l :240ax y +-=,2l :()120x a y +++=,故12l l //时,有(1)20a a +-=,解得1a =,或者2a =-,当1a =时,1l :240x y +-=,2l :220x y ++=,12l l //;当2a =-时,1l :2240x y -+-=,即20x y -+=,2l :20x y -+=,则两直线重合,故12l l //时,1a =,则“1a =”是“12l l //”的充要条件,故选:C.6. 【答案】C【分析】以A 为原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,设出P 点坐标,算出,AP BP 坐标,由AP BP ⊥得到0AP BP =,构建方程求解即可.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,可得()()0,0,4,0A B ,因为点P 在线段CD 上,所以可设()(),1,04P t t ≤≤,所以()(),1,4,1AP t BP t ==-,又AP BP ⊥,所以0AP BP =,可得4t =()410t t -+=,解得;2t =±,即满足条件的点P 有2个.故选:C.7. 【答案】D【分析】利用空间向量的线性运算,以,,a b c 为基底表示出向量AN即可.【详解】由题可知AN AM MN +=,由M 为BD 的中点,N 为CM 的中点可得()12AM MN AB AD NC +=++,即()()()111222AN AB AD NC AB AD NA AC a c NA b ++=+++=+=++,即()12AN a c NA b =+++ ,所以()122AN a c b =++,即111424AN a b c =++ .故选:D 8. 【答案】A【分析】根据正四面体性质取BN 的中点为P ,即可知AMP ∠即为异面直线AM 和CN 的夹角的平面角,计算出各边长利用余弦定理即可求得结果.【详解】连接BN ,取BN 的中点为P ,连接,AP MP ,如下图所示:由正四面体的棱长为1可得AM CN BN ===又,M P 分别是,BC BN 的中点,所以//MP CN,且12MP CN ==所以AMP ∠即为异面直线AM 和CN 的夹角的平面角,又易知BN AN ⊥,且12PN BN ==AP ===因此337241616cos 3AMP +-∠==,即AM 和CN 夹角的余弦值为23.故选:A 9. 【答案】B【分析】把111122OA AA AB AD =--两边平方并展开,根据向量数量积的定义计算即可.【详解】因为1111122OA AA AO AA AB AD =-=--,所以221111||22OA AA AB AD =-- 22111111442AA AB AD AA AB AA AD AB AD=++-⋅-⋅+⋅11844444422=++--⨯⨯⨯4=,则12OA =,即1OA 的长为2,故选:B.10. 【答案】C【分析】根据题意画出图形,观察图形可知圆心与点P 的连线垂直于直线1y x =-,利用这一关系即可求得切线段的长.【详解】如图所示,圆心(5,0)C ,连接CP ,因为直线1l ,2l 关于直线1y x =-对称,所以CP 垂直于直线1y x =-,故CP而||AC =,则PA ==,故选:C.第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分.11. 【答案】2-【详解】由两点间斜率计算公式可得42201k -==--,故答案为2-.12. 【分析】先作出直线1AA 上的点到平面11BB C C 的垂线段,然后利用勾股定理求出垂线段的长度即可.【详解】在正三棱柱111ABC A B C -中,在底面ABC 内作AD BC ⊥,因为平面11BB C C ⊥底面ABC ,平面11BB C C 底面ABC BC =,所以AD ⊥平面11BB C C ,因为11AA CC ∥,1AA ⊄平面11BB C C ,1CC ⊂平面11BB C C ,所以1AA ∥平面11BB C C ,所以AD 即为直线1AA 到平面11BB C C 的距离,因为ABC 为等边三角形,且2AB =,所以直线1AA 到平面11BB C C 的距离为AD ==.13. 【答案】 ①. 12 ②. ()1,1,0-【分析】先根据空间向量的坐标运算求出CD 与CB的坐标,然后由向量夹角的运算公式和投影向量的计算公式即可求出结果.【详解】因为()2,0,0AB =,()0,2,0AC = ,()0,0,2AD = ,所以()0,2,2CD AD AC =-=- ,()2,2,0CB AB AC =-=-,所以1cos ,2CD CB CD CB CD CB 〈〉===,CD 在CB的投影向量为()cos ,1,1,0CB CD CD CB CB〈〉=-.故答案为:12;()1,1,0-.14. 【答案】1-(答案不唯一)【分析】画出图象,结合图象确定一个公共点时的位置,求出相应的b 的值,数形结合可得答案.【详解】曲线y =1的圆的上半部分,如图所示,有图可知,当直线y x b =+在2l 和3l 之间移动或与半圆相切,即处于1l 的位置时,直线与圆恰好有一个公共点,当直线y x b =+在3l 时,经过点(1,0),所以1b =-,当直线y x b =+在2l 时,经过点()1,0-,所以1b =,1=,所以b =,或者b =(舍),故b =或者11b -≤<.故答案为: 1.-15. 【答案】①②③【分析】对于①,根据条件得点P 在正方形11BCC B 内,即可判断;对于②,点P 在线段11B C 上,从而点P 到平面1A BC 的距离为定值,1A BC S △为定值,从而三棱锥1P A BC -的体积为定值;对于③,点P 在线段1CC 上,当点P 与C 重合时,BP 即为P 到1A B 距离的最小值为1,从而判断;对于④,由题点P 在线段EF 上,当1A B ⊥平面1AB P 时,可得1//AE AB ,与1AE AB A ⋂=矛盾,从而即可判断.【详解】如图所示,对于①,因为1BP BC BB λμ=+ ,[]0,1λ∈,[]0,1μ∈,所以点P 在正方形11BCC B 内(包括正方形),而正方形11BCC B 的面积为1,故①正确;对于②,1μ=时,1BP BC BB λ=+ ,所以1111,BP BB BC B P BC B C λλλ-=== ,故点P 在线段11B C 上,由题易得11//B C 平面1A BC ,所以11B C 上的点到平面1A BC 的距离都相等,又1112A BC S == 所以三棱锥1P A BC -的体积为定值,故②正确;对于③,1λ=时,1BP BC BB μ=+ ,所以111,BP BC BB CP BB CC μμμ-=== ,所以点P 在线段1CC 上,连接BP ,由题意可得,BC ⊥平面11ABB A ,1A B ⊂平面11ABB A ,1BC A B ⊥,当点P 与C 重合时,BP 即为P 到1A B 距离的最小值为1,故③正确;对于④,当12μ=时,112BP BC BB λ=+,取1BB 的中点E ,1CC 的中点F ,则点P 在线段EF 上,若1A B ⊥平面1AB P ,则AP ⊂平面1AB P ,必有1A B AP ⊥,因为PE ⊥平面11ABB A ,1A B ⊂平面11ABB A ,所以1PE A B ⊥,AP PE P ⋂=,所以1A B ⊥平面APE ,则有1A B AE ⊥,又11A B AB ⊥,所以1//AE AB ,与1AE AB A ⋂=矛盾,故不存在满足题意的点,④错误,故答案为:①②③.三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16. 【答案】(1)()2,4(2)240x y +-=(3)()()22224x y -+-=【分析】(1)解两直线方程构成的方程组即可得解;(2)求出直线1l 的斜率,然后利用点斜式即可求出直线方程;(3)根据中点坐标公式求出圆心坐标,再利用两点距离公式求出半径,进而可得圆的方程.【小问1详解】由28020x y x y +-=⎧⎨-+=⎩解得24x y =⎧⎨=⎩,所以直线1l 与2l 的交点为()2,4A .【小问2详解】由1:280l x y +-=得直线1l 的斜率为2-,又点P 的坐标为()2,0,所以经过点P 且与直线1l 平行的直线方程为()22y x =--,即240x y +-=.【小问3详解】因为()2,4A ,()2,0P ,所以AP 的中点坐标为()2,2,22AP=,所以以AP 为直径的圆的方程为()()22224x y -+-=.17. 【答案】(1)(),3-∞(2)(i )30x y +-= (ii )52m =【分析】(1)由题意,根据圆心到直线的距离小于半径列式求解即可;(2)(i )由题意线段AB 的垂直平分线经过圆心,从而可直接求得直线方程;(ii )由弦长AB =.【小问1详解】由22420x y x y m +--+=得()()22215x y m -+-=-,所以当5m <时,22420x y x y m +--+=表示以()2,1为半径的圆,由于直线10x y -+=与圆相交,所以圆心到直线的距离d =<所以3m <,即实数m 的取值范围为(),3-∞.【小问2详解】(i)由题意,线段AB 的垂直平分线经过圆心()2,1,斜率为1-,所以线段AB 的垂直平分线的方程为()12y x -=--,即30x y +-=.(ii )由于圆心到直线的距离d ,AB =所以由AB ==解得52m =.18. 【答案】(1)证明见详解(2)选条件①π4;选条件②π4【分析】(1)根据条件知//AB CD ,利用线面平行的判定定理即可证明;(2)建立空间直接坐标系,求出两个平面的法向量,根据向量夹角的余弦值即可求出夹角的大小.【小问1详解】因为在五面体ABCDEF 中,平面ABCD 为正方形,所以//AB CD ,又CD ⊄平面ABFE ,AB ⊂平面ABFE ,故//CD 平面ABFE ;【小问2详解】若选条件①:根据已知条件可得:CD AD ⊥,因为CD EA ⊥,EA AD A ⋂=,EA ⊂平面ADE ,AD ⊂平面ADE ,所以CD ⊥平面ADE ,因为DE ⊂平面ADE ,所以CD DE ⊥,则以D 为坐标原点,分别以,,DA DC DE 所在直线为,,x y z 轴,建立空间直接坐标系如下图所示,因为1EF ED ==,22CD EF ==,所以(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,1),D A B C E则(2,0,0)BC =- ,由(1)知,//CD 平面ABFE ,CD ⊂平面CDEF ,又平面ABFE 平面CDEF EF =,所以//CD EF ,所以12EF CD =,所以(0,1,1),F 即(0,1,1)FC =- .因为CD ⊥平面ADE ,所以平面ADE 的法向量为(0,2,0)DC = ,设平面BCF 的法向量为(,,)n x y z = ,则200n BC x n FC y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令1,y =则(0,1,1)n = ,设平面ADE 与平面BCF 夹角为θ,则cos n DC n DC θ⋅===,又π02θ≤≤,则π,4θ=即平面ADE 与平面BCF 夹角的大小为π.4若选条件②:由(1)知,//CD 平面ABFE ,CD ⊂平面CDEF ,又平面ABFE 平面CDEF EF =,所以//CD EF ,过点F 作//FG ED ,交CD 于点G ,则四边形EFGD 为平行四边形,又1EF ED ==,2CD EF =,则1,1FG ED CG CD DG ===-=,又因为CF =则222CF FG CG =+,故π2FGC ∠=,即CG FG ⊥,则CD DE ⊥,则以D 为坐标原点,分别以,,DA DC DE 所在直线为,,x y z 轴,建立空间直接坐标系如下图所示,因为1EF ED ==,22CD EF ==,所以(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,1),D A B C E则(2,0,0)BC =- ,又12EF CD =,所以(0,1,1),F 即(0,1,1)FC =- .因为CD ⊥平面ADE ,所以平面ADE 的法向量为(0,2,0)DC = ,设平面BCF 的法向量为(,,)n x y z = ,则200n BC x n FC y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令1,y =则(0,1,1)n = ,设平面ADE 与平面BCF 夹角为θ,则cos n DC n DC θ⋅===,又π02θ≤≤,则π,4θ=即平面ADE 与平面BCF 夹角的大小为π.419. 【答案】(1)证明见详解(2)13(3【分析】(1)取1BB 的中点,M 连接,,EM FM HM ,先证,,,H M F G 四点共面,再证,,,H M G E 四点共面,又这两个平面重合,即可证明;(2)以D 为原点,建立空间直角坐标系,求得平面EFGH 的法向量,1DB 与法向量夹角的余弦值的绝对值即为所求;(3)利用点到平面距离的向量表示公式计算即可.【小问1详解】如图,取1BB 的中点,M 连接,,EM FM HM ,因为,,,E F G H 分别是棱AB ,11B C ,11C D ,1D D 的中点,易得11//HM B D ,11//GF B D ,所以//HM GF ,所以,,,H M F G 四点共面,又1111//,//,//EM AB HG DC AB DC ,所以//EM HG ,则,,,H M G E 四点共面,而过不共线的的三点,,H M G 的平面具有唯一性,则平面HMFG 与平面EMGH 重合,故,,,E F G H 四点共面.【小问2详解】以D 为原点,1,,DA DC DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方形的的边长为a则()()1,,,0,0,0,0,,0,222a aaB a a a D E a F a a G a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,则1(,,),(,,0),(,0,)22a a DB a a a GF GE a a ===-,设(),,n x y z = 是平面EFGH 的法向量,则00022000aan GFx y x y x z n GE ax az ⎧⎧⋅=+=+=⎧⎪⎪⇒⇒⎨⎨⎨-=⋅=⎩⎪⎪⎩-=⎩,取1x =,则1, 1.y z =-=所以(1,1,1)n =- ,所以1B D 与平面EFGH所成角的正弦值为11111sin ,cos ,3n DB n DB n DB n DB ⋅====⋅ 【小问3详解】由(2)知平面EFGH 的法向量(1,1,1)n =- ,又()11,0,0FB =因为1m FB m ⋅==即1B 到平面EFGH20. 【答案】(1)证明见解析(2)存在满足题意的点G ,且1PGGB =【分析】(1)由平面与平面垂直的判定定理即可证明;(2)建立空间直角坐标系,求出平面ADG 与平面ABD 的法向量,然后根据求面面角的方法即可列式求解.【小问1详解】因为四边形ABCD 为正方形,所以OA OB OC OD ===,,OC OB OA OB ⊥⊥,所以折起后,OA OB OP OD ===,OP OB ⊥,由于折起前有222OA OB AB +=,且折起后PA AB =,所以折起后有222OA OP PA +=,即OP OA ⊥,又OP OB ⊥,OA OB O = ,,OA OB ⊂平面ABD ,所以OP ⊥平面ABD ,又OP ⊂平面PBD ,所以平面PBD ⊥平面ABD .【小问2详解】由(1)知OP OB ⊥,OP OA ⊥,OA OB ⊥,所以以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z 轴建立空间直角坐标系,设1OA =,则()1,0,0A ,()0,1,0B ,()0,1,0D -,()0,0,1P ,则()1,1,0AD =-- ,()0,1,1PB =- ,()1,0,1AP =- ,假设存在满足题意的点G ,设()()0,,01PG PB λλλλ==-≤< ,则()1,,1AG AP PG λλ=+=-- ,设平面ADG 的法向量为(),,n x y z = ,则·0·0AD n AG n ⎧=⎪⎨=⎪⎩ ,即()010x y x y z λλ--=⎧⎨-++-=⎩,令1x =,得1y =-,11z λλ+=-,即11,1,1n λλ+⎛⎫=- ⎪-⎝⎭ ,易知平面ABD 的一个法向量为()0,0,1m = ,因为平面ADG 与平面ABD,所以11cos ,n m n m n m λλ+-〈〉=== ,解得12λ=,所以在棱PB 上存在点G ,使平面ADG 与平面ABD,且G 为棱PB 的中点,所以1PG GB=.21. 【答案】(1)229x y +=;(2)//MN BD ,证明见解析.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到OG 的长度,进而判断出G 的轨迹,得到轨迹方程;(2)写出,,,A B C D 四点的坐标,联立直线HB 与直线AD 的方程求出点M 的坐标,联立直线CH 与直线=3y -的方程求出N 的坐标,再利用坐标求出MN k 并与BD k 进行比较即可.【小问1详解】在Rt POQ 中,因为G 是线段PQ 的中点,所以1||||32OG PQ ==,所以G 的轨迹为以O 为圆心,以3为半径的圆,所以G 的轨迹方程为229x y +=.【小问2详解】//MN BD ,证明如下:依题意,下列各点坐标为(3,0),(3,0),(0,3),(0,3)A B C D --,直线AD 的方程为3y x =--.因为H 为第一象限内点G 的轨迹上的动点,故设0000(,)(03,03)H x y x y <<<<,且22009x y +=.设直线HB 的方程为00(3)3y y x x =--,00(3)33y y x x y x ⎧=-⎪-⎨⎪=--⎩ ,解得0000000339363y x x x y y y x y -+⎧=⎪+-⎪⎨-⎪=⎪+-⎩,即00000003396()33y x y M x y x y -+-+-+-,.试题21设直线CH 的方程为0033y y x x -=+,00333y y x x y -⎧=+⎪⎨⎪=-⎩ ,解得00633x x y y -⎧=⎪-⎨⎪=-⎩,即006(3)3x N y ---.所以000000000633339633MN y x y k y x x x y y -++-=-+++-- 0000000000(23)(3)(3)(3)2(3)y x y y y x y x x y -++--=-+-++-20000220000039392x y y x x y y x x --+=-+++200002200000391392(9)x y y x x y y x y --+==+--+-,又03130BD MN k k +===-,所以//MN BD.。
北京市2023-2024学年高二上学期期中数学试题含答案
北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。
安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案
2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案
2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。
四川省成都市第十二中学(四川大学附属中学)_2024-2025学年高二上学期期中考试数学试题
四川省成都市第十二中学(四川大学附属中学) 2024-2025学年高二上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
四、解答题
15.某校高二年级举行了“学宪法、讲宪法”知识竞赛,为了了解本次竞赛的学生答题情况,从中抽取了200名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,
按照[)
50,60,[)
70,80,[)
60,70,[)
90,100的分组作出频率分布直方图如图所示.
80,90,[]
(1)求频率分布直方图中x的值,并估计该200名学生成绩的中位数和平均数;
(2)若在[)
70,80的样本成绩对应的学生中按分层抽样的方法抽取7人进行访谈,60,70和[)
再从这七人中随机抽取两人进行学习跟踪,求抽取的两人都来自[)
70,80组的概率.
16.如图,四边形
A ABB是圆柱的轴截面,C是下底面圆周上一点,点D是线段BC中点
11
则圆C有且仅有3个点,,
M N P
故选:BCD.
11.ABD
【分析】将二十四等边体补形为正方体,且二十四等边体根据题意易知正方体棱长为2,
uuu r uuu
根据向量的坐标,可得2
CE=。
湖北省武汉市部分重点中学2024-2025学年高二上学期期中联考数学试题含答案
武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷(答案在最后)本试卷共4页,19题.满分150分.考试用时120分钟.考试时间:2024年11月12日下午14:00—16:00祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2,选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.直线320x y --=在y 轴上的截距为()A .2-B .2C .23D .23-2.已知直线1:1l y x =-绕点(0,1)-逆时针旋转512π,得到直线2l ,则2l 不过第__________象限.A .四B .三C .二D .一3.已知某种设备在一年内需要维修的概率为0.2.用计算器进行模拟实验产生1~5之间的随机数,当出现随机数1时,表示一年内需要维修,其概率为0.2,由于有3台设备,所以每3个随机数为一组,代表3台设备一年内需要维修的情况,现产生20组随机数如下:412451312531224344151254424142435414135432123233314232353442据此估计一年内这3台设备都不需要维修的概率为()A .0.4B .0.45C .0.5D .0.554.已知事件A ,B 互斥,它们都不发生的概率为13,且()3()P A P B =,则()P B =()A .16B .13C .23D .565.现有一段底面周长为12π厘米和高为15厘米的圆柱形水管,AB 是圆柱的母线,两只蚂蚁分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行2π厘米后再向下爬行5厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行2π厘米后再向上爬行4厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .12C .D .6.概率论起源于博弈游戏17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定:各出赌金210枚金币,先赢3局者可获得全部赎金.但比赛中途因故终止了,此时甲赢了2局,乙赢了1局,问这420枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是()A .甲315枚,乙105枚B .甲280枚,乙140枚C .甲210枚,乙210枚D .甲336枚,乙84枚7.在平面直角坐标系中,点P 的坐标为50,2⎛⎫ ⎪⎝⎭,圆22121:10504C x x y y -+-+=,点(,0)T t 为x 轴上一动点.现由点P 向点T 发射一道粗细不计的光线,光线经x 轴反射后与圆C 有交点,则t 的取值范围为()A .1527,88⎡⎤⎢⎣⎦B .710,43⎡⎤⎢⎥⎣⎦C .727,48⎡⎤⎢⎥⎣⎦D .1510,83⎡⎤⎢⎥⎣⎦8.如图所示,四面体ABCD 的体积为V ,点M 为棱BC 的中点,点E ,F 分别为线段DM 的三等分点,点N 为线段AF 的中点,过点N 的平面α与棱AB ,AC ,AD 分别交于O ,P ,Q ,设四面体AOPQ 的体积为V ',则V V'的最小值为()A .14B .18C .116D .127二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.给出下列命题,其中是真命题的是()A .已知{,,}a b c 是空间的一个基底,若23m a c =+ ,则,,}a b m 〈也是空间的一个基底B .平面α经过三点(2,1,0)A ,(1,3,1)B -,(2,2,1)C -,向量(1,,)n u t =是平面α的法向量,则2u t +=C .若0a b ⋅> ,则,a b <>是锐角D .若对空间中任意一点O ,有111362OM OA OB =++,则M ,A ,B ,C 四点不共面10.下列命题正确的是()A .设A ,B 是两个随机事件,且1()2P A =,1()3P B =,若1()6P AB =,则A ,B 是相互独立事件B .若()0P A >,()0P B >,则事件A ,B 相互独立与A ,B 互斥有可能同时成立C .若三个事件A ,B ,C 两两相互独立,则满足()()()()P ABC P A P B P C =D .若事件A ,B 相互独立,()0.4P A =,()0.2P B =,则()0.44P AB AB = 11.平面内到两个定点A ,B 的距离比值为一定值(1)λλ≠的点P 的轨迹是一个圆,此圆被称为阿波罗尼斯圆,俗称“阿氏圆”.已知平面内点(2,0)A ,(6,0)B ,动点P 满足||1||3PA PB =,记点P 的轨迹为τ,则下列命题正确的是()A .点P 的轨迹τ的方程是2230x y x +-=B .过点(1,1)N 的直线被点P 的轨迹τ所截得的弦的长度的最小值是1C .直线220x y -+=与点P 的轨迹τ相离D .已知点3,02E ⎛⎫⎪⎝⎭,点M 是直线:270l x -+=上的动点,过点M 作点P 的轨迹τ的两条切线,切点为C ,D ,则四边形ECMD 面积的最小值是3三、填空题(本大题共3小题,每小题5分,共15分)12.同时扡掷两颗质地均匀的骰子,则两颗骰子出现的点数之和为6的概率为__________.13.已知曲线1y =+与直线y x b =+有两个相异的交点,那么实数b 的取值范围是__________.14.在空间直角坐标系中,(0,0,0)O ,(0,,3)A a ,(3,0,)B a ,(,3,0)C a ,33,3,2D ⎛⎫ ⎪⎝⎭,P 为ABC △所确定的平面内一点,设||PO PD -的最大值是以a 为自变量的函数,记作()f a .若03a <<,则()f a 的最小值为__________.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分13分)“体育强则中国强,国运兴则体育兴”.为备战2025年杭州举办的国际射联射击世界杯,某射击训练队制订了如下考核方案:每一次射击中10环、中8环或9环、中6环或7环、其他情况,分别评定为A ,B ,C ,D 四个等级,各等级依次奖励6分、4分、2分、0分.假设评定为等级A ,B ,C 的概率分别是12,14,18.(1)若某射击选手射击一次,求其得分低于4分的概率;(2)若某射击选手射击两次,且两次射击互不影响,求这两次射击得分之和为8分的概率.16.(本题满分15分)已知ABC △的顶点(4,2)A ,边AB 上的中线CD 所在直线方程为7250x y +-=,边AC 上的高线BE 所在直线方程为40x y +-=.(1)求边BC 所在直线的方程;(2)求BCD △的面积.17.(本题满分15分)如图所示,已知斜三棱柱111ABC A B C -中,AB a = ,AC b = ,1AA c =,在1AC 上和BC 上分别有一点M 和N 且AM k AC = ,BN k BC =,其中01k ≤≤.(1)求证:MN ,a ,c共面;(2)若||||||2a b c ===,13AB =且160BAC BB C ∠=∠=︒,设P 为侧棱1BB 上靠近点1B 的三等分点,求直线1PC 与平面11ACC A 所成角的正弦值.18.(本题满分17分)已知在平面直角坐标系xOy 中,(1,0)A -,(7,0)B -,平面内动点P 满足||2||PB PA =.(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线C ,若曲线C 与x 轴的交点为M ,N 两点,Q 为直线:17l x =上的动点,直线MQ ,NQ 与曲线C 的另一个交点分别为E ,F ,求|EF|的最小值.19.(本题满分17分)对于三维向量()(),,,,N,0,1,2,k k k k k k k a x y z x y z k =∈= ,定义“F 变换”:()1F k k a a += ,其中,1k k k x x y +=-,1k k k y y z +=-,1k k k z z x +=-.记k k k k a x y z = ,k k k k a x y z =++.(1)若0(2,3,1)a =,求2a 及2a ;(2)证明:对于任意0a ,必存在*k ∈N ,使得0a 经过k 次F 变换后,有0k a = ;(3)已知1(,2,)()a p q q p =≥ ,12024a = ,将1a再经过m 次F 变换后,m a 最小,求m 的最小值.武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷参考答案与评分细则题号1234567891011答案ADCDBA DCABADACD12.53613.1)+14.215.解:(1)设事件A ,B ,C ,D 分别表示“被评定为等级A ,B ,C ,D ”.由题意得,事件A ,B ,C ,D 两两互斥,所以1111()12488P D =---=.所以111()()()884P C D P C P D =+=+= .因此其得分低于4分的概率为14;(2)设事件i A ,i B ,i C ,i D 表示"第i 次被评定为等级A ,B ,C ,D ,i 1,2=.(2)设事件i A ,i B ,i C ,i D 表示“”第i 次被评定为等级A ,B ,C ,D ,i 1,2=.则“两次射击得分之和为8分”为事件()()()121221B B AC A C ,且事件12B B ,12AC,21A C 互斥,()121114416P B B =⨯=,()()12211112816P AC P A C ==⨯=,所以两次射击得分之和为8分的概率()()()()()()121221*********2161616P P B B AC A C P B B P ACP A C ⎡⎤==++=+⨯=⎣⎦ .16.解:(1)因为AC BE ⊥,所以设直线AC 的方程为:0x y m -+=,将(4,2)A 代入得2m =-,所以直线AC 的方程为:20x y --=,联立AC ,CD 所在直线方程:207250x y x y --=⎧⎨+-=⎩,解得(1,1)C -,设()00,B x y ,因为D 为AB 的中点,所以0042,22x y D ++⎛⎫⎪⎝⎭,因为()00,B x y 在直线BE 上,D 在CD 上,所以0040x y +-=,0042725022x y ++⨯+⨯-=,解得06x =-,010y =,所以(6,10)B -,10(1)11617BC k --==---,所以BC 所在直线的方程为:111(1)7y x +=--,即11740x y +-=.(2)由(1)知点(1,6)D -到直线BC 的距离为:d ==,又||BC ==,所以12722BCD S ==△.17.(1)证明:因为1AM k AC kb kc ==+,()(1)AN AB BN a k BC a k a b k a kb =+=+=+-+=-+,所以(1)(1)MN AN AM k a kb kb kc k a kc =-=-+--=-- .由共面向量定理可知,MN ,a ,c共面.(2)取BC 的中点为O ,在1AOB △中,1AO B O ==13AB =,由余弦定理可得22211cos2AOB ∠=-,所以12π3AOB ∠=,依题意ABC △,1B BC △均为正三角形,所以BC AO ⊥,1BC B O ⊥,又1B O AO O = ,1B O ⊂平面1B AO ,AO ⊂平面1B AO ,所以BC ⊥平面1AOB ,因为BC ⊂平面ABC ,所以平面1AOB ⊥平面ABC ,所以在平面1AOB 内作Oz OA ⊥,则Oz ⊥平面ABC ,以OA ,OC ,Oz 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系如图所示:则1332B ⎛⎫ ⎪⎝⎭,(0,1,0)B -,3,0,0)A ,(0,1,0)C ,1332C ⎛⎫⎪⎝⎭,1332A ⎫⎪⎝⎭设(,,)n x y z =是平面11ACC A 的一个法向量,(3,1,0)AC =,13332AC ⎛⎫= ⎪⎝⎭ ,则100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即303332022y x y z ⎧+=⎪⎨-++=⎪⎩,取1z =得(3,3,1)n =-- ,依题意可知123BP BB =,则11112332333713,,,323232C P C B BP C B BB ⎫⎛⎫⎛⎫=+=+=--+⨯-=--⎪ ⎪⎝⎭⎝⎭⎝⎭ .设直线1PC 与平面11ACC A 所成角为θ,则11169sin cos ,13213||133n C PC P n n C Pθ⋅====⋅⨯.故直线1PC 与平面11ACC A 所成角的正弦值为913.18.解:(1)设动点坐标(,)P x y ,因为动点P 满足||2||PB PA =,且(1,0)A -,(7,0)B -,2222(7)2(1)x y x y ++=++化简可得,222150x y x +--=,即22(1)16x y -+=,所以点P 的轨迹方程为22(1)16x y -+=.(2)曲线22:(1)16C x y -+=中,令0y =,可得2(1)16x -=,解得3x =-或5x =,可知(3,0)M -,(5,0)N ,当直线EF 为斜率为0时,||||EK FK +即为直径,长度为8,当直线EF 为斜率不为0时,设EF 的直线方程为x ny t =+,()11,E x y ,()22,F x y ,联立22(1)16x ny t x y =+⎧⎨-+=⎩消去x 可得:22(1)16ny t y +-+=,化简可得;()2212(1)(3)(5)0n y t ny t t ++-++-=由韦达定理可得1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩,因为()11,E x y ,()22,F x y ,(3,0)M -,(5,0)N ,所以EM ,FN 的斜率为113EM y k x =+,225FN y k x =-,又点()11,E x y 在曲线C 上,所以()2211116x y -+=,可得()()()22111116135y x x x =--=+-,所以111153EM y x k x y -==+,所以EM ,FN 的方程为115(3)x y x y -=+,22(5)5y y x x =--,令17x =可得()1212205125Q x y y y x -==-,化简可得;()()121235550y y x x +--=,又()11,E x y ,()22,F x y 在直线x ny t =+上,可得11x ny t =+,22x ny t =+,所以()()121235550y y ny t ny t ++-+-=,化简可得;()()221212535(5)5(5)0n y y n t y y t ++-++-=,又1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩,代入可得()2222(3)(5)2(1)535(5)5(5)011t t t n n n t t n n +--++-+-=++,化简可得()()222253(3)(5)10(5)(1)5(5)10n t t n t t t n ++-+--+-+=,()222222(5)3951510105525250t t n t n n n t n t t n -++++-++--=,(5)(816)0t t --=,所以2t =或5t =,当5t =时EF 为5x ny =+,必过(5,0),不合题意,当2t =时EF 为2x ny =+,必过(2,0),又||EF 为圆的弦长,所以当EF ⊥直径MN 时弦长||EF 最小,此时半径4r =,圆心到直线EF 的距离为211-=||8EF =,综上,||EF的最小值.19.解:(1)因为0(2,3,1)a = ,1(1,2,1)a = ,2(1,1,0)a = ,所以21100a =⨯⨯= ,21102a =++=,(2)设{}max ,,(0,1,2)k k k k M x y z k == 假设对N k ∀∈,10k a +≠,则1k x +,1k y +,1k z +均不为0;所以12k k M M ++>,即123M M M >>> ,因为*(1,2)k M k ∈=N ,112321121M M M M M M +≥+≥+≥≥++ ,所以121M M +≤-,与120M M +>矛盾,所以假设不正确;综上,对于任意0a ,经过若干次F 变换后,必存在K N*∈,使得0K a =.(3)设()0000,,a x y z = ,因为1(,2,)()a p q q p =≥,所以有000x y z ≤≤或000x y z ≥≥,当000x y z ≥≥时,可得0000002p x y y z q z x=-⎧⎪=-⎨⎪-=-⎩,三式相加得2q p -=又因为12024a =,可得1010p =,1012q =;当000x y z ≤≤时,也可得1010p =,1012q =,所以1(1010,2,1012)a =;设k a的三个分量为()*2,,2m m m +∈N 这三个数,当2m >时,1k a +的三个分量为2m -,2,m 这三个数,所以14k k a a +=- ;当2m =时,k a 的三个分量为2,2,4,则1k a + 的三个分量为0,2,2,2k a +的三个分量为2,0,2,所以124k k a a ++=== ;所以,由12024a = ,可得5058a = ,5064a =;因为1(1010,2,1012)a = ,所以任意k a的三个分量始终为偶数,且都有一个分量等于2,所以505a 的三个分量只能是2,2,4三个数,506a的三个分量只能是0,2,2三个数,所以当505m <时,18m a +≥ ;当505m ≥时,14m a +=,所以m 的最小值为505.。
北京市2023-2024学年高二上学期期中语文试题含答案
2023北京高二(上)期中语文(答案在最后)2023.11.610:30-12:30本试卷共8页,100分。
考试时长120分钟。
考生务必将答案作答在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡上交,自己保存试卷,以备讲评之用。
一、本大题共4小题,共9分。
阅读下面材料,完成下面小题。
材料一:汉以后,先秦诸子百家中,唯有儒、道两家长期共存,互相竞争,互相吸收,形成中国传统文化中一条纵贯始终的基本发展线索。
在中国传统文化的多元成分中,儒家和道家是主要的两极,形成鲜明的对立和有效的互补。
两者由于处处相反,因而能够相辅相成,给予整个中国传统文化以深刻的影响。
儒家的人生观,以成就道德人格和救世事业为价值取向,内以修身,充实仁德,外以济民,治国平天下,这便是内圣外王之道。
其人生态度是积极进取的,对社会现实强烈关切并有着历史使命感,以天下为己任,对同类和他人有不可自已的同情,“己所不欲,勿施于人”,“己欲立而立人,己欲达而达人”,“达则兼济天下,穷则独善其身”,不与浊俗同流合污,在生命与理想发生不可兼得的矛盾时,宁可杀身成仁,舍生取义,以成就自己的道德人生。
道家的人生观,以超越世俗人际关系网的羁绊,获得个人内心平静自在为价值取向,既反对心为形役,逐外物而不反,又不关心社会事业的奋斗成功,只要各自顺任自然之性而不相扰,必然自为而相因,成就和谐宁静的社会。
其人生态度消极自保,以免祸全生为最低目标,以各安其性命为最高目标。
或隐于山林,或陷于朗市,有明显的出世倾向。
儒家的出类拔萃者为志士仁人,道家的典型人物为清修隐者。
儒道两家的气象不同,大儒的气象似乎可以用“刚健中正”四字表示,就是道德高尚、彬彬有礼、从容中道、和而不同等,凡事皆能观研深究,以求合理、合时、合情,可谓为曲践乎仁义,足以代表儒家的态度。
道家高士的气象似可用“涵虚脱俗”四字表示,就是内敛不露、清静自守、质朴无华、超然自得等,富于诗意,富于山林隐逸和潇洒超脱的风味。
高二期中考试试卷数学
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 5D. -52. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a5的值为:A. 11B. 14C. 17D. 203. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)4. 一个圆的半径为5,圆心在原点,该圆的面积为:A. 25πB. 50πC. 75πD. 100π5. 计算定积分∫(0到1) x^2 dx的值为:B. 1/2C. 2/3D. 16. 已知向量a = (3, -4),向量b = (-2, 6),则向量a与向量b的数量积为:A. -10B. 0C. 10D. -207. 以下哪个不等式是正确的?A. |x| > xB. |x| ≥ xC. |x| < xD. |x| ≤ x8. 函数y = 2^x的反函数为:A. y = log2(x)B. y = 2^xC. y = log(x)D. y = x^(1/2)9. 已知抛物线y = x^2 - 4x + 4,其顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)10. 计算极限lim(x→0) (sin(x)/x)的值为:B. 1C. π/2D. -1二、填空题(每题4分,共20分)11. 计算sin(π/6)的值为______。
12. 已知函数f(x) = x^2 - 6x + 8,求f(1)的值为______。
13. 计算定积分∫(-1到1) x dx的值为______。
14. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角的余弦值为______。
15. 计算极限lim(x→∞) (1/x)的值为______。
三、解答题(每题10分,共40分)16. 已知函数f(x) = x^3 - 3x^2 + 2x,求导数f'(x),并求出f'(1)的值。
广东省深圳市高级中学2024-2025学年高二上学期期中考试语文试题(含答案)
深圳高级中学2024-2025学年第一学期期中考试高二语文考生须知:1.本试卷共8页,23小题,满分为150分。
考试用时150分钟。
2.答题前,在答题卷指定区域填写班级、姓名,填涂考号。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。
4.考生必须保持答题卡的整洁,考试结束后,只需将答题卡交回。
一、现代文阅读(31分)(一)现代文阅读I阅读下面的文字,完成1-5题。
(共17分)人类在进化的蒙昧时期,就已经具有一种才能,这种才能,因为没有更恰当的名字,我姑且叫它为数觉。
由于人有了这种才能,当在一个小的集合里边,增加或者减去一样东西的时候,尽管他未曾直接知道增减,他也能够辨认到其中有所变化。
数觉和计数不能混为一谈。
计数似乎是很晚以后才有的一种收获,由后文可以知道,它牵涉到一种颇为复杂的心理过程。
就我们所知,计数是一种人类独具的特性;另一方面,有若干种动物看来也具有一种和我们相类似的原始数觉。
至少,有权威的关于动物行为的观测家持有这种主张,而且有很多实例支持这种理论。
例如,许多种鸟类是具有这种数觉的。
鸟巢里若是有四个卵,那么可以安然拿去一个;但是如果拿掉两个,这鸟通常就要逃走了。
鸟会用某种奇怪的方法来辨别二和三。
但是这种才能不仅限于鸟类。
实际上,我们所知道的最惊人的例子要算叫作“独居蜂”的昆虫。
这种母蜂在每个巢里下一个卵,并且在巢里面预先储藏了一批活的尺蠖,作为幼虫孵化后的食料。
使人吃惊的是,各类独居蜂每巢里所放的尺蠖数目都是一定的。
由于蜂类行为的规律化,而且这种行为和它的生命的基本机能有密切的关系,所以上述例子不如下面的例子来得更加令人信服。
这里所举的鸟的行为,似乎已经处于自觉的边缘了。
有个田主决心要打死一只在他庄园的望楼里筑巢的乌鸦。
他试了好多次想惊动它,始终没有成功:因为人一走近,乌鸦就离开了巢,飞开了。
它栖在远远的树上守着,等到人离开了望楼,才肯飞回巢去。
2023-2024学年山西省太原市高二下学期期中数学试题1(含解析)
2023-2024学年山西省太原市高二下册期中数学试题一、单选题1.随机变量X 的分布列为X -101Pabc其中a ,b ,c 成等差数列,则()||1P X =等于A .16B .13C .12D .23【正确答案】D【详解】因为a ,b ,c 成等差数列,所以2b =a+c ,又a+b+c =1,所以b =13,所以P (|X|=1)=a+c =23,故选D.2.在等差数列{}n a 中,56789450a a a a a ++++=,则311a a +的值为()A .45B .75C .180D .300【正确答案】C【分析】利用等差数列的性质求出7a ,再利用等差数列的性质可得结果.【详解】由()()567895968775450a a a a a a a a a a a ++++=++++==,得到790a =,则31710218a a a =+=.故选:C.3.已知无穷等差数列{}n a 中,它的前n 项和n S ,且76S S >,78S S >那么()A .{}n a 中7a 最大B .{}n a 中3a 或4a 最大C .当8n ≥时,0n a <D .一定有311S S =【正确答案】C【分析】根据等差数列中,76S S >,得7760a S S =->,又由78S S >,得8870a S S =-<,进而得到870d a a =-<,即可得到答案.【详解】由题意,因为无穷等差数列{}n a 中,它的前n 项和n S ,且76S S >,78S S >,由76S S >,可得7760a S S =->,又由78S S >,可得8870a S S =-<,所以870d a a =-<,所以当17,n n N +≤≤∈时,0n a >,当8,n n N +≥∈时,0n a <.故选C .本题主要考查了等差数列前n 项和与通项n a 的关系的应用,其中解中熟记等差数列的前n 项和与通项n a 之间的关系,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题.4.不相等的三个正数a 、b 、c 成等差数列,并且x 是a 、b 的等比中项,y 是b 、c 的等比中项,则x 2、b 2、y 2三数()A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列【正确答案】B【详解】由已知条件,可得由②③得22{x a by c b==代入①,得22x y b b+=2b ,即x 2+y 2=2b 2.故x 2、b 2、y 2成等差数列,故选B.5.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于()A .17B .16C .15D .14【正确答案】A【分析】ξ服从二项分布,由二项分布的期望和方差公式解出p 即可.【详解】由于随机变量(),B n p ξ ,则7E np ξ==,()16D np p ξ=-=,∴617p -=,∴17p =,故选:A.本题主要考查二项分布的期望和方差公式,属于基础题.6.同时抛掷2枚质地均匀的硬币4次,设2枚硬币均正面向上的次数为X ,则X 的数学期望是A .1B .2C .32D .52【正确答案】A【分析】利用二项分布求解即可【详解】∵一次同时抛掷2枚质地均匀的硬币,恰好出现2枚正面向上的概率为111=224⨯,∴1~(4,)4X B ,∴1()414E X =⨯=.故选A.求离散型随机变量期望的一般方法是先求分布列,再求期望.如果离散型随机变量服从二项分布~(,)B n p ,也可以直接利用公式()E np ξ=求数学期望.7.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为A .100B .110C .120D .180【正确答案】B【详解】试题分析:10人中任选3人的组队方案有310120C =,没有女生的方案有3510C =,所以符合要求的组队方案数为110种排列、组合的实际应用8.安排A ,B ,C ,D ,E ,F ,共6名义工照顾甲,乙,丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,则安排方法共有A .30种B .40种C .42种D .48种【正确答案】C利用间接法求解,首先计算出所有的安排方法,减掉A 照顾老人甲的情况和B 照顾老人乙的情况,再加回来多减一次的A 照顾老人甲的同时B 照顾老人乙的情况,从而得到结果.【详解】6名义工照顾三位老人,每两位义工照顾一位老人共有:2264C C 90=种安排方法其中A 照顾老人甲的情况有:1254C C 30=种B 照顾老人乙的情况有:1254C C 30=种A 照顾老人甲,同时B 照顾老人乙的情况有:1143C C 12=种∴符合题意的安排方法有:9030301242--+=种本题正确选项:C本题考查利用排列组合解决实际问题,对于限制条件较多的问题,通常采用间接法来进行求解.二、多选题9.数列{}n a 是递减的等差数列,{}n a 的前n 项和是n S ,且69S S =,以下结论正确的是()A .80a =B .当n 等于7或8时,n S 取最大值;C .存在正整数k ,使0k S =;D .存在正整数m ,使2m m S S =.【正确答案】ABCD【分析】由69S S =及等差中项的性质可得80a =,根据80a =以及等差数列的性质即可逐一求解.【详解】69S S = ,967890S S a a a ∴-=++=,由等差数列的性质得830a =,80a ∴=,故A 正确;数列{}n a 是递减的等差数列,127890a a a a a ∴>>>>=>L L ,∴当n 的值等于7或8时,n S 取得最大值,故B 正确;又 80a =,则1511581()151502S a a a =+⨯==,∴存在正整数15k =时,使0k S =,故C 正确;由等差数列的性质,得105678910850S S a a a a a a -=++++==,∴存在正整数5m =,使2m m S S =,故D 正确;故选:ABCD .10.已知数列{}n a 是等比数列,以下结论正确的是()A .2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 项和3=+nn S r ,则1r =-【正确答案】ACD【分析】根据给定条件,利用等比数列定义、性质逐项分析判断作答.【详解】令等比数列{}n a 的公比为q ,则11n n a a q -=,对于A ,222112()n n n n a a q a a ++==,且210a ≠,则2{}n a 是等比数列,A 正确;对于B ,320a =>,则2530a a q =>,B 错误;对于C ,由123a a a <<知,11(1)0(1)0a q a q q ->⎧⎨->⎩,则10(1)0q a q >⎧⎨->⎩,111(1)0n n n a a q a q -+-=⋅->,即N n *∀∈,1n n a a +>,数列{}n a 是递增数列,C 正确;对于D ,显然1q ≠,则111(1)111n n n a q a aS q q q q -==⋅----,而3=+n n S r ,因此113,1,111a aq r q q ===-=---,D 正确.故选:ACD11.下列等式成立的是()A .111C C 1mm n n m n +++=+B .32853C 2C 128-=C .11C C r r n n r n --=D .12C C C 2n nn n n +++= 【正确答案】AC【分析】根据组合数公式计算可以判断A,B,C 选项,特殊值法可以判断D 选项.【详解】()()()()()111!!11!C ,C !!11!1!!!mm n n n n m m n m n m n n n m m m n m +++++==⨯=-++-+-,A 选项正确;32853563C 2C 14082=⨯--=,B 选项错误;()()()()()()()()111!!!!C ,C !!1!!1!!1!!r r n n n n n n r rn n r n r r n r r n r r n r ---====-------,C 选项正确;当2n =时,12222C C 32+=≠,12C C C 2n nn n n +++= 错误,D 选项错误.故选:AC.12.已知离散型随机变量X 服从二项分布(),B n p ,其中N ,01n p *∈<<,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A .1a b +=B .12p =时,a b =C .102p <<时,a 随着n 的增大而增大D .112p <<时,a 随着n 的增大而减小【正确答案】ABC【分析】选项A 利用概率的基本性质即可,B 选项由条件可知满足二项分布,利用二项分布进行分析,选项C ,D 根据题意把a 的表达式写出,然后利用单调性分析即可.【详解】对于A 选项,由概率的基本性质可知,1a b +=,故A 正确,对于B 选项,由12p =时,离散型随机变量X 服从二项分布1,2B n ⎛⎫ ⎪⎝⎭,则()()11C 10,1,2,3,,22kn kk nP X k k n -⎛⎫⎛⎫===-= ⎪⎪⎝⎭⎝⎭,所以()1351111C C C 2222nnn n n n a -⎛⎫⎛⎫=+++=⨯= ⎪ ⎪⎝⎭⎝⎭ ,()0241111C C C 2222nnn n n n b -⎛⎫⎛⎫=+++=⨯= ⎪ ⎪⎝⎭⎝⎭,所以a b =,故B 正确,对于C,D 选项,()()()1111222nnnp p p p p a -+---⎡⎤⎡⎤--⎣⎦⎣⎦==,当102p <<时,()1122np a --=为正项且单调递增的数列,故a 随着n 的增大而增大故选项C 正确,当112p <<时,()12na p =-为正负交替的摆动数列,故选项D 不正确.故选:ABC.三、填空题13.在2nx ⎫⎪⎭的二项式中,所有项的二项式系数之和为256,则常数项等于______.【正确答案】112【详解】由题意可得:2256,8n n =∴=,结合二项式展开式通项公式可得:()848318822rr rr rr r T C C x x --+⎛⎫=-=- ⎪⎝⎭,令8403r -=可得:2r =,则常数项为.()2282428112C -=⨯=14.从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同的对数值的个数为____.【正确答案】17【详解】①当取得两个数中有一个是1时,则1只能作真数,此时log a 1=0,a=2或3或4或7或9.②所取的两个数不含有1时,即从2,3,4,7,9中任取两个,分别作为底数与真数可有54⨯=20个对数,但是其中39242439,log log log log ==,49232349,log log log log ==.综上可知:共可以得到20+1﹣4=17个不同的对数值.故答案为17.点睛:本题是一道易错题,防止重复,其中39242439,log log log log ==,49232349,log log log log ==,处理计数原理问题,贵在不重不漏,需要同学们熟练掌握对数的运算法则.15.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,则公差d 为_________.【正确答案】5【分析】设偶数项和为32k ,则奇数项和为27k ,由3227354k k +=可得k 的值,根据公差32276k kd -=求得结果.【详解】设偶数项和为32k ,则奇数项和为27k ,由322759354k k k +==可得6k =,故公差32275566k k kd -===,故5.本题考查等差数列的定义和性质,得到6k =,公差32276k kd -=,是解题的关键.16.数列{}n a 的通项222(cossin )33n n n a n ππ=⋅-,其前n 项和为n S ,则30S =__________.【正确答案】470【详解】试题分析:22222(cossin )cos 333n n n n a n n πππ=-= 222230241cos2cos 3cos 230cos 2033S ππππ∴=⋅+⋅+⋅++⋅ 22222222111111123456282930222222=-⨯-⨯+-⨯-⨯++-⨯-⨯+ 2222222221[(1223)(4526)(2829230)]2=-+-⨯++-⨯+++-⨯ 2222222222221[(13)(46)(2830)(23)(56)(2930)]2=--+-++-+-+-++- 1[2(4101658)(5111759)]2=--++++-++++ ,故答案应填:470.数列求和.【方法点晴】本题考查了二倍角的余弦公式,分组求和方法的应用,是中档题.解题的关键是平方差公式的应用,首先利用二倍角公式将数列的通项公式化简后代入到求和公式中,求出特殊角的三角函数值之后,注意分组,再利用平方差公式求解.四、解答题17.(1)将10本不同的专著分成3本,3本,3本和1本,分别交给4位学者阅读,问有多少种不同的分法?(2)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成多少个没有重复数字的四位数?【正确答案】(1)67200;(2)1260【分析】(1)先分组,再分配,注意部分平均分组需要除以数量相同组数的全排列;(2)分取出的数字有0和没有0两种情况讨论,先将数字取出,再进行排列.【详解】(1)依题意可得共有33341074433C C C A 67200A ⋅⋅⋅=种不同的分法;(2)从1,3,5,7,9中任取2个数字有25C 10=种取法,从0,2,4,6中任取2个数字,若取出的有0,则有13C 3=种,再将取出的数字排列,则有21135333C C A A 540⋅⋅⋅=个;若取出的没有0,则有23C 3=种,再将取出的数字排列,则有224534C C A 720⋅⋅=个;综上可得共有5407201260+=个没有重复数字的四位数.18.n S 为数列{n a }的前n 项和.已知n a >0,22n n a a +=43n S +.(Ⅰ)求{n a }的通项公式;(Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和.【正确答案】(Ⅰ)21n +(Ⅱ)11646n -+【分析】(I )根据数列的递推关系,利用作差法即可求{an }的通项公式:(Ⅱ)求出bn 11n n a a +=,利用裂项法即可求数列{bn }的前n 项和.【详解】解:(I )由an 2+2an =4Sn +3,可知an +12+2an +1=4Sn +1+3两式相减得an +12﹣an 2+2(an +1﹣an )=4an +1,即2(an +1+an )=an +12﹣an 2=(an +1+an )(an +1﹣an ),∵an >0,∴an +1﹣an =2,∵a 12+2a 1=4a 1+3,∴a 1=﹣1(舍)或a 1=3,则{an }是首项为3,公差d =2的等差数列,∴{an }的通项公式an =3+2(n ﹣1)=2n +1:(Ⅱ)∵an =2n +1,∴bn ()()111121232n n a a n n +===++(112123n n -++),∴数列{bn }的前n 项和Tn 12=(11111135572123n n -+-++-++ )12=(11323n -+)11646n =-+.本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.19.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【正确答案】(Ⅰ)见解析;(Ⅱ)20243【分析】(Ⅰ)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;(Ⅱ)由题意结合独立事件概率公式计算可得满足题意的概率值.【详解】(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为:X0123P1272949827随机变量X 的数学期望2()323E X =⨯=.(Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫⎪⎝⎭.且{3,1}{2,0}M X Y X Y ===== .由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立,从而由(Ⅰ)知:{}{}()()3,12,0P M P X Y X Y ===== ()()3,12,0P X Y P X Y ===+==(3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+=.本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.20.某校准备从报名的7位教师(其中男教师4人,女教师3人)中选3人去边区支教.(1)设所选3人中女教师的人数为X ,写出X 的分布列,求X 的数学期望及方差;(2)若选派的三人依次到甲、乙、丙三个地方支教,求甲地是男教师的情况下,乙地为女教师的概率.【正确答案】(1)分布列详见解析,9()7E X =,24()49D X =;(2)12【分析】(1)确定X 的所有可能取值,求出相应的概率,由此能求出X 的分布列,E (X )和D (X );(2)设事件A 为“甲地是男教师”,事件B 为“乙地是女教师”,利用条件概率公式,即可求出概率.【详解】(1)解:(1)X 的所有可能取值为0,1,2,3,且3437C 4(0)C 35P X ===,123437C C 18(1)C 35P X ===,213437C C 12(2)C 35P X ===,3337C 1(3)C 35P X ===,所以X 的分布列为:X0123P 43518351235135故4181219()0123353535357E X =⨯+⨯+⨯+⨯=,2222949189129124()(0(1)(2)(373573573573549D X =-⨯+-⨯+-⨯+-⨯=(2)设事件A 为“甲地是男教师”,事件B 为“乙地是女教师”,则124637C A 4()A 7P A ==,11143537C C C 2()A 7P AB ==,所以()()1()2P AB P B A P A ==.21.已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等差中项.(Ⅰ)设22*1,N n n n c b b n +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,n k n k k a d T b n N ===-∈∑,求证:2111.2n k k T d =<∑【正确答案】(Ⅰ)详见解析(Ⅱ)详见解析【详解】试题分析:(Ⅰ)先根据等比中项定义得:21n n n b a a +=,从而22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此根据等差数列定义可证:()212122n n n n c c d a a d +++-=-=(Ⅱ)对数列不等式证明一般以算代证先利用分组求和化简()2211n n n n k T b ==-∑()()()2222221234212n n b b b b b b -=-++-++-+()221d n n =+,再利用裂项相消法求和()222111111111111212121n n n k k k k T d k k d k k d n ===⎛⎫⎛⎫==-=⋅- ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,易得结论.试题解析:(I )证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(Ⅱ)证明:()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+ 所以()222211111111111112121212n n n k k k kT d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑.等差数列、等比中项、分组求和、裂项相消求和22.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数012345≥保费0.85a a 1.25a 1.5a1.75a 2a 设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数012345≥概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.【正确答案】(Ⅰ)0.55;(Ⅱ)311;(Ⅲ)1.23.【详解】试题分析:试题解析:(Ⅰ)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故()0.20.20.10.050.55.P A =+++=(Ⅱ)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故()0.10.050.15.P B =+=又()()P AB P B =,故()()0.153(|).()()0.5511P AB P B P B A P A P A ====因此所求概率为3.11(Ⅲ)记续保人本年度的保费为X ,则X 的分布列为X0.85a a 1.25a 1.5a 1.75a 2a P 0.300.150.200.200.100.050.850.300.15 1.250.20 1.50.20 1.750.1020.051.23.EX a a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯=因此续保人本年度的平均保费与基本保费的比值为1.23条件概率,随机变量的分布列、期望【名师点睛】条件概率的求法:(1)定义法:先求P (A )和P (AB ),再由P (B|A )=()()P AB P A ,求出P (B|A );(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数n (AB ),得P (B|A )=()()n AB n A .求离散型随机变量均值的步骤:(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 取每个值时的概率;(3)写出X 的分布列;(4)由均值定义求出EX .。
北京市2024-2025学年高二上学期期中英语试题含答案
2024~2025学年度第一学期高二年级期中练习英语(答案在最后)2024年11月6日制卷人:说明:本试卷共8页,共100分;考试时间90分钟;请在答题卡上填写个人信息,并将条形码贴在答题卡的相应位置上。
考生务必在答题卡指定区域作答,在试卷上作答无效。
第一部分:知识运用(共两节,30分)第一节(共10小题;每小题1.5分,共15分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
My brother and I were driving home together and we were deep in conversation.Because of his1my brother took a wrong turn,taking us towards a bridge and we had no way to turn back.2,my brother paid the bridge fee and drove on.He was clearly frustrated by the mistake and the3waste of$4.We eventually reached an exit slipway and,as we took it,my brother4a beat-up black car parked by the side of the road.A young guy was standing nearby5someone.I was busy trying to figure out which way we went next but my brother6and asked the guy if he needed any help.And he did.He had a(n)7tire and needed a tool to get it off.My brother gave it to him and then proceeded to help him change the tire.After we finished the job,he thanked us again and again,pulled out$20and tried to give it to us.“No.”my brother said.“We were never8to even get on that bridge.We took a wrong turn.But now we know why we did.It was to help you.Thank you for turning our mistake into a(n)9to serve.”What I loved most was watching my brother throughout this process.He was able to see a chance to help even in an otherwise10situation,which can only come from a calm mind and an open heart.1.A.happiness B.carelessness C.selfishness D.weakness2.A.Nervously B.Immediately C.Unwillingly D.Unfortunately3.A.unusual B.hateful C.hopeless D.needless4.A.repaired B.noticed C.struck D.helped5.A.phoning B.reminding C.greeting D.recalling6.A.pulled together B.pulled away C.pulled over D.pulled through7.A.flat B.empty C.old D.dirty8.A.supposed B.forced C.allowed D.required9.A.wish B.ability C.belief D.opportunity10.A.dangerous B.destructive C.expensive D.negative第二节(共10小题;每小题1.5分,共15分)阅读下列短文,根据短文内容填空。
高级中学高二下学期期中考试语文试题(含答案)
高级中学高二下学期期中考试语文试题(含答案)南平市高级中学2023-2024学年度第二学期高二年级语文科期中考试试题卷总分:150分考试时长:150分钟一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:台北故宫博物院展出苏轼亲笔手书的《赤壁赋》,网友发现帖中原文写的是“渺浮海之一粟”,并不是此前广为流传的“沧海一粟”,疑似是后人抄写笔误,才造成这样的理解错误。
“沧海一粟"是否要被改为“浮海一粟”,一时间引发热议。
这不由得让人想起,此前教育部纠正过一些异读字的读音,比如粳(jīng)米改为粳(gēng)米、确凿(zuò)改为确凿(záo)、说(shuì)服改为说(shuō)服,都把之前大众容易读错的读音认证为了新的正确读音。
后由于一些异读词的拼音打破了大众原本认知,因此有些修改读音已通过,而还有一部分则一直处于审核阶段,仍以原读音为准。
是以正确读音为重还是以大众读音为重呢?从教育部颁布的异读词修订表的底层逻辑来看,显然还是以后者为重。
毕竟,读音是人们沟通交流的工具,最终还是要为人所用,换言之,文字和词语又何尝不是如此?文字和词语的发展过程会经历很多的变化,非要说存在一个亘古不变或者绝对正确的版本,这本身就是个伪命题。
真相很可能是,某一时期大众普遍认可和接受什么版本,这一版本就将流传到下一时期。
就像一位网友所说“成语本质上是约定俗成的东西,用的人多了也就成了成语,原本的出处是什么已不再重要了"。
原先我们有“沧海一粟”,现在又多了一个“浮海一粟”,在渺小的比喻上加了一层浮萍无根、漂泊不定的寓意,孤独感透纸而出,如果真的适宜人们流传,那么多一个成语又何妨?反之,若人们使用不便,它适用的语境较少,那么成语最终消失在历史长河中也就不足为奇了。
(摘编自小亢《“沧海一粟”还是“浮海一粟"?不必太较真》)材料二:对照手书本《赤壁赋》来看,现行统编版高中语文教材必修上册“寄蜉蝣于天地,渺沧海之一粟”中的“沧海”,手书本作“浮海”,此处异文所传递出的信息或可帮助学生对《赤壁赋》一文产生新的理解。
浙江省杭州第二中学2023-2024学年高二下学期期中考试数学试题(解析版)
2023学年第一学期杭州二中高二期中考试数学1. 两条平行直线1l :注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写答题卡上.用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.3.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,多选、错选或不选都给不分.3450x y +−=与2l:6850x y +−=之间的距离是( ) A. 0 B.12C. 1D.32【答案】B 【解析】【分析】利用平行线间距离公式进行求解即可. 【详解】345068100x y x y +−=⇒+−=,12, 故选:B2. 已知圆()()()2122292:x m y m m C −+−=−与圆22288340:x y x C y m +−−+−=,则“4m = ”是“圆1C 与圆2C 外切”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【解析】【分析】利用两圆相切圆心距与两半径之和相等,分别证明充分性和必要性是否成立即可得出答案. 【详解】根据题意将圆2C 化成标准方程为()()22442x y m −+−=−; 易知20m −>,所以可得圆心()12,2C m m,半径为1r =,圆心()24,4C,半径为2r =可得122C C =−,两半径之和12r r += 若4m=,圆心距12C C =,两半径之和12r r +,此时1212C C r r =+=, 所以圆1C 与圆2C 外切,即充分性成立;若圆1C 与圆2C外切,则2−=4m =或2m =(舍), 所以必要性成立;即“4m =”是“圆1C 与圆2C 外切”的充分必要条件. 故选:C3. 已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A. 1±B. C. D. 2±【答案】C 【解析】【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =,则弦长为||MN =, 则当0k =时,MN 取得最小值为2=,解得m =. 故选:C.4. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y −+=上,则ABP 面积的取值范围是A. []26,B. []48,C. D.【答案】A 【解析】【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点 ()()A 2,0,B 0,2∴−−,则AB = 点P 在圆22x 22y −+=()上∴圆心为(2,0),则圆心到直线距离1d =故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPS AB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.5. 已知正方形ABCD 的边长为2,点M 在以C 为圆心,1为半径的圆上,则2MB MD +的最小值为( )A.B.C.D.【答案】D 【解析】【分析】建立直角坐标系,取点1(0,)2E ,探讨满足条件||2||M D M E ′′=的点M ′的轨迹,再结合已知,求出两条线段长度和的最小值作答.【详解】依题意,以点C 为原点,直线,CB CD 分别为,x y 轴建立平面直角坐标系,则(2,0),(0,2)B D ,如图,取点1(0,)2E ,设(,)M x y ′,当||2||M D M E ′′=化简整理得221x y +=,即点M ′的轨迹是以C 为圆心,1为半径的圆,而点M 在以C 为圆心,1为半径的圆上,因此||2||MD ME =,显然点B 在圆C :221x y +=外,则22||2||2(||||)2||MB MD MB ME MB ME BE +=+=+≥,当且仅当M 为线段BE 与圆C 的交点时取等号,而||BE ,所以2MB MD +的最小值为2||BE =故选:D【点睛】关键点睛:建立坐标系,取点1(0,)2E 并求出满足条件||2||M D M E ′′=的点M ′的轨迹是解题的关键.6. 设椭圆()222210x y a b a b+=>>的左焦点为F ,O 为坐标原点,过F 且斜率为1的直线交椭圆于A ,B两点(A 在x 轴上方).A 关于x 轴的对称点为D ,连接DB 并延长交x 轴于点E ,若DOF S ,DEF S △,DOE S △成等比数列,则椭圆的离心率e 的值为( )A.B.C.D.【答案】D 【解析】【分析】根据DOF S ,DEF S △,DOE S △成等比数列,得到2EF OF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++−−,与椭圆方程联立,再设直线BD 的方程为:()122221x x c y x cx x x x ++−−=−−,令0y =结合韦达定理,得到点E 的坐标,代入2EF OF OE =⋅求解.【详解】解:如图所示:设,,DOF DEF DOE 分别以OF ,EF ,OE 为底,高为h ,则111,,222DOFDEF DOE S OF h S EF h S OE h === , 因为DOF S ,DEF S △,DOE S △成等比数列,所以2DEFDOF DEF S S S =⋅ ,即2EF OF OE =⋅,设直线AB 的方程为:()()()112211,,,,,,y x c A x x c B x x c D x x c =+++−−,联立22221x y a b y x c += =+,消去y 得()2222222220a b x a cx a c a b +++−=, 由韦达定理得:2121222222222,2x x x x a ca c ab a b a b−+=−=++⋅, 直线BD 的方程为:()1222212x x cy x c x x x x ++−−=−−,令0y =得,()12121222E x x c x x x x x c⋅++=++,则()22121212222222222222222222E x x c x x a x c a c a b a c a b a b a b x x c c c a ⋅−⋅++===−++−++−++, 则2EF OF OE =⋅,即为222a a c c c c ⋅−,则()22222c a ac =−,即422430a c a c −+=,即42310e e −+=,解得2e =e =,故选:D7. 已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,经过1F 的直线交椭圆于A ,B ,2ABF △的内切圆的圆心为I ,若23450++=IB IA IF ,则该椭圆的离心率是( )A.B.23C.D.12【答案】A 【解析】【分析】对23450++= IB IA IF 变形得到2351882IB IF IA +=−,进而得到以22::3:4:5AF BF AB =,结合椭圆定义可求出2AF a =,245,33BF a AB a ==,1AF a =,由余弦定理求解,a c 关系式,求出离心率.【详解】因为23450++= IB IA IF ,所以2351882IB IF IA +=−, 如图,在2BF 上取一点M ,使得2:5:3BM MF =,连接IM ,则12IM IA =−,则点I 为AM 上靠近点M 的三等分点,所以22::3:4:5IAF IBF IBA S S S = , 所以22::3:4:5AF BF AB =设23AF x =,则24,5BF x AB x ==, 由椭圆定义可知:224AF BF AB a ++=,即124x a =,所以3ax =, 所以2AF a =,245,33BF a AB a ==,1AF a = 故点A 与上顶点重合, 在2ABF △中,由余弦定理得:222222222222516399cos 52523a a a AB F A F B BAF AB F A a +−+−∠===⋅×,在12AF F △中,2222243cos 25a a c BAF a +−∠==,解得:c a =故选:A【点睛】对于求解圆锥曲线离心率问题,要结合题目中的条件,直接求出离心率或求出,,a b c 的齐次方程,解出离心率,本题的难点在于如何将23450++=IB IA IF 进行转化,需要作出辅助线,结合内心的性质得到三角形2ABF 三边关系,求出离心率.8. 在平面直角坐标系xOy 中,若抛物线C :y 2=2px (0p >)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为FAB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM ON ⋅的取值范围是( )A. 63,925−B. []3,21−C. 63,2125D. []3,27【答案】B 【解析】【分析】由已知及抛物线的定义,可求p ,进而得抛物线的方程,可求A ,B ,F 的坐标,直线AF 的方程,可得圆的半径,求得圆心,设N 的坐标,求得M 的坐标,结合向量数量积的坐标表示,以及辅助角公式和正弦函数的值域,可得所求范围.【详解】解:由题意,设(A ,所以||342pAF =+=,解得2p =,所以抛物线的方程为24y x =,(3,A ,(3,B −,(1,0)F ,所以直线AF 的方程为1)yx =−,设圆心坐标为0(x ,0),所以2200(1)(3)12x x −=−+,解得05x =,即(5,0)E ,∴圆的方程为22(5)16x y −+=,不妨设0M y >,设直线OM 的方程为y kx =,则0k >,4=,解得43k =, 由2243(5)16y x x y= −+=,解得912,55M, 设(4cos 5,4sin )N θθ+,所以364812cos sin 9(3cos 4sin )9555OM ON θθθθ⋅=++=++ , 因为[]3cos 4sin5sin()5,5θθθϕ+=+∈−, 所以OM ON ⋅∈[]3,21−. 故选:B .【点睛】关键点点睛:本题解题的关键点是:首先求出圆的方程为22(5)16x y −+=,然后利用直线OM 与圆E 切于点M ,求出M 点的坐标,引入圆的参数方程表示N 点坐标,再根据向量数量积的坐标表示及辅助角公式,可得所求范围..二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知直线1l :230ax y a ++=和直线2l :()3170x a y a +−+−=,下列说法正确的是( ) A. 当25a =时,12l l ⊥ B. 当2a =−时,12l l ∥C. 直线1l 过定点()3,0-,直线2l 过定点()1,1−D. 当1l ,2l 【答案】AD 【解析】【分析】A 选项:把a 的值分别代入两直线,根据直线垂直时,斜率相乘为1−,直接判断即可; B 选项,把a 的值分别代入两直线,根据直线平行时,斜率相等判断即可; C 选项,把直线的方程变形,根据直线过定点的定义判断即可;D 选项,由直线平行时,斜率相等,可求得a 得值,排除重合情况,再利用平行直线的距离公式直接求解即可.【详解】对于A ,当25a =时,那么直线1l 为262055x y ++=,直线2l 为3237055x y −+−=,此时两直线的斜率分别为115k =−和25k =,所以有121k k ⋅=-,所以12l l ⊥,故A 选项正确;对于B ,当2a =−时,那么直线1l 为30x y −+=,直线2l 为30x y −+=,此时两直线重合,故B 选项错误;对于C ,由直线1l :230ax y a ++=,整理可得: ()320a x y ++=,故直线1l 过定点()3,0-,直线2l :()3170x a y a +−+−=,整理可得:()1370a y x y −+−+=,故直线2l 过定点()2,1−,故C 选项错误;对于D ,当1l ,2l 平行时,两直线的斜率相等,即213a a −−=−,解得:3a =或2a =−,当2a =−时,两直线重合,舍去;当3a =时,直线1l 为3290x y ++=,2l 为3240x y ++=,此时两直线的距离d,故D 选项正确. 故选:AD .10. 已知椭圆2222:1(0)x y C a b a b+=>>的左,右两焦点分别是12,F F ,其中12||2F F c =.直线()():R l y k x c k =+∈与椭圆交于,A B 两点,则下列说法中正确的有( )A. 2ABF △的周长为4aB. 若AB 的中点为M ,则22OMb k k a⋅=C. 若2124AF AF c ⋅=,则椭圆的离心率的取值范围是 D. 若1k =时,则2ABF △【答案】ACD 【解析】【分析】根据椭圆定义可知2ABF △的周长为4a ,可判断A 正确;联立直线和椭圆方程求出点M 的坐标,表示出斜率公式即可得22OMb k k a⋅=−,可得B 正确;由2124AF AF c ⋅= 易知A 点在以()0,0为圆心,半径为的圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,需满足b a ≤≤,可得离心率e ∈,可知C 正确;将1k =代入联立的方程可得2ABF △的面积12S c x x =−,可得D 正确.【详解】由12||2F F c =可知,()()12,0,,0F c F c −;显然直线()():R l y k x c k =+∈过点()1,0F c −,如下图所示:由椭圆定义可知2ABF △的周长为2212214AB AF BF AF AF BF BF a ++=+++=,所以A 正确; 设()()1122,,,A x y B x y ,中点()0,Mx y ;将直线和椭圆方程联立()22221x y a b y k x c += =+ ,消去y 整理可得()2222222222220b a k x a k cx a k c a b +++−=; 由韦达定理可得22122222a k c x x b a k +=−+,所以221202222x x a k cx b a k+==−+,代入直线方程解得20222b cky b a k =+,即222222222,a k c b ck M b a k b a k − ++; 所以2222222222222200OMb ckb ck b b a k k a kc a k c a k b a k −+==−=−−−+, 可得2222OMk b k a k b k a⋅−==⋅−,所以B 错误;根据B 选项,由2124AF AF c ⋅=可得()()2222111111,4,c x y c x y x c y c −⋅=+−−=−−−, 可得222115x y c +=,即A 点在以()0,0圆上; 又A 点在椭圆上,即可得圆222115x y c +=与椭圆22221x y a b+=有交点,根据对称性可知b a ≤≤,即22256c a c ≤≤,所以可得离心率e ∈,即C 正确;若1k =时,由选项B 可知联立直线和椭圆方程可得()2222222220b axa cx a c ab +++−=; 所以可得22222121222222,a c a c a b x x x x b a b a−+=−=++; 所以12x x −==易知2ABF △面积12112212121122S F F y F F y c y y c x x =+=−==− 即可得2ABF△,故D 正确. 故选:ACD【点睛】方法点睛:在求解圆锥曲线与直线的位置关系时,特别是在研究跟焦点三角形有关的问题时,经常将直线和圆锥曲线联立并利用韦达定理求解,注意变量间的相互转化即可.11. 已知斜率为k 的直线交抛物线()220y px p =>于()11,A x y 、()22,B x y 两点,下列说法正确的是( ) A. 12x x 为定值B. 线段AB 的中点在一条定直线上的的C.11OA OBk k +为定值(OA k 、OB k 分别为直线OA 、OB 的斜率) D. AF BF为定值(F 为抛物线的焦点)【答案】BC 【解析】【分析】分析可知,0k ≠,设直线AB 的方程为y kx m =+,将直线AB 的方程与抛物线的方程联立,利用韦达定理可判断A 选项;求出线段AB 中点的纵坐标,可判断B 选项;利用斜率公式结合韦达定理可判断C 选项;利用抛物线的焦半径公式可判断D 选项.【详解】若0k =,则直线AB 与抛物线()220y px p =>只有一个交点,不合乎题意,则0k ≠, 设直线AB 的方程为y kx m =+,联立22y kx m y px=+ = 可得()222220k x km p x m +−+=, ()2222224480km p k m p kmp ∆=−−=−>,对于A 选项,2122m x x k =不一定是定值,A 错;对于B 选项,设线段AB 的中点为()00,P x y ,则12022x x p kmx k+−==, 00p km p y kx m m k k−++为定值,故线段AB 的中点在定直线py k =上,B 对;对于C 选项,()121212122222111222OA OB p kmm k x x m x x y y k k k y y p p p k−+++++=+====为定值,C 对;对于D 选项,21222222222p km p p x x AF k p p BF x x −+−+==++不一定为定值,D 错.故选:BC.12. 已知圆22:(2)1M x y +−=,点P 为x 轴上一个动点,过点P 作圆M 的两条切线,切点分别为A ,B ,直线AB 与MP 交于点C ,则下列结论正确的是( )A. 四边形PAMB周长的最小值为2 B. ||AB 的最大值为2C. 若(1,0)P ,则三角形PAB 的面积为85D.若Q ,则||CQ 的最大值为94【答案】CD 【解析】【分析】首先设||MP t =,对于选项A ,根据题意,表达四边形PAMB 周长关于t 的函数,由t 的取值范围求函数的最小值可判断A 错误;对于选项B ,根据等面积法,求出||AB 关于t 的函数关系,由t 的取值范围求函数的最大值可判断B 错误;对于选项C ,根据题意,计算PAB 底和高,求出面积判断C 正确;对于选项D ,设动点(,0)P m AB 的方程与直线PM 的方程,二者联立消去m 得到二者交点C 的轨迹是圆,||CQ 的最大值为圆心1O 与Q 距离加半径,可判断D 正确. 【详解】对于选项A ,设||MP t =,则||||BP AP ==则四边形PAMB周长为2+,则当t 最小时周长最小,又t 最小值为2, 所以四边形PABM周长最小为2+,故A 错误;对于选项B ,12||||2MAP PAMBS S MP AB ==△四边形,即1121||22t AB ××=,所以||AB =,因为2t,所以)||AB ∈,故B 错误; 对于选项C ,因为(1,0)P,所以||MP =t =,所以||AB ,1||||2AC AB ==,||2AP =,||PC ,所以三角形PAB 的面积为18||||25AB PC =,故C 正确;的对于选项D ,设(,0)P m ,()11,A x y ,则切线PA 的方程为()()11221x x y y +−−=, 又因为直线PA 过点(,0)P m ,代入可得()()112021x m y +−−=化简得11230mx y −+= 设()22,B x y ,同理可得22230mx y −+=, 因此点,A B 都过直线230mx y −+=,即直线AB 的方程为230mx y −+=, MP 的方程为22y x m=−+, 二者联立得,22230y x mmx y =−+−+=①②, 由①式解出22x m y =−,代入②式并化简得227302x y y +−+=, 配方得2271()416x y +−=,2y ≠, 所以点C 的轨迹是以(70,4)为圆心,14为半径的圆, 设其圆心为1O ,所以||CQ的最大值为1119||2444O Q R ++=+=,故D 正确. 故选:CD.【点睛】本题综合性较强,难度较大,具备运动变化的观点和函数思想是解题的关键,对于AB 选项,设变量||MP t =,用t 分别表达周长函数和距离函数求最值,对于D 选项,设出动点(),0P m ,分别表达直线AB 和MP 的方程,联立消去m ,得到动点C 的轨迹,进一步求解答案.三、填空题:本题共4小题,每小题5分,共20分.13. 已知实数0,0a b ><的取值范围是______.【答案】[)2,1−− 【解析】【分析】根据题意,设直线l :0ax by +=的几何意义为,点(1,到直线l 的距离,即可求出取值范围.【详解】根据题意,设直线l :0ax by +=,设点(1,A那么点(1,A 到直线l的距离为:d因为0,0a b ><,所以d =l 的斜率0ak b=−>, 当直线l的斜率不存在时,1d ==,所以1d >,当OA l ⊥时,max 2d OA ===,所以12d <≤,即12<≤,=21−≤<−,故答案为:[)2,1−−.14. 形如()0b y ax b x=+≠的函数图象均为双曲线,则双曲线4135y x x =−的一个焦点坐标为______.【答案】或 【解析】【分析】先确定双曲线的渐近线、对称轴方程,确定焦点位置及实半轴a ,最后由渐近线与对称轴夹角正切值确定b ,利用双曲线性质求出焦点. 【详解】由4135−x y =x 知,其两条渐近线分别为403x x =,y =, 所以双曲线4135−x y =x 的两条对称轴为403xx =,y =的夹角平分线, 令43x y =的倾斜角为0,2πθ ∈,则4tan 3θ=,且一条对称轴倾斜角为42πθ+,而22tan42tan 31tan 2θθθ==−,则22tan 3tan 2022θθ+−=,解得tan 22θ=−(舍去),1tan 22θ=, 所以11+tan 1+22tan ==31421tan 122π +=−−θθθ,即一条对称轴为3y x =, 故另一条对称轴为13y x =−,显然13y x =−与4135−x y =x有交点, 即为双曲线的顶点,则双曲线的实半轴长a = 而渐近线0x =与对称轴13y x =−夹角的正切值为3,3b a =,又因为=a,所以33b =a = 由2222641553+=c =a +b =,设焦点为13 − m,m ,则221433 +−=m m ,所以m =, .故答案为:或.15. 在椭圆2213x y +=上有点31,22P ,斜率为1的直线l 与椭圆交于不同的A ,B 两点(且不同于P ),若三角形ABO 的外接圆恰过点P ,则外接圆的圆心坐标为______. 【答案】71,88 −【解析】【分析】根据题意得到():0AB y x b b =+≠,联立直线AB 与椭圆方程,利用韦达定理求得12x x +,12x x ,12y y +,12y y ;法一:先利用点斜式求得,OP AB 的中垂线方程,联立两者方程即可求得圆心C ,再由半径相等得到2222AC BC OC +=,利用两点距离公式,代入上述式子得到关于b 的方程,解之即可; 法二:根据题意得到圆的方程,联立直线AB 与圆的方程,利用韦达定理求得12x x +,12x x ,进而得到,D E 关于b 的表达式,又由点P 在圆上得到关于b 的方程,解之即可.【详解】依题意,设()11,A x y ,()22,B x y ,直线():0AB y x b b =+≠, 联立2213y x bx y =++=,消去y ,得246330x bx b ++−=, 所以1232x x b +=−,()212314b x x −=, 则121212y y x b b b x ++=+=+,()()2121234b y y x b b x =+−=+, .法一:因为31,22P ,所以10123302OP k −==−,OP 的中点坐标为3,414 ,OP 中垂线的斜率为3−,所以OP 中垂线方程为113:344l y x −=−−,即532y x =−+, 因为AB 的斜率为1,AB 的中点坐标为1212,22x x y y ++ ,即31,44b b− ,所以AB 中垂线的斜率为1−,则AB 中垂线方程213:44l y b x b−=−+,即12y x b =−−, 联立53212y x y x b=−+ =−− ,解得54354b x b y + = + =− ,则圆心坐标535,44b b C ++ − , 因为22222AC BC OC AC +==, 所以222222112253515355354424444b b b b b b x y x y +++++++=−+++−++, 整理得()()22221212121253522044b b x x x x y y y y ++ +−+++++=, 因为1232x x b +=−,()212314b x x −=,1212y y b +=,21234b y y −=, 所以()22222112123624x x x x b x x +=+−+=,()2222211212624y b y y y y y −+=+−+=, 则2203563614242532244b b b b b b ++ −++= − + +−× , 整理得22530b b ++=,解得32b =−,1b =-, 当1b =-时,直线:1AB y x =−,显然直线AB 过P 点,舍去,当32b =−时,()2299361633361633044b b ∆=−−=×−×−>,直线3:2AB y x =−,满足题意,又535,44b b C ++ −,所以此时圆心坐标71,88C − . 法二:因为圆过原点()0,0O ,所以设圆的方程为220x y Dx Ey +++=()220D E +>,联立220y x b x y Dx Ey =++++=,消去y ,得()22220x b D E x b Eb +++++=, 所以1222b D E x x +++=−,2122b Ebx x =+, 又1232x x b +=−,()212314b x x −=,所以3222b D E b ++−=−,()223142b b Eb −+=, 所以1322D b b=+,1322E b b =−, 因为P 点在圆上,所以913104422D E +++=,即530D E ++=,所以13135302222b b b b +++−=,整理得22530b b ++=,解得32b =−,1b =-, 当1b =-时,直线:1AB y x =−,显然直线AB 过P 点,舍去, 当32b =−时,1332722234D =×−+×−=− ,1332122234E =×−−×−= , 对于方程2246330x bx b ++−=,有()2299361633361633044b b ∆=−−=×−×−>,对于方程()22220x b D E x b Eb +++++=,即29152028x x −+=,有2915Δ42028 =−−××>,满足题意,又因为外接圆的圆心坐标为,22D E −− ,所以圆心为71,88− . 故答案为:71,88 −.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.16. 已知直线l 过抛物线C :24y x =的焦点F ,与抛物线交于A 、B 两点,线段AB 的中点为M ,过M作MN 垂直于抛物线的准线,垂足为N ,则2324NF AB +的最小值是______.【答案】【解析】【分析】设直线:1AB x my =+,()11,A x y ,()22,B x y ,联立抛物线方程得到关于y 的一元二次方程,得到韦达定理式,求出,M N 坐标,利用弦长公式和两点距离公式得到AB 和NF 的表达式,再利用基本不等式即可得到答案.【详解】显然当直线AB 斜率为0时,不合题意;故设直线:1AB x my =+,()11,A x y ,()22,B x y , 联立抛物线方程有2440y my −−=,则216160m ∆=+>,124y y m +=,124y y =−,则1222My y y m +==,111x my =+,221x my =+, 则()21221224221222M m y y x x m x m ++++====+,则()221,2M m m +,准线方程为=1x −,()1,0F ,则()1,2N m −,()22||41AB y m =−=+,()()()22222||1124441||[4,)NF m m m AB =++−=+=+=∈+∞,所以232||32||||4||4NF AB AB AB +=+==,当且仅当32||||4AB AB =,即()2||41AB m =+=时等号成立,此时m .故答案为:【点睛】关键点点睛:本题的关键是采取设线法联立抛物线方程得到韦达定理式,再利用中点公式得到,M N 点坐标,最后利用弦长公式和两点距离公式得到相关表达式,最后利用基本不等式即可得到答案.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知点()1,0A −和点B 关于直线l :10x y +−=对称. (1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,求直线1l 的方程; (2)若直线2l 过点A 且与直线l 交于点C ,ABC 的面积为2,求直线2l 的方程.【答案】(1)30x y +−=(2)0y =或=1x − 【解析】【分析】根据对称先求出B 点坐标(1)过点B 到点A 距离最大的直线与直线AB 垂直,从而求出直线方程;(2)画出图像,可求出点C 到直线AB 的距离,又点C 在直线l 上,可设出C 点的坐标,利用点到直线的距离公式求出C ,又直线过点A ,利用两点A 、C 即可求出直线2l 的方程. 【详解】解:设点(),B m n则1102211m nn m −+ +−== + ,解得:12m n = = ,所以点()1,0A −关于直线l :10x y +−=对称的点的坐标为()1,2B(1)若直线1l 过点B ,且使得点A 到直线1l 的距离最大,则直线1l 与过点AB 的直线垂直,所以1k =−,则直线1l 为:()21y x −=−−,即30x y +−=. (2)由条件可知:AB =,ABC 的面积为2,则ABC的高为h =又点C 在直线l 上,直线l 与直线AB 垂直,所以点C 到直线AB. 直线AB 方程为1y x =+,设(),C a b,即1b a =−或3b a =+又1b a =−,解得:10a b == 或12a b =− =则直线2l 为:0y =或=1x −【点睛】本题考查求点关于直线的对称点,考查直线与直线相交的综合应用..方法点睛:(1)设出交点坐标(2)两点的中点在直线上,两点连线与原直线垂直,列方程组; (3)解出点坐标.18. 已知圆221:(1)5C x y +−=,圆222:420C x y x y +−+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y −++=【解析】【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+−+++−−≠−,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【小问1详解】将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +−+−+−−=,化简得10x y −−=,所以圆1C 的圆心()0,1到直线10x y −−=的距离为d ,则22215232AB r d =−=−=,解得AB =所以公共弦长为【小问2详解】 解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+−+++−−≠−, 则2242240,1111x y x y λλλλλλ−+−+−=≠−+++; 由圆心21,11λλλ− −++ 在直线241x y +=上,则()414111λλλ−−=++,解得13λ=, 所求圆的方程为22310x y x y +−+−=,即22317222x y −++=. 解法二:由(1)得1y x =−,代入圆222:420C x y x y +−+=, 化简可得22410x x −−=,解得x =;当x =时,y =x =时,y =;设所求圆的圆心坐标为(),a b ,则2222241a b a b a b −+=++ += ,解得3212a b ==−;所以222317222r =+−−= ; 所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y −++=19. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,∴双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,∴双曲线E 的标准方程为221169x y −=. 【小问2详解】直线CD 不可能水平,故设CD 方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, 的BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−±=, 解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), ∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −=,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=. 将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−. 整理得212320t t +=−,解得8t =或4t =(舍去). ∴CD 方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.20. 已知双曲线22:154x y Γ−=的左右焦点分别为1F ,2F ,P 是直线8:9l y x =−上不同于原点O 的一个动点,斜率为1k 的直线1PF 与双曲线Γ交于A ,B 两点,斜率为2k 的直线2PF 与双曲线Γ交于C ,D 两点.(1)求1211k k +的值;(2)若直线OA ,OB ,OC ,OD 的斜率分别为OA k ,OB k ,,OC k ,OD k ,问是否存在点P ,满足0OA OB OC OD k k k k +++=,若存在,求出P 点坐标;若不存在,说明理由.【答案】(1)94−; (2)存在98(,)55P −或98(,)55P −满足题意.【解析】【分析】(1)设出(9,8)P λλ−,然后计算1211k k +即可得;(2)假设存在,设设00(9,8)P x x −,写出直线AB 方程,设1122(,),(,)A x y B x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,同理设3344(,),(,)C x y D x y ,直线CD方程代入双曲线方程,应用韦达定理,代入计算OC OD k k +,然后由条件0OA OB OC OD k k k k +++=求得0x 得定点坐标.的【小问1详解】由已知1(3,0)F −,2(3,0)F ,设(9,8)P λλ−,(0)λ≠, ∴1839k λλ=−−,2893k λλ−=−,121139939884k k λλλλ−−−+=+=−−;【小问2详解】 设00(9,8)P x x −,(00x ≠),∴010893x k x −=+,∴直线AB 的方程是008(3)93x yx x −++,设11(,)A x y ,22(,)B x y ,008(3)93x yx x −++代入双曲线方程得2220203204(69)20(93)x x x x x −++=+, 即222200000(549)480(112527045)0x x x x x x x ++−−++=, 2012200480549x x x x x +=++,20012200112527045549x x x x x x ++=−++, 00121212012012883()33(2)[2]9393OA OB x x y y x x k k x x x x x x x x ++=+=−++=−+++2000200008832(2(2)93932561x x x x x x x =−+=−−++++ 2000220000082(31)16(31)9325612561x x x x x x x x −+−+=⋅=+++++, 同理CD 的方程为008(3)93x yx x −−−,设33(,)C x y ,44(,)D x y ,仿上,直线方程代入双曲线方程整理得:222200000(549)4801125270450x x x x x x x −++−+−=,234200480549x x x x x +=−−+,20034200112527045549x x x x x x −+−=−+, ∴2303400423403400083()83480[2](2)9393112527045OC ODy x x x x x y k k x x x x x x x x −+−⋅+=+=−=−−−−+ 20000220000083216(31)(2)9325613(2561)x x x x x x x x x −−−=−=−−+−+.由0OA OB OC OD k k k k +++=得00022000016(31)16(31)025613(2561)x x x x x x x −+−−+=++−+, 整理得200(251)0x x −=,∵00x ≠,∴015x =±, ∴存在98(,)55P −或98(,)55P −满足题意.【点睛】方法点睛:是假设定点存在,题中设00(9,8)P x x −,写出直线方程,设出直线与双曲线的交点坐标如1122(,),(,)x y x y ,直线方程代入双曲线方程整理后应用韦达定理得1212,x x x x +,代入到式子OA OB k k +中,最后利用已知条件求得0x ,若求不出结果说明不存在.本题考查了学生的逻辑能力,运算求解能力,属于困难题.21. 抛物线2:2(0)C x py p =>的焦点为F ,准线为,l A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点,(1)若90,BFD ABD ∠=的面积为p 的值及圆F 的方程(2)若直线y kx b =+与抛物线C 交于P ,Q 两点,且OP OQ ⊥,准线l 与y 轴交于点S ,点S 关于直线PQ 的对称点为T ,求||FT 的取值范围.【答案】(1)2p =,圆F 的方程为()2218x y +−=(2)(],4p p 【解析】【分析】(1)由焦半径和圆的半径得到2A py FA FD +===,结合ABD △面积求出2p =,圆F 的方程为()2218x y +−=;(2)表达出0,2p S −关于直线PQ 的对称点的坐标,利用垂直关系列出方程,求出2b p =,从而利用两点间距离公式表达出(],2FT p p ==. 【小问1详解】由对称性可知:90,BFD FS BS DS p ∠=°===, 设(),A A A x y,由焦半径可得:2A py FA FD +===,112222ABD A p S BD y p=⋅⋅+=×=解得:2p =圆F 的方程为:()2218x y +−=【小问2详解】由题意得:直线PQ 的斜率一定存在,其中0,2p S−,设0,2p S−关于直线PQ 的对称点为(),T m n ,则12222p n m kp n m k b + =− − =⋅+ ,解得:221212b p m k k b p pn k + =− + +=− + ,联立y kx b =+与22x py =得:2220x pkx pb −−=,设()()1122,,,P x y Q x y ,则12122,2x x pk x x pb +==−, 则()()()2212121212y y kx b kx b k x x kb x x b =++=+++,则()()22121212121x x y y k x x kb x x b +=++++ ()222221220pb k pk b b pb b −+++=−+=,解得:0b =(此时O 与P 或Q 重合,舍去)或2b p =,所以FT =(],4p p ==, 【点睛】圆锥曲线相关的取值范围问题,一般思路为设出直线方程,与圆锥曲线联立,得到两根之和,两根之积,由题干条件列出方程,求出变量之间的关系,再表达出弦长或面积等,结合基本不等式,导函数,函数单调性等求出最值或取值范围.22. 如图,已知点P 是抛物线24C y x =:上位于第一象限的点,点()20A −,,点,M N 是y 轴上的两个动点(点M 位于x 轴上方), 满足,PM PN AM AN ⊥⊥,线段PN 分别交x 轴正半轴、抛物线C 于点,D Q ,射线MP 交x 轴正半轴于点E .(1)若四边形ANPM 为矩形,求点P 的坐标;(2)记,DOP DEQ △△的面积分别为12S S ,,求12S S ⋅的最大值.【答案】(1)(2,P(2)192 【解析】【分析】(1)根据矩形性质,可得对角线互相平分,即AP 的中点在y 轴上,然后点P 在抛物线,即可得(2,P ;(2)联立直线PQ 方程与抛物线C ,根据韦达定理求得,P Q 两点的纵坐标关系,再根据,PM PN AM AN ⊥⊥条件判断MOE △与DON △相似,进而求得,D E 两点的坐标关系,再表示并化简12S S ⋅为关于m 的函数,根据,D E 两点的位置关系,以线段DE 为直径的圆K 与抛物线C 有交点得出关于m 的约束,即可确定12S S ⋅中m 取值范围,最后可得12max ()(4192S S g ⋅=−= 【小问1详解】当四边形ANPM 为矩形时,AP 的中点在y 轴上,则有:2P A x x =−=故(2,P -【小问2详解】设点(,0)D m ,直线PQ 方程:x m ty −=, 显然有0,0m t >≠联立直线PQ 与抛物线C ,得:24x m ty y x −==消去x 得:2440y ty m −−=则有:4P Q y y m ⋅=− 由AM AN ⊥,得:2||||||4OM ON OA ⋅==又由PM PN ⊥,可得:△MOE ∽△DON 则有:||||||||OM OE OD ON = 从而||||||||4OE OD OM ON ⋅=⋅=,即4E D x x ⋅=所以4E x m=,进而有:4||E D DE x x m m =−=− 结合||,4P Q OD m y y m =⋅=−(注:由E D x x >,得4m m >,故有02m <<) 可得:12111(||||)(||||)||||||224P Q P Q S S OD y DE y OD DE y y ⋅=⋅⋅⋅⋅⋅=⋅⋅⋅ 314()444m m m m m m=⋅⋅−⋅=−+ 又由题意知,存在抛物线上的点P 满足条件,即以线段DE 为直径的圆K 与抛物线C 有交点,且易得圆K 方程:24()()0x m x y m−⋅−+=联立抛物线C 与圆K ,得224()()04x m x y my x−⋅−+= = 消去y 得:24(4)40x m x m−+−+= 由0∆≥,结合02m <<,可解得:04m <≤−令3()4g m m m =−+,求导可知()g m在上单调递增又4−≤ 故有:()g m在(0,4−上单调递增因此,12max ()(4192S S g ⋅=−=【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系;在求解相关最值问题时,通常是先建立目标函数,然后应用函数的知识来解决问题;。
高二期中考试试卷及答案
高二期中考试试卷及答案一、选择题(每题2分,共20分)1. 下列哪项不是细胞膜的主要功能?A. 物质交换B. 细胞间通讯C. 细胞分裂D. 细胞形态维持2. 光合作用中,光能转化为化学能发生在哪个阶段?A. 光反应B. 暗反应C. 光暗交替反应D. 光合作用全过程3. 根据达尔文的进化论,生物进化的驱动力是什么?A. 基因突变B. 自然选择C. 人工选择D. 环境适应性4. 以下哪个选项是碱基配对的规则?A. A-T,G-CB. A-G,T-CC. A-C,T-GD. A-G,T-A5. 以下哪种物质不是蛋白质的组成成分?A. 氨基酸B. 脂肪酸C. 核苷酸D. 糖类...(此处省略其他选择题)二、填空题(每空1分,共10分)1. 细胞周期包括____和____两个阶段。
2. 酶的催化作用具有____性、____性和____性。
3. 真核细胞和原核细胞最主要的区别是真核细胞具有____。
4. 遗传信息的传递遵循____定律。
5. 细胞分化的结果是形成____。
三、简答题(每题10分,共20分)1. 简述细胞呼吸的过程及其意义。
2. 描述孟德尔遗传定律中的分离定律和组合定律。
四、实验题(每题15分,共15分)1. 描述如何通过显微镜观察植物细胞的有丝分裂过程。
五、论述题(15分)1. 论述基因工程在现代农业中的应用及其潜在的伦理问题。
高二期中考试试卷答案一、选择题1. C2. A3. B4. A5. C...(此处省略其他选择题答案)二、填空题1. 间期,分裂期2. 高效性,专一性,可调控性3. 细胞核4. 孟德尔遗传5. 组织和器官三、简答题1. 细胞呼吸是细胞将有机物质氧化分解,释放能量的过程。
它包括糖酵解、三羧酸循环和氧化磷酸化三个阶段。
细胞呼吸的意义在于为细胞提供能量,维持生命活动。
2. 分离定律指出在有性生殖过程中,不同性状的遗传因子在形成配子时分离。
组合定律则说明不同性状的遗传因子在配子形成时可以自由组合。
湖北省部分重点中学2024_2025学年高二数学上学期期中试题含解析
湖北省部分重点中学2024-2025学年高二数学上学期期中试题(含解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 留意事项:1.答卷前,考生务必将自己的姓名、准考证号精确地写在答题卡上。
2.全部试题的答案均写在答题卡上。
对于选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
3.答第Ⅱ卷时,必需用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的1.已知点(-3,2)A ,(0,1)B -,则直线AB 的倾斜角为( ) A .030B .045C .0135D .01202.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列起先,由左至右依次读取,则选出来的第5个零件编号是( ) 0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 1410 9577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179 A .36B .16C .11D .143.ABC ∆的内角,,A B C 的对边分别为,,a b c ,且3A π=,4c =,26a =,则角C =( )A .34π B .4π C .4π或34π D .3π或23π4.已知αβ、是平面,l m 、是直线,αβ⊥且=l αβ,m α⊂,则“m β⊥”是“m l ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.若圆O 1:x 2+y 2=5与圆O 2:(x -m )2+y 2=20()m R ∈相交于A ,B 两点,且两圆在点A 处的切线相互垂直,则线段AB 的长度是( )A .2B .4C .5D .106.已知直线l :2(0,0)x ya b a b+=>>经过定点(1,1)M ,则32a b +的最小值是( ) A .3222+ B .526+C .562+ D .37.某学校随机抽查了本校20个学生,调查他们平均每天进行体育熬炼的时间(单位:min ),依据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )第7题图A .B .C .D .8.棱长为1的正方体ABCD-A 1B 1C 1D 1中,点P 在线段AD 上(点P 异于A 、D 两点),线段DD 1的中点为点Q ,若平面BPQ 截该正方体所得的截面为四边形,则线段AP 长度的取值范围为( ) A .103⎛⎤ ⎥⎝⎦,B .112⎛⎤ ⎥⎝⎦,C .1[,1)3D .102⎛⎤ ⎥⎝⎦,二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分 9.下列说法正确的是( ) A .命题“x R∀∈,21x >-”的否定是“0x ∃∈R ,201x <-”B .命题“0(3,)x ∃∈-+∞,209x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充分不必要条件D .“5a >”是命题“2,0x R x ax a ∀∈++≥”为假命题的充分不必要条件10.抛掷一枚骰子1次,记“向上的点数是4,5,6”为事务A ,“向上的点数是1,2”为事务B ,“向上的点数是1,2,3”为事务C ,“向上的点数是1,2,3,4”为事务D ,则下列关于事务A ,B ,C ,D 推断正确的是( ) A .A 与B 是互斥事务但不是对立事务 B .A 与C 是互斥事务也是对立事务 C .A 与D 是互斥事务 D .C 与D 不是对立事务也不是互斥事务 11.以下四个命题为真命题的是( )A .过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+ B .直线3y +2=0的倾斜角的范围是50,[,)66πππ⎡⎤⎢⎥⎣⎦ C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有一条公切线,则4m =D .设P 是直线20x y --=上的动点,过P 点作圆O :221x y +=的切线PA ,PB ,切点为A ,B ,则经过A ,P ,O 三点的圆必过两个定点。
重庆市2024-2025学年高二上学期期中考试数学试卷含答案
重庆市高2026届高二上期期中考试数学试题(答案在最后)2024.11注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每题5分,共40分.1.直线l 过(,),(,)()P b c b Q a c a a b ++≠两点,则直线l 的斜率为()A.a b a b+- B.a b a b-+ C.1D.1-【答案】C 【解析】【分析】利用直线上两点的坐标求斜率即可.【详解】由题意可知,斜率()()1a b a bk a c b c a b--===+-+-,故选:C.2.若平面α的法向量为()4,4,2n =--,方向向量为(),2,1x 的直线l 与平面α垂直,则实数x =()A.4B.4- C.2D.2-【答案】D 【解析】【分析】根据直线垂直于平面,则直线的方向向量平行于平面的法向量,即可求解.【详解】由直线l 与平面α垂直,故直线l 方向向量(),2,1x 与平面α的法向量()4,4,2n =--平行,设()()4,4,2,2,1x λ--=,即4422xλλλ=⎧⎪-=⎨⎪-=⎩,解得22x λ=-⎧⎨=-⎩.故选:D.3.圆心为(1,1)-且过原点的圆的一般方程是()A.22220x y x y ++-= B.22220x y x y +-+=C.22220x y x y +--= D.222210x y x y ++-+=【答案】B 【解析】【分析】先求半径,再得圆的标准方程,最后转化为圆的一般方程.【详解】由题意知,()0,0在圆上,圆心为(1,1)-,所以圆的半径r ==,所以圆的标准方程为()()22112x y -++=,则一般方程为:22220x y x y +-+=,故选:B.4.椭圆22221x y a b +=和2222(0,0,,0)x y k a b a b k a b+=>>≠>一定具有()A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长轴长【答案】A 【解析】【分析】先将方程化为标准方程,再根据离心率,焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二英语期中考试试题(总分:150分考试时间:150分钟)第一卷(三部分共115分)第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where does the conversation probably take place?A. In the office.B. In a clinic(诊所).C. At home.2.How will the man go to the station?A. By bus.B. By taxi.C. By motor.3.What does the woman suggest?A. Giving a performance.B. Listening to music.C. Dancing to music.4.What does the woman suggest the man do?A. Wait at the corner.B. Correct the mistake.C. Telephone the hotel.5.Where does the man want to go?A. Phoenix.B. New York.C. Chicago.第二节(共13小题; 每小题1.5分, 满分19.5分)听下面5段对话或独白。
每段对话或独白后有几个小题, 从题中所给的A、B、C 三个选项中选出最佳选项, 并标在试卷的相应位置。
听每段对话或独白前, 你将有时间阅读各个小题, 每小题5秒钟; 听完后, 各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料, 回答第6、7题。
6.What causes air pollution according to the man?A. Cars.B. People.C. Factories.7.How will the man go to work probably?A. By car.B. On foot.C. By bus.听第7段材料, 回答第8至10题。
8.What is the man worrying about?A. The book is gone.B. He will be fined.C. The book is stolen.9.Who put the book in the drawer?A. Jean.B. Tina.C. Bill.Where did Tina put the book yesterday?A. In the drawer.B. In the library.C. On the desk.听第8段材料, 回答第11至13题。
What are they talking about?A. Buying a car.B. Repairing a car.C. Selling a car.10.What will a 1964 Mercedes 230SL roadster be in a few years?A. More expensive.B. Cheaper.C. Not sure.11.How much can the woman offer for a car?A. $ 15, 000.B. $ 3, 500.C. $ 35, 000.听第9段材料, 回答第14至16题。
12.What’s the probable relationship between the speakers?A. Friends.B. Classmates.C. Customer and salesman.13.Where does the conversation probably take place?A. In a food shop.B. In a cake shop.C. In a bank.14.What can we know from the conversation?A. The food was not free at all.B. The woman got the things for free.C. The woman gave the man a birthday cake.听第10段材料,回答第17至20题。
15.What was wrong with the boat?A. It was turned over.B. It hit a hard thing.C. It went in the wrong direction. 16.What did one of the three persons advise to do?A. Dig a bigger hole.B. Jump into the water.C. Swim across the river.17.How did the other two think of the man’s idea?A. Bad.B. Stupid.C. Good.18.Why did the person have such an idea?A. He thought water flows downwards.B. He heard it from a friend.C. He was a clever person.第二部分:英语知识运用(共两节,满分45分)第一节:单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
19.He is going to buy the same notebook _______ I bought last week.A. asB. likeC. whenD. that20.Peter as well as the other children who _____ no parents____good care of in the village .A.have ;i s being takenB.has ;have been takenC. have ;has takenD. has ; is taken21.—I hear that Tony was seriously injured in an accident the other day.—Yes, _______ news came as ______ shock to all of us.A. the; theB. a; /C. the; aD. /; a22.We have been informed that in no case ______ the telephone for personal affairs.A. may we useB. we may useC. we have usedD. have we used23.I can’t remember how many years ago ______ I first met Roy.A. it was thatB. was it thatC. it was whenD. was it when24.Generally _____, when _____ according to the directions, the drug has no side effect.A. speaking; takingB. speaking; takenC. spoken; to takeD. spoken; to be taken25.Enough money for basic science would _____ a mass of good for the cou ntry’s health and wealth.A. result fromB. lie inC. settle downD. lead to26._____ nothing worth ____ from the house, the thief left right away.A. To find; to takeB. Finding; to be takenC. Finding; takingD. To find; being taken27.My suggestion is that we ______ the party until next month, _______ we will be on holiday.A. should delay; whichB. put off; whichC. be put off; whenD. should delay; when28.____well prepared you are , you still needa lot of luck in muontain climbing A. how ever B. Whatever C No matter D.Although 29.When I handed the report to John, he said that George was the person _____. A. to send B. for sending it C. to send it to D. for sending it to30.It was in the lab _____ was taken charge of by Professor Black _____ we did the experiment.A. that; whereB. which; thatC. whom; thatD. which; where31.—Do you like the cloth?—Yes, it ______ very soft.A. is feelingB. feltC. feelsD. is felt32.The next morning the hunter woke up, only _____ himself lying next to a lion. A. found B. finding C. was to find D. to find33.I saw John playing in the garden this morning. He _____ have been ill.A. needn’tB. shouldn’tC. couldn’tD. mustn’t第二节完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,掌握其大意,然后从36-55各题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。