原子吸收光谱法基本原理

合集下载

原子吸收光谱

原子吸收光谱
*A. Walsh, “Application of atomic absorption spectrometry to analytical chemistry”, Spectrochim. Acta, 1955, 7, 108
8
第三阶段 电热原子吸收光谱仪器的产生 1959年,苏联里沃夫发表了电热原子化技术的第一篇论 文。电热原子吸收光谱法的绝对灵敏度可达到10-12-10-14g, 使原子吸收光谱法向前发展了一步。近年来,塞曼效应和自 吸效应扣除背景技术的发展,使在很高的的背景下亦可顺利 地实现原子吸收测定。
(3) 压力变宽(Pressure effect) 又称为碰撞(Collisional broadening)变宽。它是由于碰撞使激发 态寿命变短所致。外加压力越大,浓度越大,变宽越显著。可分为
a) Lorentz 变宽:待测原子与其它原子之间的碰撞。变宽在10-3nm。
劳伦兹变宽用Δν表示,可表达为 :
单色光谱线很窄才有明显吸收! 若 103 nm 则 I / I 0 1, A 0 无法分析
23
对于分子的紫外-可见吸收光谱的测量,入射光是由单 色器色散的光束中用狭缝截取一段波长宽度为0.xnm至1.xnm 的光,这样宽度的光对于宽度为几十nm甚至上百nm的分子带 状光谱来说,是近乎单色了,它们对吸收的测量几乎没有影 响,当然入射光的单色性更差时,就会引起吸收定律的偏离。 而对于原子吸收光谱是宽度很窄的线状光谱来说,如果 还是采用类似分子吸收的方法测量,入射光的波长宽度将比 吸收光的宽度大得许多,原子吸收的光能量只作入射光总能 量的极小部分。这样测量误差所引起的对分析结果影响就很 大。这种关系如下图所示。
33
若吸收线轮廓单纯取决于多普勒变宽,则:

原子吸收光谱法基本原理

原子吸收光谱法基本原理

原子吸收光谱法基本原理【任务分析】通过日常生活中的实例,使学生自然地将样品、光、分析联系在一起,理解产生原子吸收光谱的原理。

【任务实施】1、原子吸收分光光度计的基本原理(1)共振线和吸收线任何元素的原子都由原子核和围绕原子核运动的电子组成。

这些电子按其能量的高低分层分布,而具有不同能级,因此一个原子可具有多种能级状态。

在正常状态下,原子处于最低能态(这个能态最稳定)称为基态。

处于基态的原子称基态原子。

基态原子受到外界能量(如热能、光能等)激发时,其外层电子吸收了一定能量而跃迁到不同能态,因此原子可能有不同的激发态。

当电子吸收一定能量从基态跃迁到能量最低的激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。

当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。

由于不同元素的原子结构不同,其共振线也因此各有其特征。

由于原子的能态从基态到最低激发态的跃迁最容易发生,因此对大多数元素来说,共振线也是元素的最灵敏线。

原子吸收光谱分析法就是利用处于基态的待测原子蒸气对从光源发射的共振发射线的吸收来进行分析的,因此元素的共振线又称分析线。

(2)谱线轮廓与谱线变宽①谱线轮廓从理论上讲,原子吸收光谱应该是线状光谱。

但实际上任何原子发射或吸收的谱线都不是绝对单色的几何线,而是具有一定宽度的谱线。

若在各种频率ν下,测定吸收系数νK, K为纵坐标,ν为横坐标,可得如图5-9所示曲线,称为吸收曲线。

曲线极大值对应的以ν频率ν称为中心频率。

中心频率所对应的吸收系数称为峰值吸收系数。

在峰值吸收系数一半(νK/2)处,吸收曲线呈现的宽度称为吸收曲线半宽度,以频率差ν∆表示。

吸收曲线的∆的数量级约为10-3~10-2 nm(折合成波长)。

吸收曲线的形状就是谱线轮廓。

半宽度ν②谱线变宽原子吸收谱线变宽原因较为复杂,一般由两方面的因素决定。

一方面是由原子本身的性质决定了谱线自然宽度;另一方面是由于外界因素的影响引起的谱线变宽。

原子吸收光谱,红外光谱之间异同点

原子吸收光谱,红外光谱之间异同点

原子吸收光谱和红外光谱是化学分析领域中常见的分析方法,它们在原子和分子结构的解析和鉴定中具有重要作用。

虽然二者都是用于分析样品成分和结构的光谱技术,但它们在原理和应用上有着明显的异同点。

一、原子吸收光谱1.原子吸收光谱的基本原理原子吸收光谱是利用原子对特定波长的光进行吸收而产生的,通过分析光的衰减程度来测定样品中不同元素的含量。

当原子吸收特定波长的光后,电子从基态跃迁至激发态,从而产生吸收峰。

这一原理被广泛应用于分析金属元素和其他原子的定量测定。

2.原子吸收光谱与光谱仪的关系原子吸收光谱仪是用于测定原子吸收光谱的分析仪器,它包括光源、样品室、光路等部分。

通过光源发出特定波长的光线,样品中的原子吸收部分光线,剩余的光线经光路到达检测器,从而实现对样品中不同元素含量的测定。

3.原子吸收光谱的应用原子吸收光谱在环境监测、食品安全和医药等领域都有着广泛的应用。

利用原子吸收光谱可以对水体中的重金属离子进行快速测定,保障水质安全;在医药领域,原子吸收光谱可以用于药品成分的分析和检测。

二、红外光谱1.红外光谱的基本原理红外光谱是利用物质吸收、透射和反射红外光的特性来分析物质结构的一种技术。

物质中的分子在吸收红外光后会发生振动和转动,产生特征的红外光谱图谱。

通过分析这些谱图可以确定物质的结构和成分。

2.红外光谱仪的组成及原理红外光谱仪包括光源、样品室、光路和检测器等组成部分。

当红外光穿过样品时,被吸收的波长和强度会发生改变,检测器可以通过测量这些改变来分析样品的成分和结构。

3.红外光谱的应用红外光谱在化学、材料和生物领域都有着广泛的应用。

红外光谱可以用于药品成分的鉴定和质量控制;在材料领域,红外光谱可以帮助分析材料的组成和结构。

对比原子吸收光谱和红外光谱,可以发现它们在分析原子和分子结构上有着明显的异同点。

原子吸收光谱主要用于分析元素的含量和测定,对于金属元素和其他原子有着较广泛的应用;而红外光谱主要用于分析化合物的结构和成分,可以辅助分析有机化合物和聚合物的结构。

原子吸收光谱法(AAS)

原子吸收光谱法(AAS)

局限性:测不同的元素需不同的元 素灯,不能同时测多元素,难熔元 素、非金属元素测定困难。
原子吸收光谱法基本原理
1.原子的能级与跃迁
基态第一激发态,吸收一定频率的辐射能量。 产生共振吸收线(简称共振线) 吸收光谱 激发态基态,发射出一定频率的辐射。 产生共振吸收线(也简称共振线) 发射光谱
原子吸收光谱法基本原理
A kc
原子吸收分光度计
原子吸收分光度计
原子吸收分光度计
光源
原子化器
单色器
检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
光 源
提供待测元素的特征光谱。获得较高的 灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
2.元素的特征谱线
(1)各种元素的原子结构和外层电子排布不同 基态第一激发态:
跃迁吸收能量不同——具有特征性。
(2)各种元素的基态第一激发态
最易发生,吸收最强,最灵敏线。特征谱线。
(3)利用原子蒸气对特征谱线的吸收可以进行定量分析
原子吸收光谱法基本原理
从光源发射出具有待测元素特征 谱线的光,通过试样蒸气时,被蒸气 中待测元素的基态原子所吸收,吸收 的程度与被测元素的含量成正比。故 可根据测得的吸光度,求得试样中被 测元素的含量。
将待测试样在专门的氢化物生成器中产生氢
化物,送入原子化器中检测。
单色器
•作用:将待测元素的吸收线与邻近线分开
•组件:色散元件 ( 棱镜、光栅 ) ,凹凸镜、 狭缝等
检测系统
•作用: 将待测元素光信号转换为电信号, 经放大数据处理显示结果。 •组件: 检测器、放大器、对数变换器、显 示记录装置。

第四章 原子吸收光谱法

第四章  原子吸收光谱法

小背景低,适合于许多元素的测定。
贫燃火焰(氧化性):温度较低,有较强的氧化性,有利 于测定易解离,易电离元素,如碱金属和不易氧化的元素 如Ag、Au、Pd等
(5)关于原子化过程:复杂的物理、化学过程 例如:某元素的原子化过程:
主反应:MX(l)-脱溶-MX(s)-气化-MX(g)-原
子化-M0(g)+X0(g)
e 2
mc
f k,则
Kn dn k N 即积分吸收与原子密度成正比。
只要把原子吸收峰面积求出,就可以定量,求出待测元
素的浓度。 但是:由于原子吸收线的轮廓很窄,一般在0.00x nm数 量级,需要分辨率极高的分光仪器,很困难的。
结论: (1)如果用连续光源激发,由于入射光被吸收的程度极
(2)放电机理 在两电极间施加电压后,电子从阴极发射,与内充气 体碰撞使其发生电离,电离出带正电荷的气体离子在 电场作用下加速,获得足够的能量,向阴极表面轰击, 轰击阴极表面时, 可将被测元素原子从晶格中轰击出 来, 即谓溅射, 溅射出的原子大量聚集在空心阴极内,
与其它粒子碰撞而被激发, 发射出相应元素的特征谱
率要与吸收线中心频率一致;(2)必须是锐线
如何解决这个问题? 很简单,只要用待测元素的材料做成光源,让此材料的元素
产生发射线就可以了。
空心阴极灯
(1)构造
阳极: 钨棒装有钛, 锆, 钽金属作成的阳极,钛, 锆,
钽等可以吸收杂质气体,如氢气,二氧化碳等 阴极: 钨棒作成圆筒形,筒内熔入被测元素(纯金属, 合金或化合物) 管内充气:惰性气体(氩或氖),低压(几百帕)
第四章 原子吸收光谱法
Atomic absorption spectrometry
第一节

原子吸收光谱仪的原理、构成、操作及应用领域详解

原子吸收光谱仪的原理、构成、操作及应用领域详解

原子吸收光谱仪的原理、构成、操作及应用领域详解一、原子吸收光谱仪原理原子吸收光谱仪的原理是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。

1、原子吸收光谱的产生任何元素的原子都是由原子核和核外电子组成。

原子核是原子的中心体,核正电,电子荷负电,总的负电荷与原子核的正电荷数相等。

电子沿核外的圆形或椭圆形轨道围绕着原子核运动,同时又有自旋运动。

电子的运动状态由波函数0描述。

求解描述电子运动状态的薛定愕方程,可以得到表征原子内电子运动状态的量子数n、L、m,分别称为主量子数、角量子数和磁量子数。

原子核外的电子按其能量的高低分层分布而形成不同的能级,因此一个原子核可以具有多种能级状态。

能量最低的能级状态称为基态能级(Eo),其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。

一般情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。

如果将一定外界能量如光能提供给该基态原子,当外界光能量恰好等于该基态原子中基态和某一较高能级之间的能级差△E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态而产生原子吸收光谱。

2、原子吸收光谱仪基本原理仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。

3、原子吸收光谱仪方法原理原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。

当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原原子吸收光谱仪子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。

基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。

原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。

已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。

检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。

原子吸收光谱法基本原理

原子吸收光谱法基本原理

原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。

测定对象:金属元素及少数非金属元素。

二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。

原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。

分光法:分子或离子的吸收为带状吸收。

原子法:基态原子为线状吸收。

三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。

共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。

分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。

(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。

原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。

νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。

发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。

原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。

中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。

吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。

原子吸收光谱的基本原理

原子吸收光谱的基本原理

原子吸收光谱的基本原理
原子吸收光谱是由单个原子吸收紫外光进行谱线分析计量测定所采用的一种光谱技术。

它的基本原理是原子吸收既定量的紫外光,在激发几何条件下,利用光谱仪测量紫外光,可判断物质中元素的含量。

吸收光谱分析定量的原理是物质会吸收一定波长的外界光,吸收程度与物质中原子含量成比例,将原子含量与原子峰位置或峰高度联系起来,从而实现定量分析。

原子的激发原理是基于电子前进理论的结果。

电子前进理论认为,电磁波通过空气或其它物质时,在特定波长处会激发原子的电子,使其从低能级的原子态升至高能级的离子态,且所用的电磁波的波长和原子每次跃迁所需的能量相一致,于是就出现了原子吸收谱线,即原子吸收光谱。

由原子激发衍生出来的原子吸收光谱可以用来定量和定性分析.在样品中,原子被激发为高能状态,之后电子崩溃跃迁以较低的能级,而这些外部紫外光可在具体波长处激发这些原子,当激发发生时,原子将失去其能级并吸收一定的能量。

因此,根据激发进步理论和原子结构理论,原子将排列一系列的激发电子态,每一级的激发态和原子中的电子能级有关,只有特定的电磁波可以激发电子,消耗的能量作为原子的半宽或原子的谱线能量。

原子吸收光谱分析也受到单色外界激发而引发的同源谱线干扰的影响。

在实际应用中,应尽量减少激发强度,提高谱线能量信号和测定精度,从而避免此类可能的干扰现象。

总之,原子吸收光谱是一种基于电子前进理论的光谱技术,可以通过原子吸收的紫外光进行谱线的分析计量测定,从而实现物质中元素定量的测定。

原子吸收光谱法的原理

原子吸收光谱法的原理

原子吸收光谱法原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。

中文名原子吸收光谱法外文名Atomic Absorption Spectroscopy光线范围紫外光和可见光出现时间上世纪50年代简称AAS测定方法标准曲线法、标准加入法别名原子吸收分光光度法基本原理原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。

由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。

当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。

特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC式中K为常数;C为试样浓度;K包含了所有的常数。

此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。

由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。

由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。

AAS现已成为无机元素定量分析应用最广泛的一种分析方法。

该法主要适用样品中微量及痕量组分分析。

原子吸收光谱法谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。

原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。

中心波长由原子能级决定。

原子吸收光谱法的基本原理

原子吸收光谱法的基本原理

原子吸收光谱法的基本原理
原子吸收光谱法是一种常用的分析技术,其基本原理是利用原子或分子在特定能级间的电子跃迁现象来进行分析。

该法通过测量样品溶液或气体对特定波长的光的吸收情况,从而确定样品中所含元素的种类和浓度。

原子吸收光谱法的基本步骤包括:
1. 光源选择和光束整形:选择恰当的光源,常用的有希望灯和氢/氘灯。

同时,需要通过光束整形系统将光束调节为单色、平行和集中的形式。

2. 样品制备:根据分析目的,在适当的条件下,将待测溶液或气体样品制备成符合测量要求的状态。

例如,对溶液样品进行稀释、过滤或加热等处理。

3. 选择合适的吸收线:根据待测元素的特性,选择合适的吸收波长。

一般情况下,选择元素的共振线可以提高分析的灵敏度和选择性。

4. 光路调节:通过调节光路,使得入射光能够通过样品,并与样品中的原子或分子发生相互作用。

5. 光强测量:使用光电二极管、光电倍增管或光谱仪等光学探测器,测量出透射光强或吸收光强。

6. 基准校正:将测量得到的光强数据与基准样品进行比较,进
行校正。

7. 数据分析:根据样品中吸收光强的变化情况,推导出样品中待测元素的浓度,常用的数据分析方法有比对法、标准曲线法和内标法等。

原子吸收光谱法广泛应用于环境、农业、化学、医药等领域。

其优点包括简单、灵敏且不受干扰,但也存在测量范围窄、矩阵效应和仪器复杂等缺点。

因此,在实际应用中需要根据具体情况选择合适的分析方法和仪器。

《仪器分析》第十二章_原子吸收光谱法

《仪器分析》第十二章_原子吸收光谱法

当采用锐线光源时,测量是在原子吸收线附近一定频 率范围内进行,即
I 0 I d
0

I I 0e
K l
I e
0

K l
d
锐线光源的很小,可以近似用峰值吸收系数K0 来表 示原子对辐射的吸收,因此有吸光度A为:
I0 A lg lg I


质的强谱线。
空心阴极灯光的强度与灯的工作电流有很大关系。增
大灯电流,可以增加发射强度。但是,灯电流过大,会导 致一些不良现象,如阴极溅射增强,产生密度较大的电子 云,灯本身发生自蚀现象;加快内充气体的“消耗”而缩 短寿命;阴极温度过高,使阴极物质熔化;放电不正常,
灯光强度不稳定灯。灯电流太小,灯光强低,稳定性和信
(2)峰值吸收 1955年Walsh提出,在温度不太高的稳定火焰情况下,
峰值吸收系数与被测元素的原子浓度也成正比。通常情况下,
吸收轮廓决定于多普勒变宽,吸收系数为
2 ( 0 ) ln 2 D 2
K K 0e
K0 2 D
D 是多普勒 半宽度
K d mc N
于分析化学的原因。
e 2
0
f
m 是电子质量,f是振子强度,即能被入射 辐射激发的每个原子的平均电子数,正比 于原子对特定波长光的吸收概率。
若能测定积分吸收,则可以求出原子浓度。但是,测定谱 线宽度仅仅10-3nm的积分吸收,需要分辨率很高的色散仪器,
难以做到,这也是100多年前发现原子吸收现象却一直未能用
空心阴极灯工作原理:
当正、负两电极间施加适当的直流电压(300V—500V)
时,便开始放电,阴极发射的电子在电场作用下,高速射

原子吸收光谱分析基本原理

原子吸收光谱分析基本原理

原子吸收光谱分析基本原理原子吸收光谱分析(Atomic Absorption Spectroscopy,AAS)是一种常用于定量分析的分析方法。

其基本原理是利用原子或离子对特定波长的光进行选择性吸收,从而得到样品中特定元素的浓度信息。

以下是AAS 基本原理的详细解释。

1.原子吸收谱线:当样品中的原子或离子处于基态时,它们会吸收特定波长的光,产生具有特征波长和强度的吸收峰。

这些吸收峰是由原子或离子的电子从基态跃迁至激发态,然后再跃迁至基态时所产生的。

每种元素具有不同的、特定的吸收谱线,因此可以通过测量特定波长的光的强度来确定样品中特定元素的浓度。

2.选择性吸收:AAS是一种选择性吸收分析方法,它只测量特定波长光的吸收情况。

这是通过使用特定波长的光源和窄缝光栅来实现的。

光源产生特定波长的光束,经过光栅的分离和选择,只允许特定波长的光通过,最终到达检测器。

这样就确保只有与特定元素吸收谱线相对应的光被测量。

3.原子化和气体吸收池:在AAS中,样品首先必须被转化为气相的原子或离子。

这是通过将样品以高温原子化炉或火焰中的火花器实现的。

在原子化过程中,样品中的化合物、离子或者分子被转化为气体态的原子或离子。

然后,这些气体原子或离子会进入一个气体吸收池中,该池设有特定波长的光源。

4.吸收测量和浓度计算:进入气体吸收池的原子或离子会吸收特定波长的光。

吸收的光强度与样品中特定元素的浓度成正比,这是AAS用于定量分析的基础。

检测器记录吸收的光强度,通常使用光电倍增管或光电二极管。

校准曲线或标准加入法可以用于根据测得的吸收强度反推样品中特定元素的浓度。

总结起来,原子吸收光谱分析基于原子或离子对特定波长的光的选择性吸收,通过测量吸收光的强度来计算样品中特定元素的浓度。

该分析方法需要对样品进行原子化和选择性吸收实验装置中的气体吸收池中完成。

物化地分析中的原子吸收光谱分析

物化地分析中的原子吸收光谱分析

物化地分析中的原子吸收光谱分析原子吸收光谱分析是物化地分析领域中常用的一种分析方法。

它利用原子在特定波长的光线照射下吸收光的特性,对样品中的化学元素进行定量检测和分析。

本文将从原子吸收光谱分析的基本原理、仪器设备和应用领域等方面进行论述。

一、原理与机制原子吸收光谱分析的基本原理是利用原子吸收特定波长的光线时的量子能级跃迁现象。

当样品中的化学元素被激发后,在特定波长的光线照射下,原子内部的电子会发生跃迁到高能级的激发态。

然后,激发态的原子会再次退回到基态,释放出特定波长的光信号。

通过测量吸收光强度的变化,可以推断出样品中化学元素的含量。

二、仪器设备原子吸收光谱分析需要使用专门的仪器设备来进行测量和分析。

常用的原子吸收光谱仪主要由光源、样品室、光路系统、检测系统和数据处理系统等部分组成。

光源通常采用中空阴极灯,能够发射特定波长的光线。

样品室用于容纳待测样品并与光源进行光路的连接。

光路系统包括光栅、滤光片等光学元件,用于选择特定波长的光线。

检测系统用于测量光线的强度变化,常见的检测方式有吸收法和发射法。

数据处理系统用于记录和分析测量结果,通常采用计算机进行数据处理。

三、应用领域原子吸收光谱分析在物化地分析中具有广泛的应用领域。

首先,在环境分析方面,原子吸收光谱分析可以用于监测和分析水体、大气和土壤中的污染物。

例如,通过测定水样中重金属的含量,可以评估水质的安全性。

其次,在食品安全领域,原子吸收光谱分析可以用于检测食品中有害金属元素的含量,如铅、镉等。

此外,在生物医药研究和制药工业中,原子吸收光谱分析也广泛应用于药物成分和微量元素的定量分析。

总结起来,物化地分析中的原子吸收光谱分析是一种基于原子能级跃迁的分析方法,通过测量样品中特定波长光线的吸收情况,来确定样品中化学元素的含量。

该方法具有广泛的应用领域,包括环境分析、食品安全和生物医药等领域。

随着科学技术的不断进步,原子吸收光谱分析仪器设备和分析方法也在不断更新,为物化地分析提供了更为准确和高效的工具。

7.1 原子吸收光谱法基本原理

7.1 原子吸收光谱法基本原理

数mJ,也即:统计权重为:g = 2 J + 1 3P 轨道: J = 1/2、3/2
gi
=

3 2
+1+

1 2
+1=
6
3S轨道:J=1/2

江 师 范

g0
=

1 2
+1 =
2

学 仪 器 分
− 3 .37 ×10 − 12
∴ N = 6 × e i
1 , 38 ×10 − 16 × 2500
江 中专院校都配备有不同型号的原子吸收
师 范
分光光度计。你只要经过短时间的培训、
大 学
熟悉,即可进行操作、分析。

器 分 析
局限性:
1、不能进行多元素分析
原吸法测定一个元素得换一个空心阴极灯 作为锐线光源,虽然,目前已研制成新的光源— —多元素灯,但多元素灯的稳定性、光源强度 受到一定的限制,应用不是很广。

2、不能作结构分析


和原子发射一样它只能作组份分析,不能

作结构分析。


那么,到底原子吸收分光光度法基于哪些

理论?即:它理论基础的是什么?



三、原子吸收分光光度法的基本原理
¾ 原子吸收分光光度法是基于从光源辐射出具
有待测元素特征波长的光通过试样原子蒸气时,
被蒸气中被测元素的基态原子所吸收,我们利
¾ 所以,在这种情况下Ni的数目可忽略,即:具

有吸光作用的基态原子可看成是原子总数,那
范 大
么,测得的N0即可代表待测元素的浓度。

原子吸收光谱法的原理

原子吸收光谱法的原理

原子吸收光谱法的原理原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是一种广泛应用于许多领域的分析技术。

原子吸收光谱法依靠吸收特定波长的光来测量样品中金属组分的浓度,通过比较样品和标准溶液的测定结果,可以确定样品中金属元素的含量。

AAS基本原理:AAS的基本原理是,将样品在高温下蒸发并电离,然后通过特定波长的光束照射样品中的金属离子,测量样品吸收光的强度。

光通过样品时,被金属离子吸收的量与金属离子浓度成正比,因此可以通过测量样品中的吸收光强度来测量金属离子的浓度。

AAS基本原理详解:1. 热原子化AAS首先将样品转化为气态原子或简单离子,在做AAS时,可以使用火焰或电弧来将样品气化,从而实现离子化分析。

火焰原子化是一种常用的技术,它通过将样品遇热蒸发,在去离子化过程中,将其转化为原子。

2. 原子能级在原子化过程中,样品中的分子会分解产生原子,这些原子具有不同的能级。

AAS的分析核心就是通过光谱来检测这些原子的不同能级。

3. 火焰中的原子吸收AAS中样品的原子化过程会通过燃气火焰来实现,火焰中的原子能够吸收特定波长的光。

当光进入火焰时,会与火焰中的金属原子发生相互作用,原子能吸收特定的光谱波长,从而实现光谱检测。

4. 原子吸收测量信号检测当特定波长的光被吸收后,检测器会接收到检测信号。

检测器的种类和检测方法有多种,主要包括光电二极管(photodiode),光电倍增管(photomultiplier),以及电荷耦合器件(charge-coupled device)等。

在AAS实验中,还需要通过分光装置来进行光谱分析,从而实现精确的测量结果。

此外,还需要一个标准样品进行对比分析以确定样品中金属元素的含量。

总之,原子吸收光谱法是一种基于原子分析的分析技术,通过确定样品中特定金属元素吸收特定波长的光谱,来测定样品中的金属元素的含量。

它在环境、食品、医药、生化和冶金等领域都得到了广泛应用。

原子吸收光谱基本原理

原子吸收光谱基本原理

原子吸收光谱基本原理
原子吸收光谱是一种用于研究原子结构和元素组成的分析方法。

其基本原理是利用原子在特定波长的光辐射下吸收能量,并将其转化为原子内部的激发态,进而观察和测量吸收光的强度变化。

以下是原子吸收光谱的基本原理:
1. 激发态和基态:原子具有不同能级的状态,其中最低能级称为基态,而高于基态的能级称为激发态。

当给原子提供足够能量时,电子会从基态跃迁到激发态。

2. 能级跃迁:原子的能级之间存在一定的能量差,而这些能级之间的跃迁需要特定的能量。

当原子吸收特定波长的光时,光子的能量与能级之间的能量差相匹配,电子便会从低能级跃迁到高能级。

3. 波长选择性:每个元素都有其特定的电子结构和能级布局,因此它们对不同波长的光吸收具有选择性。

这些特定的吸收波长称为吸收线或谱线,可以用来识别和定量分析元素。

4. 实验测量:在实验中,通常将待测样品中的原子蒸发成烟雾或气体,并通过传输窗口引入光束。

然后,使用单色仪或光谱仪将白光分散成不同波长的光,其中包括待测元素谱线的特定波长。

当这些光通过样品时,被吸收的光会产生吸收谱线,其强度与待测元素的浓度成正比。

5. 谱线分析:测量吸收谱线的强度可以用来定量分析样品中待测元素的含量。

通过比较待测样品与已知浓度标准溶液的吸收
强度,可以绘制标准曲线或校准曲线,从而确定待测样品中元素的浓度。

总之,原子吸收光谱利用原子吸收光子能量的特性,通过测量吸收谱线的强度变化来分析样品中元素的含量。

这项技术被广泛应用于环境监测、食品安全、矿产资源勘探等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若将不同频率的光(强度为I0v)通过原子蒸气,有一部分光将被吸收,其透过光的强度 (即原子吸收共振线后光的强度)与原子蒸气的宽度(即火焰的宽度)有关,若原子蒸气中原 子密度一定,则透过光(或吸收光)的强度与原子蒸气宽度呈正比关系,称为朗伯 (Lambert)定律,即:
式中,Iv为透过光的强度,L为原子蒸气的厚度,Kv为原子蒸气对频率为v的光的吸收系 数。
vD2v cD
2lM n 2RT 7.16 12 0 7v0
Hale Waihona Puke T M式中R为气体常数;c为光速;M为吸光质点的相对原子质量;T为热力学温度(K);v0 为谱线的中心吸收频率。
二、谱线轮廓与谱线变宽
2.外界压力的影响——压力变宽 外界压力增加,会使气态原子密度增大,导致吸光原子与蒸气中原子或分子等不同粒 子相互碰撞机会增多,而引起的能级稍微变化。使发射或吸收光量子频率改变而导致的 谱线变宽。 (1)劳伦兹 (Lorentz) 变宽 系指待测原子和其它粒子(如待测元素的原子与火焰气体 粒子)碰撞而产生的变宽,以ΔvL表示。这种由外界压力的变化造成的谱线变宽的现象, 叫做Lorentz效应,由此引起的变宽叫Lorentz变宽,记为“ΔvD”。 (2)共振变宽(赫尔兹马克(Ho1tsmark) 变宽) 系指同种原子碰撞而产生的变宽。共 振变宽只有在被测元素浓度较高时才有影响。在通常的条件下,压力变宽起重要作用的 主要是劳伦兹变宽,亦即欲测元素的原子与各种不同粒子间的碰撞所引起的变宽。
三、原子吸收吸光度与待测元素浓度的关系
理论与实践证明,样品蒸气中基态原子对待测元素共振发射线的吸收程度与原子浓度 的关系在一定条件下,也服从朗伯-比尔定律,即:
AlgI0 I
0.43K4L
三、原子吸收吸光度与待测元素浓度的关系
在实际分析工作中要求测定的是试样中待测元素的含量(或浓度)C,而C是与原子 蒸气中吸收辐射的原子的总数目N(即基态原子数N0)成正比的。因此,在一定的浓度 范围内,一定的条件下,溶液中的待测元素浓度与原子蒸气中该元素的基态原子数目有 恒定的比例关系。
二、谱线轮廓与谱线变宽
1.外界温度的影响——热变宽(多普勒 (DoppLer) 变宽 记为“ΔvD”) 从物理学角度讲,一个运动着的原子发出的光,如果运动方向背向观测者,则在观测 者看来,其频率较静止原子所发的光的频率为低(即λ增加,被称为“红移”);反之, 如原子面向观测者,则在观测者来看,其频率较静止原子发出的光的频率为高(即λ缩 短,被称为“紫移”),这种现象就称为“多普勒效应”。其结果相对中心吸收频率既 有“红移”又有“紫移”,因而在原来基础上变宽了。这种变宽是由于温度引起的,故 又称为“热变宽”。 谱线的多普勒变宽ΔvD可由下式决定:
电子从基态跃迁到能量最低的第一激发态时要吸收一定频率的光,产生共振吸收线; 当它再通过辐射跃迁返回到基态时,则发射出同样频率的光,产生共振发射线。共振发 射线和共振吸收线统称为共振线。
二、谱线轮廓与谱线变宽
原子发射线和原子吸收线均为原子光谱——线光谱。但原子发射线是明线,故可以借 助摄谱仪将其记录在相板上;而原子吸收线是暗线,只能根据能量守恒定律的关系对吸 收前后的谱线强度进行测量和记录。
项目3 用原子吸收光谱法检测物质中微量元素
任务5 原子吸收光谱法基本原理
一、原子吸收光谱的产生
在一般情况下,原子处于能量最低状态(最稳定态),称为”基态”。当原子吸收外 界能量被激发时,其最外层电子可能跃迁到最高的不同能级上,原子的这种运动状态称 为激发态。 原子在两个能级之间的跃迁伴随着能量的发射和吸收。
在一定条件下,一定含量(或浓度)范围内,试样中待测元素的原子对光的吸收程度 A与该元素在试样中的含量(或浓度)之间服从朗伯-比尔定律(也称“吸收定律”)。
实训3-6 根据元素种类选择合适特征谱线
实训3-6 根据元素种类选择合适特征谱线
相关文档
最新文档