非参数计量经济学模型概述课件
8非线性和非参数模型
一、非线性单方程计量经济学模型概述
⒈ 解释变量非线性问题
• 现实经济现象中变量之间往往呈现非线性关系 需求量与价格之间的关系 成本与产量的关系 税收与税率的关系 基尼系数与经济发展水平的关系 • 通过变量置换就可以化为线性模型
⒉ 可以化为线性的包含参数非线性的问题
• 函数变换
Q AK L
• 级数展开
收入年均增长19.1%,产值年均增长 6.5%,该参数估计结果基本合理。 CPI 为什么如 此之高?
t-Statistic -10.15087 17.79178 4.250978 -1.902862 Prob. 0.0000 0.0000 0.0008 0.0778 5.997589 0.913254 -1.933171 -1.735311 672.0798 0.000000
i 1
n ) df ( x , dS i 2 ( yi f ( xi , )( )0 d d i 1
n
取极小值的 一阶条件
) df ( x , i )( ( y f ( x , )0 i i d i 1
n
如何求解非 线性方程?
ln Q ln A ln K ln L ln
Q A(1 K
2Байду номын сангаасL
)
1
ln Q ln A ln(1 K
1
2 L ) ln
1 K 2 ln Q ln A 1 ln K 2 ln L 12 (ln( )) ln 2 L
) ) z ( )( )) 2 S ( ( y f ( x , i i ( 0) i ( 0) ( 0)
非参数估计(完整)PPT演示课件
P p xdx p xV R
Pˆ k N
pˆ x k / N
V
对p(x) 在小区域内的平均值的估计
9
概率密度估计
当样本数量N固定时,体积V的大小对估计的 效果影响很大。
过大则平滑过多,不够精确; 过小则可能导致在此区域内无样本点,k=0。
此方法的有效性取决于样本数量的多少,以 及区域体积选择的合适。
11
概率密度估计
理论结果:
设有一系列包含x 的区域R1,R2,…,Rn,…,对 R1采用1个样本进行估计,对R2用2 个,…, Rn 包含kn个样本。Vn为Rn的体积。
pn
x
kn / N Vn
为p(x)的第n次估计
12
概率密度估计
如果要求 pn x 能够收敛到p(x),那么必须满足:
分布,而不必假设密度函数的形式已知。
2
主要内容
概率密度估计 Parzen窗估计 k-NN估计 最近邻分类器(NN) k-近邻分类器(k-NN)
3
概率密度估计
概率密度估计问题:
给定i.i.d.样本集: X x1, x2 , , xl
估计概率分布: p x
4
概率密度估计
10.0
h1 0.25
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 2 0 2
h1 1 2 0 2
h1 4 2 0 2 27
由图看出, PN(x)随N, h1的变化情况 ①当N=1时, PN(x)是一个以第一个样本为中心的正
非参数统计讲义二单样本模型通用课件
02
单样本模型介绍
单样本模型定义
单样本模型是指仅使 用一个样本数据来构 建统计模型的统计方 法。
单样本模型常用于分 析单个样本数据的分 布、参数估计和假设 检验等。
它与双样本模型相对 ,后者需要两个独立 样本数据进行比较。
单样本模型的特点
简单易用
灵活性
单样本模型仅需一个样本数据,无需 复杂的配对或分组操作,计算过程相 对简单。
秩和检验的应用步骤
将数据排序,计算秩次,根据秩次计算统计量,与临界值进行比较。
秩和检验的优点
不受数据分布形式的限制,能够处理异常值和离群点。
案例三:直方图在单样本模型中的应用
直方图
直方图是一种非参数统计方法, 用于展示数据的分布情况。在单 样本模型中,直方图可以用于分
析一组数据的分布特征。
直方图的应用步骤
成本,对于大规模数据集可能存在计算效率问题。
02
对数据量和样本代表性要求较高
非参数统计方法需要足够的数据量和样本代表性,才能保证分析结果的
稳定性和可靠性。
03
对数据质量要求较高
非参数统计方法对数据的质量和完整性要求较高,如果数据存在缺失、
异常或偏差等问题,可能会影响分析结果的准确性和可靠性。
04
非参数统计在单样 本模型中的具体应 用
核密度估计在单样本模型中的应用
核密度估计是一种非参数统计方法,用 于估计未知概率密度函数。在单样本模 型中,核密度估计可以用来检验数据是 否符合特定的概率分布,或者比较两组
数据的分布是否相似。
核密度估计的基本思想是利用核函数和 权重函数对概率密度函数进行加权平均 ,从而得到未知概率密度函数的估计。 常用的核函数包括高斯核、多项式核等
非参数统计分析课件
SPSS广泛应用于社会科学、医学、经济学等领域,具有很高的实 用价值。
SAS软件
01
强大的数据处理能 力
SAS具有强大的数据处理和数据 管理功能,能够进行复杂的数据 清洗、转换和整合。
02
03
灵活的编程语言
企业级应用
SAS使用强大的SAS语言进行编 程,可以进行定制化的数据处理 和分析。
定义与特点
定义
非参数统计分析是一种统计方法,它不依赖于任何关于数据 分布的假设,而是基于数据本身的特点进行统计分析。
特点
非参数统计分析具有很大的灵活性,可以处理各种类型的数 据,并且对数据的分布特征没有严格的要求。它通常用于探 索数据的基本特征,如数据的集中趋势、离散程度和形状等 。
与参数统计学的区别
总结词
发现商品之间的关联关系、提高销售量
详细描述
通过关联性分析方法,如Apriori算法、FPGrowth算法等,发现商品之间的关联关系 ,生成推荐列表,提高销售量,提升客户满 意度。
案例三:聚类分析在客户细分中的应用
总结词
将客户划分为不同的群体、制定个性化营销 策略
详细描述
利用聚类分析方法,如K-means聚类、层 次聚类等,将客户划分为不同的群体,针对 不同群体制定个性化营销策略,提高营销效
数据稀疏性
高维数据可能导致数据稀疏,影响统计分析的准确性 。
计算复杂性
高维数据的计算复杂性增加,需要采用高效的算法和 计算技术。
大数据处理技术在非参数统计分析中的应用前景
分布式计算
利用分布式计算技术,可以处理大规模数据集,提高非参数统计 分析的效率。
数据挖掘技术
数据挖掘技术可以用于发现数据中的模式和关系,为非参数统计 分析提供支持。
非参数统计学讲义(第二章)讲稿
非参数统计学讲义第二章 单样本模型 §1 符号检验和有关的置信区间在有了一个样本n X X ,,1 之后,很自然地想要知道它所代表的总体的“中心”在哪里.例如,在对人们的收入进行了抽样之后,就自然要涉及“人均收入”和“中间收入”等概念.这就与统计中的对总体的均值(mean),中位数(median)和众数(mode)等位置参数的推断有关。
例如,在知道总体是正态分布时,要检验其均值是否为μ;一个传统的基于正态理论的典型方法是t 检验.它的检验统计量定义为ns X t /μ-=这里X 为样本均值,而211)(X X n S -∑-=为样本标准差。
t —检验的统计量在零假设下有n —1个自由度的t —分布。
检验统计量是用样本标准差s 代替了有标准正态分布的检验统计量的总体标准差后而产生的在大样本时,二者几乎相等。
t —检验也许是世界上用得最广泛的检验之一。
但是,t —检验并不稳健,在不知总体分布时,特别是小样本时,应用t —检验就可能有风险。
这时就要考虑使用非参数方法。
对于本章所要介绍的数据趋势或随机性检验,就不存在简单的参数方法.非参数方法总是简单实用的。
本章所介绍的一些检验有代表性,因此这里的讨论将比其它章节更为仔细.一旦熟悉了非参数方法的一些基本思路,后面的内容就很容易理解了.一、问题的提出【例2-1】联合国人员在世界上66个大城市生活花费指数(以纽约市1962年12为100)按自小至大的次序排列如下(这里北京的指数为99):表2-1 生活花费指数数据66 75 78 80 81 81 82 83 83 83 83 84 85 85 86 86 86 86 87 87 88 88 88 88 88 89 89 89 89 90 90 91 91 91 91 92 93 93 96 96 96 97 99 100 101 102 103 103 104 104 104 105 106 109 109 110110110111113115116117118155192在例子中,人们可能会问:①总体的平均(或者中间)水平1是多少?②北京是在该水平之上还是之下?可以假定这个样本是从世界许多大城市中随机抽样而得的所有大城市的指数组成总体.可能出现的问题是:这个总体的平均(或者中间)水平是多少?北京是在该水平之上还是之下?这里的平均(或中间)水平是一个位置参数。
非参数统计讲义通用课件
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,
非参数统计概述课件
对于小样本数据,非参数统计 方法可能无法提供稳定和可靠
的结果。
04
非参数统计与其他统计方 法的比较
与参数统计的比较
非参数统计
不依赖于特定的概率分布模型,灵活 性更强,能适应多种数据类型和分布 。
参数统计
基于特定的概率分布模型,需要对模 型假设进行验证,适用范围相对有限 。
与贝叶斯统计的比较
02
大数据为非参数统计提供了丰富 的数据资源和计算能力,有助于 发现更多隐藏在数据中的信息和 规律,推动非参数统计的发展。
非参数统计与其他学科的交叉研究
非参数统计与计算机科学、数学、物 理学、生物学等学科的交叉研究有助 于拓展非参数统计的应用领域和理论 框架。
不同学科的交叉融合可以促进非参数 统计的创新和发展,推动其在各个领 域的实际应用。
在秩次相关性检验中,变量值被转换为秩次,然后使用秩 次计算相关系数(如Spearman或Kendall秩次相关系数 )。这种方法适用于非正态分布的数据,且不受数据异常 值的影响。
分布拟合检验
分布拟合检验是一种非参数统计方法,用于检验数据是否符合特定的概率分布。
分布拟合检验通过比较数据的实际分布与理论分布的统计量(如Kolmogorov-Smirnov、 Anderson-Darling等),来评估数据是否符合特定的概率分布。这种方法在统计学中广泛应用于模 型的假设检验和数据的探索分析。
特点
灵活性、稳健性、无分布假设、 适用于多样本数据等。
与参数统计的区别
01
02而参数统计 则依赖于特定的分布假设 。
方法
非参数统计通常采用中位 数、四分位数等统计量, 而参数统计则采用平均数 、方差等统计量。
应用范围
非参数统计分析PPT课件
思考的要点 什么是计数统计量; 什么是秩统计量,为什么要讨论秩; 为什么要讨论秩的分布、秩的期望和方差; 什么是符号秩和线性符号秩; 线性符号秩的期望和方差。
第7页/共61页
第一节 关于非参数统计
在参数统计学中,最基本的概念是总体、样本、随机 变量、概率分布、估计和假设检验等。其很大一部分内容是 建立在正态分布相关的理论基础之上的。总体的分布形式或 分布族往往是给定的或者是假定了的,所不知道的仅仅是一 些参数的值。于是,人们的任务就是对一些参数,比如均值 和方差(或标准差),进行点估计或区间估计,或者是对某 些参数值进行各种检验,比如检验正态分布的均值是否相等 或 等 于 零 等 等 . 最 常 见 的 检 验 为 对 正 态 总 体 的 t— 检 验 、 F—检验和最大似然比检验等。又比如,线性回归分析中, 需要估计回归系数j, j称为参数,所以线性回归分析应 该属于参数统计的范畴。
其一是样本容量不大; 其二是总体服从何种分布未知。下面我们来构造一 种检验的方法,看他们的资产负债有无显著性差异。
第11页/共61页
将两类企业的资产负债混合排序,并给出其序次, 这在统计中称为“秩”。在这张表中我们有两个可用的 信息。
负债率 55 59 61 64 64 65 70 73 75 76 77
第9页/共61页
在不知总体分布的情况下如何利用数据所包 含的信息呢?一组数据最基本的信息就是次序。如 果可以把数据按大小次序排队,每一个具体数目 都有它在整个数据中(从最小的数起)的位置或次 序,称为该数据的秩(rank)。数据有多少个观察值, 就有多少个秩。在一定的假定下,这些秩和秩的 统计量的分布是求得出来的,而且和原来的总体 分布无关。这样就可以进行所需要的统计推断。 注意:非参数统计的名字中的“非参数 (nonparametric)”意味着其方法不涉及描述总体 分布的有关数值参数(均值和方差等);它被称 为和分布无关(distribution—free),是因为其 推断方法和总体分布无关;不应理解为与所有分 布(例如有关秩的分布)无关。
非参数统计法PPT课件
36.2
-12.8 -8
9
44.1
45.2
-1.1
-2
10
399.8 404.1 -4.3
-4
11
25.9
39.3
-13.4 -9.5
12
535.6 544.8 -9.2
-5
T- =5.8 T+-=8
•为什么要用 非参数检验?
SPSS
6
S tati sti c s
d
N
Valid
Missing
Sk ewness
参数统计——检验效率较高,但使用条件较严格. 非参数统计——由于对资料无特殊要求,因此适用
范围广,资料收集和分析比较简便。但统计效率 较低(β较大)。 选择: 首先考虑参数检验,当条件不符,才选择非参数 统计方法。
.
3
(四) 非参数统计适用情况
(1)偏态分布资料; (2)总体分布不明资料; (3)数据一端或两端有未确定值; (4)等级资料; (5)方差不齐资料。
.
8
结果判断:
(1)查表法:当n<25时,查T界值表(符号秩和检验 用),得:
T0.05,11= 10~56,( T0.01, 11 = 5~61) 若T+或T-:落在范围内,则P>0.05;
落在范围外, 则P<0.05;
等于界值, 则P=0.05。
.
9
(2)正态近似法: 若 n>25时, 可近似认为T分布逼近正态分布。
温州医学院环境与公共卫生学院温州医学院环境与公共卫生学院一非参数统计一非参数统计不依赖于总体分布形式不须考虑被研究对象为何不依赖于总体分布形式不须考虑被研究对象为何种分布及分布是否已知不是参数间的比较而是种分布及分布是否已知不是参数间的比较而是用于分布之间的比较
6.1非参数计量经济学模型
• 经典线性回归模型的估计结果如下:
Yˆ 122 .06 0.065978 X 0.052493 FC
( 21.446)
( 2.2246)
(13.373)
R2=0.84582, F=178.29,拟合的均方误差为11.035。
实际值
拟合值
250 200 150 100
50 0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
• 利用特殊的技术,例如广义刀技术,可以得到用 于边界点估计的边界核。
⒎例题1—模拟例题
• 解列释{ui变}独量立序同列分{x布i}独。立让均xi (匀i=同1,分2,…布3,00随)是机在误[差0,项1]上序 均匀取值相互独立的变量, ui~N(0,0.25) (i=1,2,…300)独立,模型为:
Yi m( X i ) i
• 半参数模型
i 1,, n
Yi
f
(
X
i1 ,
)
m(
X
2 i
)
i
i 1,, n
△既然非参数模型不能将经济活动中变量之间的结 构关系明确地加以描述,那么它是否属于经济数 学模型?
• 非参数模型并不事先假定经济活动中变量之间的 结构关系,而是通过估计获得这种结构关系,而 且具有明确的数学描述。
• 所以它毫无疑问属于经济数学模型,应该将它纳 入计量经济学模型的范围。
△既然非参数模型不能将经济活动中变量之间的结 构关系明确地加以描述,那么它能否用于经济预 测?它的应用价值是什么?
• 它的应用价值在于有更好的拟合效果,可以说是 所有类型经济数学模型中拟合效果最好的。
• 由此而引出的对已经发生的经济活动的推断具有 更高的精度,所得到的反映经济变量之间关系的 结构参数,例如乘数、弹性等,更加反映经济活 动的实际。
非参数计量经济学模型概述ppt课件
第6章 非参数计量经济学模型
6.1非参数计量经济学模型概述 6.2非参数模型局部逼近估计方法 6.3非参数模型全局逼近估计方法简介 6.4半参数计量经济学模型
§6.1非参数计量经济学模型概述
一、非参数计量经济学模型的发展 二、非参数计量经济学模型的主要类型
一、非参数计量经济学模型的发展
1、概念
– 如果一部分变量之间的关系是明确的,而另一部分变 量之间的关系是不明确的,称之为半参数模型 (Semiparametric Model)。
– 一般所说的“非参数计量经济学”,既包括非参数单 方程模型,也包括非参数联立方程模型;既包括完全 非参数模型,也包括半参数模型。
• 非参数模型(无参数模型)
• 参数模型和非参数模型
– 经典的线性或非线性计量经济模型,首先根据对研究 对象行为的分析,建立包含变量、参数和描述它们之 间关系的理论模型,然后利用变量的样本观测值,采 用适当的方法,估计参数,故称为参数模型。
– 在现实中,经济变量之间的关系并不是在所有样本点上 都是不变的,或者说不能事先确定某种线性关系或非 线性关系,而是要通过估计才能得到某种关系,而且随 着样本点的不同而不同。这就引出了非参数模型 (Nonparametric Econometric models) 。
模型假定一部分解释变量与被解释变量的关系为线性关 系,这部分解释变量为参数部分的解释变量;其它解释 变量与被解释变量的关系未知,这部分解释变量为非参 数部分的解释变量;
《计量经济学》ppt课件
04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型
非参数统计分析教学课件
Python
介绍
Python是一种通用编程语 言,因其易读性和易用性 而被广泛用于数据分析和 科学计算。
特点
Python拥有强大的科学计 算库,如NumPy、 Pandas和SciPy等,可进 行数据清洗、统分析等 多种任务。
教程资源
Python的在线教程和书籍 资源丰富,同时还有大量 的科学计算社区和论坛可 供交流。
数据流处理
数据流处理技术可以实时处理大规模数据,为非参数统计分析提供 新的可能性。
云计算
云计算平台可以提供弹性可扩展的计算资源,方便非参数统计分析 的进行。
THANKS
感谢观看
洗和校验。
高维数据的非参数统计分析挑战
维度诅咒
高维数据可能导致传统的非参数统计分析方法失 效,需要开发新的方法。
数据稀疏性
高维数据可能导致数据稀疏,使得统计分析结果 不稳定。
特征选择
高维数据需要进行特征选择,以减少噪声和冗余 ,提高分析效率。
大数据处理技术在非参数统计分析中的应用前景
并行计算
利用并行计算技术可以提高非参数统计分析的效率和准确性。
应用场景与优势
应用场景
适用于数据类型复杂、分布不明确或 数据量较小的情况;例如,生物医学 研究、金融数据分析、社会学调查等 领域。
优势
能够更好地揭示数据的内在结构和关 系;对数据的假设较少,避免过度拟 合和误判;同时具有较高的灵活性和 普适性,能够适用于多种场景。
02
CATALOGUE
非参数统计方法
聚类分析
01
聚类分析是一种非参数统计方法 ,用于将相似的对象归为同一类 ,将不相似的对象归为不同类。
02
聚类分析通过计算对象之间的距 离或相似性来将它们分组,常见 的聚类分析方法有层次聚类、K均 值聚类和DBSCAN聚类等。
统计学之非参数检验讲义PPT课件( 92页)
单边检验的p-值等于0.074/2=0.037X(渐
近N 检验)和0.069/2=0.0345(精确检50
验Nor)mal 。Param如ete果rs 按a,b 照MS显teda.nD著eviat性ion 水平为0.01.510.70的604271标
准Mo,st Ex可trem以e 拒绝产A生bsolu数te 据的总体为正.1态82 分
费时间,后两种要粗糙一些,但 要快些。
秩(rank)
• 非参数检验中秩是最常使用的概 念。什么是一个数据的秩呢?一 般来说,秩就是该数据按照升幂 排列之后,每个观测值的位置。 例如我们有下面数据
Xi 15 9 18 3 17 8 5 13 7 19 Ri 7 5 9 1 8 4 2 6 3 10
这下面一行(记为Ri)就是上面一 行数据Xi的秩。
99.05 100.25 102.56 99.15 104.89 101.86 96.37 96.79 99.37 96.90 93.94 92.97 108.28 96.86 93.94 98.27 98.36 100.81 92.99 103.72 90.66 98.24 97.87 99.21 101.79
秩(rank)
•利用秩的大小进行推断就避免 了不知道背景分布的困难。这 也是非参数检验的优点。
•多数非参数检验明显地或隐含 地利用了秩的性质;但也有一 些非参数方法没有涉及秩的性 质。
16.2 单样本检验
16.2.1单样本中位数(a-分位数)符号检验
• 我们知道某点为中位数(a-分位数)意 味着一个数小于该点的概率应该为
Category gsweight G roup1 <=100
G roup2 >100 Total
非参数统计讲义二-单样本模型通用课件(1).ppt
k
P{Xk} Cnk(0.5)n i0
例:两种品牌桔汁,让12个人品尝未加标签的 样本,在品尝后说出在两个品牌中偏好那一个 品牌。研究目的是确定两种品牌中消费者是否 偏好某一个。
假设 H0:P=1/2, H1:P≠1/2 若无法拒绝H0,则没有证据表明两种品牌桔汁 的偏好有明显差异。 若拒绝H0,则认为消费者对两种品牌存在差异。
其中有一人不变,n=12,其11个下降,服药 前减服药后得11个“+”,1个上升得“-”,
1
P { X 1 } C 1 i2 (0 .5 )1 2 0 .5 1 2 1 2 0 .5 1 2 0 .0 1 i 0
拒绝H0,认为有助于降低胆红素
5
NO X1 X2
1
4
3.1
4
2
3.2
3
3
3.8
-1
-1 说明顾客偏好存在 -1 差异,B比A好 -1 (要除去相等(相 -1 同)的样本。)
1
1
-1
-1
-1
概率
加号个数
BINOMDIST (B3,12,0.5,0)
0
0.000244
1
0.00293
2
0.016113
3
0.053711
4
0.12085
5
0.193359
6
0.225586
7
0.193359
符号检验法 符号秩检验 随机游程检验 卡方拟合检验
主要内容
单样本推断问题
中心位置推断
分布检验
符号检验
符号秩检验
符 游 Cox 号 程 -Staut 检 检 趋势 验 验 检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1非参数计量经济学模型概述 6.2非参数模型局部逼近估计方法 6.3非参数模型全局逼近估计方法简介 6.4半参数计量经济学模型
§6.1非参数计量经济学模型概述
一、非参数计量经济学模型的发展 二、非参数计量经济学模型的主要类型
一、非参数计量经济学模型的发展
1、概念
• 非参数模型并不事先假定经济活动中变量之间的结构关 系,而是通过估计获得这种结构关系,而且具有明确的 数学描述。
• 所以它毫无疑问属于经济数学模型,应该将它纳入计量 经济学模型的范围。
• 既然非参数模型不能将经济活动中变量之间的结 构关系明确地加以描述,那么它能否用于经济预 测?它的应用价值是什么?
• 它的应用价值在于有更好的拟合效果,可以说是所有类 型经济数学模型中拟合效果最好的。
• 由此而引出的对已经发生的经济活动的推断具有更高的 精度,所得到的反映经济变量之间关系的结构参数,例 如乘数、弹性等,更加反映经济活动的实际。
• 从这些结构参数出发进行的预测可以得到更加可靠的结 果。
2、模型估计方法
• 参数模型和非参数模型
• 经典的线性或非线性计量经济模型,首先根据对研究对 象行为的分析,建立包含变量、参数和描述它们之间关 系的理论模型,然后利用变量的样本ห้องสมุดไป่ตู้测值,采用适当 的方法,估计参数,故称为参数模型。
• 在现实中,经济变量之间的关系并不是在所有样本点上 都是不变的,或者说不能事先确定某种线性关系或非线 性关系,而是要通过估计才能得到某种关系,而且随着 样本点的不同而不同。这就引出了非参数模型 (Nonparametric Econometric models) 。
Y i m (X i)i,i 1 ,2 ,L ,n
模型假定回归函数的形式未知,需要估计出整个回归 函数。 通常在应用时,由于受维数咒诅的限制,解释变量个 数只使用1或2个,也可以根据数据量的大小适当增加 到3或4个,更多的解释变量将带来模型估计的困难。
• 半参数模型
Y i β Z i g ( X i) i,i 1 ,2 ,L ,n
• 基本类型及其它
• 非参数计量经济学模型的基本类型是针对随机抽样的连续 被解释变量的截面数据而言的。
• 如果被解释变量观测值是离散的,则发展了离散被解释变 量非参数模型。
• 如果被解释变量观测值是受到限制的,则发展了受限被解 释变量非参数模型。
• 如果面对时间序列数据,则发展了时间序列非参数模型。 • 如果面对Panel Data,则发展了Panel Data非参数模型。 • 如果面对的研究对象是一个经济系统,系统中变量互相影
• 如果一部分变量之间的关系是明确的,而另一部分变量 之间的关系是不明确的,称之为半参数模型 (Semiparametric Model)。
• 一般所说的“非参数计量经济学”,既包括非参数单方程 模型,也包括非参数联立方程模型;既包括完全非参数 模型,也包括半参数模型。
• 非参数模型(无参数模型)
模型假定一部分解释变量与被解释变量的关系为线性关 系,这部分解释变量为参数部分的解释变量;其它解释 变量与被解释变量的关系未知,这部分解释变量为非参 数部分的解释变量;
回归函数为参数部分的线性关系加非参数部分的未知函 数关系。
通常在应用时,非参数部分的解释变量个数只使用1或2 个,而参数部分的解释变量个数不受限制。
响,并且无法先验设定变量之间的函数关系,则需要建立 非参数联立方程模型。
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
• 非参数计量经济学模型的发展就是模型估计理论与方法 的发展。
• 非参数计量经济学模型局部逼近(权函数)估计发展于 1980年前后。
• 非参数计量经济学模型整体逼近(级数)估计主要发展 于1980年后,目前仍在发展之中。
• 既然非参数模型不能将经济活动中变量之间的结 构关系明确地加以描述,那么它是否属于经济数 学模型?
• 局部逼近估计方法
• 权函数方法
• 核权估计 • 局部线性估计 • K—近邻估计
• 整体逼近估计方法
• 级数估计(最小二乘估计)
• 正交序列估计 • 多项式样条估计
二、非参数计量经济学模型的主要类型
• 非参数模型、无参数模型、半参数模型
• 如果所有变量之间的关系都是不明确的,称之为完全非 参数模型,简称非参数模型或者无参数模型 (Nonparametric model);
• 非参数计量经济学模型适用于什么样的研究对象?
• 非参数计量经济学模型主要适用于人们对于待估参数分 布了解较少、变量的数量较少,并且拥有大量的观察数 据集合的计量经济学问题。
• 非参数计量经济学模型理论的核心是什么?
• 由于非参数模型不存在模型设定问题,所以非参数计量 经济学模型理论的核心是估计方法;