新北师大版八年级下数学第一章三角形的证明.

合集下载

最新北师大版八年级数学下册《直角三角形》精品教学课件

最新北师大版八年级数学下册《直角三角形》精品教学课件

∴∠ABP=∠ACP=90°
∵PB=PC,AP=AP
∴Rt△ABP≌Rt△ACP(HL)
∴∠APB=∠APC
PB=PC,
在△PBD和△PCD中,
∠DPB=∠DPC, DP=DP,
∴△PBD≌△PCD(SAS)
∴∠BDP=∠CDP
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获?
实践探究,交流新知
猜想: 斜边和一条直角边分别相等的两个直角三角形全等.
1.分析命题: 条件:两个直角三角形的斜边和一条直角边分别相等; 结论:这两个直角三角形全等.
2.数学语言: 已知:如图,在△ABC和△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AB=A′B′; 求证:△ABC≌△A′B′C′.
开放训练,体现应用
例2 如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E
,CF⊥AD于点F.求证:AF=BE.
证明:∵∠BAC=90°
∴∠BAE+∠FAC=90°
∵BE⊥AD,CF⊥AD
∴∠BEA=∠AFC=90°
∴∠BAE+∠EBA=90°
∴∠EBA=∠FAC.
∴∠BFD=∠CED=90°
DF=DE,
在△BDF和△CDE中 ∠BFD=∠CED,
BF=CE,
∴△BDF≌△CDE(SAS)
∴∠B=∠C
开放训练,体现应用
变式训练2 如图,在四边形ABCD中,∠ABC=∠ADC=90°,
BE⊥AC于点E,DF⊥AC于点F,CF=AE,BC=DA.
求证:Rt△ABE≌Rt△CDF.
开放训练,体现应用
例1 如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方 向的长度DF相等,两个滑梯的倾斜角∠ABCБайду номын сангаас∠EFD的大小有什么关系?

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、三角形的证明1. 已知:点D 是△ABC 的边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且BF=CE .求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BDCD∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋?江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,AN=AB+AC=18.∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【思路点拨】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD=22213,∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3.在Rt△ABC中,AC=22AB BC=3,∴S△ABC=12×AC×BC=332.【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt△OCM与Rt△ODN中,依据ASA得出OC=OD;在Rt△OCP与Rt△ODP中,因为OP=OP,OC=OD得出Rt△OC P≌Rt△ODP(HL),所以∠C OP=∠DOP,即OP平分∠AOB.②可作出两个直角三角形,利用HL定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt△OCM和Rt△ODN中,COM DONOCM ODNOM ON∴△OCM≌△ODN(AAS),∴OC=OD,在△OCP与△ODP中,∵,OC OD OPOP∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt △OCE 与Rt △OD E 中,∵OC OD OEOE,∴Rt △OCE ≌Rt △ODE (HL ),∴∠EOC=∠EOD ,∴OE 为∠AOB 的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2015秋?麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,;∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2016秋?兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。

北师大版初二数学下册重点知识梳理汇总,期末高分必备!

北师大版初二数学下册重点知识梳理汇总,期末高分必备!

北师大版初二数学下册重点知识梳理汇总,期末高分必备!GUIDE导读初二数学下册知识点(※表示重点部分)第一章 三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容 几何语言 条件与结论等腰三角形的性质定理 等腰三角形的两底角相等。

简述为:等边对等角在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论 等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一在△ABC ,AB=AC ,AD⊥BC,则AD 是BC 边上的中线,且AD 平分∠BAC 条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 ※等腰三角形中的相等线段:1.等腰三角形两底角的平分线相等2.等腰三角形两腰上的高相等3.两腰上的中线相等4.底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理 等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。

它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容 几何语言 条件与结论等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC解读 【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展 判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念 证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明 (2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章 一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc,(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;即:a>b <===> a-b>0a=b <===> a-b=0a<b <===> a-b<0三. 不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

1231性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角平分线。

性质:角平分线上的点到这个角的两边的距离相等。

三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。

(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

第二章一元一次不等式和一元一次不等式组1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,cb c a >.性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,cb c a < 说明: 比较大小:作差法9第三章 图形的平移与旋转一、图形的平移1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

八年级数学下册第一章三角形的证明1.2教材习题课件新版北师大版

八年级数学下册第一章三角形的证明1.2教材习题课件新版北师大版

又∵AB=AD,∴AE=AF.
A
在△AEC和△AFC中,
E
F
∵AE=AF,∠EAC=∠FAC,AC=AC, B
D
∴△AEC≌△AFC(SAS),
∴EC =FC.
∴这两根彩线的长度相等.
C
(2) 如果AE=1 AB,AF= 1 AD,那么彩线的长度相等吗?
如果AE=
1
3
AB,AF=
1
3
AD呢?由此你能得到什么结论?
(1) 分别在AB,AD的中点E,F处拉两根彩线EC,FC,
证明:这两根彩线的长度相等; (1)证明:如图,连接AC. 在△ABC和△ADC中,
A E B
F D
∵AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC.
C
∵E,F分别为AB,AD的中点,
∴AB=2AE,AD=2AF.
∵∠BDC=∠ABD+∠A,
A
∴∠A=∠BDC-∠ABD=2x°-x°=x°.
∵∠A+∠ABC+∠C=180°,
D
∴x+2x+2x=180.解得x=36 ∴∠A=36°.
B
C
2. 已知:如图,在△ABC中,AB=AC,D为BC的中点,
点E,F分别在AB和AC上,并且AE=AF.
求证:DE=DF.
A
八(下)数学教材习题
习题 1.2
1. 如图,在△ABC中,AB=AC,BD平分∠ABC,交AC
于点D. 若BD=BC,则∠A等于多少度?
解:设∠ABD=x°,
A
∵BD平分∠ABC,
∴∠ABC=2∠ABD=2x°. ∵AB=AC, ∴∠C=∠ABC=2x°.

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结

新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。

一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。

定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。

基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。

北师大版8年级下数学课本目录(最新版)

北师大版8年级下数学课本目录(最新版)
北师大数学八年级下(最新版)
第一章三角形的证明
1.等腰三角形
2.直角三角形
3.线段的垂直平分线
4.角平分线
第二章一元一次不等式与一元一次不等式组
1.不等关系
2.不等式的基本性质
3.不等式的解集
4.一元一次不等式
5.一元一次不等式与一次函数
6.一元一次不等式组
第三章图形的平移与旋转
1.图形的平移
2.图形的旋转
⊙平面图形的镶嵌
3.中心对称
4.简单的图案设计
第四章因式分解
1.因式分解
2.提公因式法
3.公式法
第五章分式与分式方程
1.认识分式
2.分式的乘除1.平行四边形的性质
2.平行四边形的判定
3.三角形的中位线
4.多边形的内角和与外角和
总复习
综合与实践
⊙生活中的“一次模型”
综合与实践

北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)

北师大版八年级数学下册《直角三角形》三角形的证明PPT(第1课时)

获取新知
知识点二:直角三角形的边的关系
B
勾股定理 直角三角形两条直角边的平方
和等于斜边的平方.
A
C
关于勾股定理的证明,可以欣赏“16页的读一读”, 并可以上网搜索,诸如美国第二十任总统的证法、赵 爽弦图法等
勾股定理反过来,怎么叙述呢?
如果一个三角形两边的平方和等于第三边的平方,那 么这个三角形是直角三角形.
一项指标.现测得AB=4 cm,BC=3 cm,AD=13 cm,CD=12 cm, ∠ABC=90°,根据这些条件,能否得出∠ACD等于90°?请说明理由.
解:能.理由:在Rt△ABC中,
∵AB=4 cm,BC=3 cm,∠ABC=90°,
∴AC=
=5(cm).
在△ACD中,∵AD=13 cm,CD=12 cm,AC=5 cm,
你来给出完整的 证明过程吧,试 一试
例题讲解 例1 如图,在△ABC中,∠C=70°,∠B=30°,AD⊥BC 于点D,AE为∠BAC的平分线,求∠DAE的度数. 解:由题意可知, ∠BAC=180°-∠B-∠C=80°. ∵AE为∠BAC的平分线, ∴∠CAE=∠BAE= ∠BAC=40°. ∵AD⊥BC,∴∠ADC=90°. ∴∠CAD=90°-∠C=90°-70°=20°. ∴∠DAE=∠CAE-∠CAD=40°-20°=20°.
原命题都存在逆命题 ,
但是互逆命题的真假 无法保证
如果一个定理的逆命题也是定理,那么这两个定理叫 做互逆定理,其中的一个定理叫做另一个定理的逆定理.
注意1:逆命题、互逆命题不一定是真命题, 但逆定理、互逆定理,一定是真命题.
注意2:不是所有的定理都有逆定理.
定理
“两直线平行,内错角相等”

北师大版八年级数学下册第一章《直角三角形》精品课件

北师大版八年级数学下册第一章《直角三角形》精品课件

w斜边及一个锐角对应相等的两个直角三角形全等;真
w两直角边对应相等的两个直角三角形全等; 真
w一条直角边和另一条直角边上的中线对应相等的
两个直角三角形全等. 真
A
E
C
D
BG
H
F
2、如图,两根长度为12m的绳子,一端系 在旗杆上,另一端分别固定在地面的两个木 桩上,两个木桩离旗杆底部的距离相等吗? 说明理由。 解:相等。
用HL可证Rt△ACD≌Rt△AED; 证明Rt△ACD≌Rt△AED
(3)不能

你们得到的三角形全等吗?你能得到什么样的结论呢?
斜边和一条直角边对应相等的两个直角三角形全等 简述为:“斜边、直角边”或“HL”
你能证明它吗?
合作探究
w已知:如图,在△ABC和△A′B′C′中, ∠C=∠C′=900
BC=B′C ′, AB=A′B′
w求证:△ABC≌△A′B′C′.
B
B′
C
A C′
测试评价 l1、已知:如图,D是△ABC的BC边的中点,
DE⊥AC,DF⊥AB,垂足分别是E.F,且DE=DF, 求证:△ABC是等腰三角形
l证明:∵ D是△ABC的BC边的中点
l∴BD=CD
l∵ DE⊥AC,DF⊥AB
l∴∠1=∠2=90° l∵BD=CD,DE=DF
1
2
l∴Rt△BDF≌Rt△CDE (HL)
A′
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,
AB=A′B′B′
C
A C′
A′
证明: ∵在Rt△ABC中,AC2=AB2-BC2(勾股定理). 又∵在Rt△ A' B' C'中,A' C' 2=A'B'2-B'C'2 (勾股定理) ∵ AB=A'B',BC=B'C',∴AC=A'C'. ∴Rt△ABC≌Rt△A'B'C' (SSS).

最新北师大版八年级数学下册第一章三角形的证明回顾与思考PPT课件

最新北师大版八年级数学下册第一章三角形的证明回顾与思考PPT课件
八年级数学·下
新课标 [北师]
第一章 三角形的证明
考点解析
典型例题
考点解析
三角形的证明是中考的必考点,考查方式以填
空题、选择题和中档解答题为主.主要考查等腰三 角形、直角三角形中角度、边长的计算或证明角、 线段相等或推导角之间的关系及线段之间的关系, 利用线段的垂直平分线、角的平分线的性质作图也 是常见的题型.本章考点可概括为:三个概念,六 个性质,四个判定,四个技巧,一个应用.
∵∠DAC=10°,∴∠BAD=60°.
∵∠D=∠B,∠FMD=∠AMB, ∴∠DFB=∠BAD=60°.
性质2
等腰三角形的性质
7.在△ABC中,AB=AC,D为直线BC上一点,E 为直线AC上一点,AD=AE,设∠BAD=α, ∠CDE=β.
(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α= 20° ,β=________. 10° ________ ②求α,β之间的关系式. (2)是否存在不同于以上②中的α,β之间的关系式? 若存在,求出这个关系式(求出一个即可);若不 存在,请说明理由.
考点
概念1
1
三个概念
反证法
1.用反证法证明命题“在直角三角形中,至少 有一个锐角不大于45°”时,应先假设( D ) A.有一个锐角小于45°
B.每一个锐角都小于45°
C.有一个锐角大于45° D.每一个锐角都大于45°
2.求证:在一个三角形中,如果两个角不相等,
那么它们所对的边也不相等.
证明:假设两个不相等的角所对的边相等,则根 据等腰三角形的性质定理“等边对等角”, 知它们所对的角也相等,这与题设两个角
解:(1)由于③的题设是a+b>0,而⑤的结论是 ab>0,故⑤不是由③交换命题的题设和结 论得到的,所以③和⑤不是互逆命题. (2)③的逆命题是如果a>0,b>0,那么a+b>0.

北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件

北师大版数学 八年级下册 第一章第3课时 等腰三角形的判定与反证法 优秀课件

由题得AB=15×2=30(海里)
N B 72° 36° C
∵ ∠A= ∠C
∴ BC=AB=30 (海里)
36°
A
2、如图, △ABC中, ∠A=36°,AB=AC, BD平分 ∠ABC, DE∥BC, EF平分∠AED,问在这个图形中,有 那几个等腰三角形?请分别写出来.
A
△ABC、 △BCD 、△EBD、 △EDF 、△FAE 、△ADE、 △ABD
的形式.而已知中的角平分线和平 行线告诉我们图形中有等腰三角形
M
D
出现,因此,找到问题的突破口. B
N C
4、已知五个正数的和等于1,用反证法证明:这五个数 中至少有一个大于或等于1/5.
证明: 设这五个正数为a1、a2、a3、a4、a5 假设这五个数中没有一个大于或等于1/5,即都小于1/5, 那么这五个数的和a1+a2+a3+a4+a5就小于1. 这与已知这五个数的和a1+a2+a3+a4+a5=1相矛盾. 因此, 假设不成立,即这五个数中至少有一个大于或等于 1/5成立.
36°
F
E 36°72°D
73263°°6°
B
72°
C
想一想
小明说, 在一个三角形中,如果两个角不相等, 那么这两个角所对的边也不相等.
即在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
A
B
C
你认为这个结论成立吗? 如果成立, 你能证明它吗?
小明是这样想的:
如图, 在△ABC中, 已知∠B≠∠C, 此时, AB与AC要
B
C
在△ABD和 △ACD中
D
∵∠B=∠C. ∠ADB=∠ADC.AD=AD

北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)

北师大版 八年级数学下册1.2直角三角形 直角三角形全等的判定(HL)-讲练课件-(共28张PPT)
到△AOB≌△COD,理由是( A )
A.HL
B.SAS
C.ASA
D.SSS
2.如图,在△ABC中,∠C=90°,AD=AC,DE⊥AB于点D.若
∠B=28°,则∠AEC=( B )
A.28°
B.59°
C.60°
D.62°
3.如图,在△ABC中,∠BAC=90°,ED⊥BC于点D,AB=
BD,若AC=8,DE=3,则EC的长为 5 .
B.AB=AB
C.∠ABC=∠ABD
D.∠BAC=∠BAD
3.如图,在△ABC中,∠C=90°,ED⊥AB于点D,BD=BC,若
AC=6 cm,则AE+DE等于( C )
A.4 cm
B.5 cm
C.6 cm
D.7 cm
4.如图,AC⊥AB,AC⊥CD,要使得△ABC≌△CDA.
( 1 )若以“SAS”为依据,需添加的一个条件为 AB=CD ;
6.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ
=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当
AP= 5或10 时,△ABC和△PQA全等.
7.【教材P35复习题T13变式】如图,AC⊥BC,AD⊥BD,垂足分别
为点C,D,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F.求证:
= ,
∴Rt△ABC≌Rt△BAD(HL).
∴∠ABC=∠BAD.
3.如图,△ABC和△DEF为直角三角形,∠ABC=∠DEF=90°,边
BC,EF在同一条直线上,斜边AC,DF交于点G,且BF=CE,AC=DF.
求证:GF=GC.
证明:∵BF=CE,∴BF+FC=CE+FC.∴BC=EF.

新北师大八年级数学下册全册ppt课件

新北师大八年级数学下册全册ppt课件
∴ △BDC≌△CEB(ASA).
E
D
B 12 C
∴ BD=CE(全等三角形的对应边相等).首发 打造中学高效课堂首选课件
例2 证明: 等腰三角形两腰上的中线相等. A
已知:如图,在△ABC中,AB=AC,BM,CN 是△ABC两腰上的中线.
NM
求证: BM=CN.
证明:∵AB=AC(已知),∴∠ABC=∠ACB. B
结论:在等腰三角形中,注意对角的分类讨论.
① 顶角+2×底角=180° ② 顶角=180°-2×底角 ③ 底角=(180°-顶角)÷2
④0°<顶角<180° ⑤0°<底角<90°首发 打造中学高效课堂首选课件
课堂小结
定理 两角分别相等且其中一组等角的对边相等的两 个三角形全等(AAS).
全等三角形的对应边相等,对应角相等.首发 打造中学高效课堂首选课件
问题3 在八上的“平行线的证明”这一章中,我们学 了哪8条基本事实?
1.两点确定一条直线; 2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线
垂直; 4.同位角相等,两直线平行; 5.过直线外一点有且只有一条直线与这条直线平行; 6.两边及其夹角分别相等的两个三角形全等; 7.两角及其夹边分别相等的两个三角形全等; 8.三边分别相等的两个三角形全等.首发 打造中学高效课堂首选课件
A
A
B
D GE
B C
DF E
C
图①
图②
证明:(1)如图①,过A作AG⊥BC于G.
∵AB=AC,AD=AE,
∴BG=CG,DG=EG,
∴BG-DG=CG-EG,∴BD=CE;
(2)∵BD=CE,F为DE的中点,∴BD+DF=CE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
八年级下第一章三角形的证明 【基础知识】
1、全等三角形
(1)定义: 能够完全 的三角形是全等三角形。

(2)性质:全等三角形的 、 相等。

(3)判定:“SAS ”、 、 、 、 。

三边 :边边边(SSS )
两边: 边角边(SAS ) 一边 边角边(ASA ) 角角边(AAS )
※※注:SSA,AAA 不能作为判定三角形全等的方法,判定两个三角形全等时,必
须有边的参与,若有两边一角相等时,角必须是两边的夹角
※※证题的思路:



⎪⎪
⎪⎪⎩
⎪⎪⎪⎪


⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角(
)找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()
找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 注意:公共边、公共角、对顶角、最长的边(或最大的角)、最短的边(或最小的
角)
2、等腰三角形
(1)定义:有两条 的三角形是等腰三角形。

(2)性质:①等腰三角形的 相等。

(“等边对等角”)
②等腰三角形的顶角平分线、 、 互相重合。

(3)判定:①定义
②“ ”
3、等边三角形
(1) 定义: 的三角形是等边三角形。

(2)性质:①三角都等于
②具有等腰三角形的一切性质。

(3)判定:①定义 ②三个角都相等的三角形是等边三角形
③有一个角 是等边三角形。

4、直角三角形
(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。

(2)勾股定理及其逆定理
直角三角形两条直角边的平方和等于斜边的平方
如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
(3)“斜边、直角边”或“HL ”
直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等
定理的作用:判定两个直角三角形全等
2
【巩固训练】
1、△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB
的长是( ) A.5 cm B.6 cm
C.5 cm
D.8 cm
2、(2011江苏宿迁)如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是( )
A .A
B =A
C B .B
D =CD C .∠B =∠C D .∠ BDA =∠CDA
3 、(2011广东湛江19,4分)如图,点,,,B C F E 在同一直线上, 12∠=∠,BC FE =,1∠ (填“是”或“不是”
) 2∠的对顶角,要使ABC DEF ∆≅∆,还需添加一个条件,这个条件可以是 (只需写出一个).
4、(2012攀枝花)已知实数x ,y 满足,则以x ,y
的值为两边长的等腰三角形的周长是( )
A . 20或16
B . 20
C . 16
D .以上答案均不对 5、(2010湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是 A .6
B .7
C .8
D .9
6、(2012哈尔滨)一个等腰三角形静的两边长分别为5或6,则这个等腰三角形的周长是 .
A
B
图3
3
7、(2012随州)等腰三角形的周长为16,其一边长为6,则另两边为_______________。

8.(2012江西)等腰三角形的顶角为80°,则它的底角是( ) A .
20° B . 50° C . 60° D . 80°
9、如图,在Rt △ABC 中∠C=90度 ,∠B=2 ∠A ,AB=6cm ,则BC=________.
10、如图, Rt △ABC 中, ∠A= 30°,AB+BC=12cm ,则AB= _______.
11、(2011四川重庆)如图,点A 、F 、C 、D 在同一直线上,点B 和点
E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,A
F =DC .求证:BC ∥EF .
(SAS)
12.(2008常州市) 已知:如图,AB =AD ,AC =AE ,∠BAD =∠CAE. 求证:BC =DE.
(SAS)
13、(2008年陕西)
已知:如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,
AC =CE ,∠ACD =∠B
求证:△ABC ≌△CDE
B C
E
A
D
A
B
D
C
E
4
14、( 2011重庆江津)在△ABC 中,AB=CB,∠ABC=90º,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.
(1)求证:Rt △ABE ≌Rt △CBF;(HL )
15、(2012肇庆)如图5,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于
O ,AC =BD . 求证:(1)BC =AD ;
(2)△OAB 是等腰三角形.
16、已知:如图,∠A=∠D=90°,AC=BD.
求证:OB=OC
17、如右图,已知△ABC 和△BDE 都是等边三角形,求证:AE =CD .
A
B
C
D
O
图5
A
B
C
E
F
5。

相关文档
最新文档