专题二----四点共圆的应用

合集下载

四点共圆的性质(龙老师)

四点共圆的性质(龙老师)

四点共圆的性质、判定及应用一、四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

1、四点共圆的性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的一个外角等于它的内对角。

2、四点共圆的判定方法:判定定理1:共斜边的两个直角三角形,则四个顶点共圆,且直角三角形的斜边为圆的直径.判定定理2:共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆.判定定理3:对于凸四边形ABCD ,对角互补⇔四点共圆(或其一个外角等于其邻补角的内对角⇔四点共圆). 判定定理4:相交弦定理的逆定理:对于凸四边形ABCD 其对角线AC 、BD 交于P ,PD ⋅BP =PC ⋅AP ⇔四点共圆. 判定定理5:割线定理:对于凸四边形ABCD 其边的延长线AB 、CD 交于P ,PD ⋅PC =PB ⋅PA ⇔四点共圆. 判定定理6:从被证共圆的四点中先选出三点作一圆,若另一点也在这个圆上⇔四点共圆. 判定定理7:四点到某一定点的距离都相等⇔四点共圆.二、托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆,则有BD ⋅AC=BC ⋅AD+CD ⋅AB . 托勒密定理的逆定理:如果凸四边形两组对边的积的和,等于两对角线的积,此四边形必内接于圆。

――――――――――――――――――――――――――――――――――――――――――――――――1.如图,在△ABC 中,AD ⊥BC ,DE ⊥AB ,DF ⊥AC .求证:B 、E 、F 、C 四点共圆.2.如图,在△ABC 中,BD 、CE 是AC 、AB 边上的高,∠A =60°. 求证:BC ED 21=3.已知:如图所示,四边形ABCD 内接于圆,CE ∥BD 交AB 的延长线于E .求证:AD · BE =BC · DC .4.已知:如图所示,P 为等边三角形ABC 的外接圆的上任意一点.求证:P A =PB + PC .5.正方形ABCD 的中心为O ,面积为1989 cm 2.P 为正方形内一点,且∠OPB =45°,PA ∶PB =5∶14.则PB =______..6.如图,已知在△ABC 中,AB =AC ,BD 平分∠B ,△ABD 的外接圆和BC 交于E .求证:AD =EC .7.已知:梯形 ABCD 中,AD =BC ,AB ∥CD .求证:BD 2=BC 2+AB · CD .8.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于______.9.在△ABC 中,∠A 的内角平分线AD 交外接圆于D .连结BD .求证:AD · BC =BD · (AB + AC ).10.如图,AD 、BC 为过圆的直径AB 两端点的弦,且BD 与AC 相交于E 。

【高中数学竞赛】四点共圆专题详解

【高中数学竞赛】四点共圆专题详解

四点共圆四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

证明四点共圆有下述一些基本方法:【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。

【方法2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)【方法3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。

【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。

或根据西姆松定理的逆定理证四点共圆。

【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。

【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。

上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明.一.某些知识的补充1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、BC的垂线,垂足为H、I求证:GH=GI首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。

专题:四点共圆在中考数学及自主招生中的应用

专题:四点共圆在中考数学及自主招生中的应用

专题:四点共圆在中考数学及自主招生中的应用四点共圆的判定方法:方法一:若四个点到一个定点的距离相等,则这四个点共圆;方法二:若一个四边形的一组对角互补,则这个四边形的四个点共圆;方法三:若一个四边形的外角等于它相邻的内对角,则这个四边形的四个点共圆;方法四:若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆方法五:同斜边的直角三角形的顶点共圆C AD B C A D经典例题题型1、先证四点共圆后,然后求线段最值问题(关键是找到动点的轨迹)例1、如图1,OA=OB=4,∠OCA=135°(1)求证:AC⊥BC;(2)如图2,点P与点B关于x轴对称,试求PC的最小值。

题型2、先证四点共圆后,然后求角度、三角函数值、或线段的比值(若从一个点出发的三条线段之间的比值问题,特别注意三弦定理)例2、如图,抛物线y=ax2-4ax+b与x轴交于A、B两点,与y轴交于点C,抛物线的顶点为M,直线y=x-3经过M,B两点,交y轴于点D(1)求抛物线的解析式;(2)设P为x轴上一动点,过P作PC的垂线交直线BD于Q,连接CQ,求∠PQC的度数例3、(2013年哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为例4、(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.例5、如图1,直线y=−21x+2交x 轴、y 轴于A 、B 两点,C 为直线AB 上第二象限内一点,且S △AOC =8,双曲线 y=xk (x <0)经过点C (1)求k 的值; (2) 如图2,Q 为双曲线上另一点,连接OQ ,过C 作CM ⊥OQ 于M ,CN ⊥y 轴于N ,连接MN 。

四点共圆条件 课件

四点共圆条件 课件
题目
已知点A($- 1$,$- 1$),B($- 2$,$- 3$),C($- 3$ ,$- 2$),以点D($- 1$,$- 2$)为圆心作圆,下列结论 正确的是( )
提高习题
题目:已知圆C:$(x - a)^{2} + (y - b)^{2} = r^{2}$和直线l :$ax + by - ab = 0(a > 0,b > 0)$,则( )
详细描述
首先,连接四边形相对两边的中点,然后证明所得线段的两端分别平行于相对 两边的中点连线,最后证明该线段等于相对两边的中点连线的一半,从而证明 了四点共圆。
利用角平分线定理证明
总结词
通过角平分线定理,我们可以证明四 点共圆。
详细描述
首先,连接四边形相对两边的中点, 然后证明相对两边的中点连线将相对 的两个角平分,最后证明相对两边的 中点连线与相对的两边垂直,从而证 明了四点共圆。
A.直角三角形 B.等腰 三角形 C.等边三角形 D.等腰直角三角形
提高习题
题目
在直角坐标系中,$bigtriangleup ABC$三个顶点的坐标分 别是A($- 3$,$0$),B($- 1$,$- 2$),C($- 2$,$1$),则$bigtriangleup ABC$外接圆的方程为____.
圆心是三个不共线点确定的三角形的 外心,而半径等于从圆心到圆上任一 点的距离。
圆的基本性质
圆的对称性
圆是中心对称和轴对称图形,对 称中心是圆心,任何经过圆心的 直线都可以将圆分成两个对称的 部分。
圆周角定理
在同圆或等圆中,同弧或等弧所 对的圆周角相等,都等于该弧所 对的圆心角的一半。
02
四点共圆的条件
证明几何定理

四点共圆在解题中的应用

四点共圆在解题中的应用
【思路六】割线定理:对于凸四边形 ABCD 其边的延长线 AB、CD 交于 P,PA PB PC PD 四
点共圆。(如图 14)
【思路七】托勒密定理的逆定理:对于凸四边形 ABCD, AB CD AD BC AC BD 四点共
圆。(如图 15)
图 13
图 14
图 15
S△ABC=4S△ADF.其中正确的有________.(把你认为正确的都写上)
如图 9 所示,∠AEB=∠ADB = 90°,则点 A、E、
D、B 四点共圆,则 FD=FE= 1 AB.(半径) 2
图9
2.【2016 历城一模】如图,矩形 ABCD 的对角线 AC、BD 相交于点 O,过点 O 作 OE⊥AC 交 AB 于 E,若
BC=4,△AOE 的面积为 6,则 cos∠BOE=___.
A
D
如图 10 所示,∠ABC+∠COE = 180°,则 点 A、E、D、B 四点共圆,即:∠BOE=∠BCE。 (转化角)
由题目已知条件可求:CE=AE=6,
∴cos∠BOE= cos∠BCE= BC 4 2 CE 6 3
O E
B
其中,由三点作圆,即为作三角形的外接圆。内切圆的圆心是三角形三条角平分线的交点,叫做三 角形的内心。
证明点在圆上转化为证明点到圆心的距离等于半径。 【思路二】四点到某一定点的距离都相等,从而确定它们共圆。
这一思路是根据圆的定义得到的:从集合观点看,圆心为 O,半径为 r 的圆可以看成是所有到定点 O
CB
图1
C
图2
图 11
图 12
如图 12 所示,此题亦可过 O 点作 OM⊥AG,作 ON⊥BE,通过证明△BON≌△AOM,得到 OM=ON, 根据角平分线的判定得到 HO 平分∠BHG。

四点共圆问题

四点共圆问题

四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P 89定理和P 93例3),由这两种基本方法推导出来的其他判别方法也可相机采用. 1 “四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆. (第19届美国数学奥林匹克)分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2.故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2,O 3四点共圆.(第27届莫斯科数学奥林匹克) 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC 及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1⇒O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK . 求证:∠DMA =∠CKB .(第二届袓冲之杯初中竞赛)分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC =180°, ∴∠CMK +∠KDC =180°.故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC . 但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABCA B C K M N P Q B ′C ′A B CO O O O 123??A B C DK M··A B O K N CMG外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. (第26届IMO 第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D .试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题)分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时 ∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ (1989,全国初中联赛) 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°. 故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB .(5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断). (1978,全国高中联赛)分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方A BC D I C I DA I IB ··P O A BC D形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大. 例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . (1991,江苏省初中竞赛)分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.)3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD .(提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)5.AD ,BE ,CF 是锐角△ABC 的三条高.从A 引EF 的垂线l 1,从B 引FD 的垂线l 2,从C 引DE 的垂线l 3.求证:l 1,l 2,l 3三线共点.(提示:过B 作AB 的垂线交l 1于K ,证:A ,B ,K ,C 四点共圆)A BC D EF KG ······。

高三数学二轮复习冲刺:四点共圆及应用

高三数学二轮复习冲刺:四点共圆及应用

二次曲线上的四点共圆一.基本原理1.方法一:斜率方法若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k .结论1抛物线22y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.结论2圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.方法2:曲线系方法定理2若两条直线:0(1,2)i i i i l a x b y c i ++==与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是12210a b a b +=.证明:由21,l l 组成的曲线即111222()()0a xb yc a x b y c ++++=所以经过它与Γ的四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0):22111222()()()0ax by cx dy e a x b y c a x b y c λμ+++++++++=①必要性.若四个交点共圆,则存在μλ,使方程①表示圆,所以式①左边的展开式中含xy 项的系数1221()0a b a b μ+=.而0≠μ(否则③表示曲线Γ,不表示圆),所以12210a b a b +=.充分性.当12210a b a b +=时,式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含22,y x 项的系数相等,即1212a a a b b b λλ+=+,得1212a ab b b aλ-=-.此时曲线①即220x y c x d y e '''++++=②的形式,这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线②上,所以曲线②表示圆.这就证得了四个交点共圆.方法3.相交弦定理(2)相交弦定理:PA PB PC PD⋅=⋅二.典例分析例1.(2021新高考1卷)在平面直角坐标系xoy 中,已知点)0,17(),0,17(21F F -,且动点M 满足:2||||21=-MF MF ,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线21=x 上,过T 的两条直线分别交C 于B A ,两点和Q P ,两点,且满足||||||||TQ TP TB TA ⋅=⋅,求直线AB 与直线PQ 的斜率之和.解析:(1)因为12122MF MF F F -=<=所以,轨迹C 是以点1F ,2F 为左右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥.(2)方法1.相交弦定理直接翻译设1(,)2T n ,设直线AB 的方程为112211(,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=,则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB =-=-.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21(2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-.因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.方法2.(参数方程法)设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅,由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=,故直线AB 的斜率与直线PQ 的斜率之和为0.(方法3:曲线系)(2)设),21(t T ,直线AB 的方程为)21(1-=-x k t y ,直线PQ 的方程为21(2-=-x k t y ,则过Q P B A ,,,四点的二次曲线为:0)2)(2(2211=+--+--t ky x k t k y x k ,代入双曲线方程可得:)0(0)116()2)(2(222211≠=--++--+--λμλy x t k y x k t k y x k ,整理可得:0)22(])([)()16()(212121212221=+-++-+++--++m y t kk x k k k k t xy k k y x k k λλλμλμλ其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦.由于Q P B A ,,,四点共圆,则xy 项的系数为0,即021=+k k .例2.在平面直角坐标系xOy 中,双曲线()2222:10,0y xC a b a b-=>>,实轴长为4.(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,直线l 过点()0,P t 且垂直于y 轴(P 位于原点与上顶点之间),过P 的直线交C 于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若O ,A ,N ,M 四点共圆,求点P 的坐标.解析:(1)因为实轴长为4,即24a =,2a =,又ca=所以c =2224b c a =-=,故C 的方程为22144-=y x .(2)由O ,A ,N ,M 四点共圆可知,ANM AOM π∠+∠=,又MOP AOM π∠+∠=,即ANM MOP ∠=∠,故1tan tan tan ANM MOP OMP ∠=∠=∠,即1AN OMk k -=-,所以1AN OM k k ⋅=,设()11,G x y ,()22,H x y ,(,)M M M x y ,由题意可知()0,2A -,则直线112:2y AG y x x +=-,直线222:2y AH y x x +=-,因为M 在直线l 上,所以M y t =,代入直线AG 方程,可知()1122M t x x y +=+,故M 坐标为()112,2t x t y +⎛⎫⎪+⎝⎭,所以()()1122OMt y k t x +=+,又222AN AH y k k x +==,由1AN OM k k ⋅=,则()()12122212t y y t x x ++⋅=+,整理可得()()1212222y y t t x x +++=,当直线GH 斜率不存在时,显然不符合题意,故设直线:GH y kx t =+,代入双曲线方程:22144-=y x 中,可得()2221240k x ktx t -++-=,所以12221kt x x k -+=-,212241t x x k -=-,又()()()()12122222y y kx t kx t ++=++++()()()()()()22222212122222422222111t t kt k x x k t x x t k k t t k k k -+--=+++++=⋅++⋅++=---,所以()()()()()()22212221222222221204421t y y t t t k t t t x x t t k -+++-+-++-====+≠----,故2t t =-,即1t =,所以点P 坐标为()0,1.。

四点共圆(精华)

四点共圆(精华)

四点共圆(限量版)板块一:辅助圆思想平面几何中有很多题中的背景并没出现圆,但是在解题过程中我们会发现,如果能够适当添加辅助圆,不仅能让题目瞬间变得简单,同时还可能会有意想不到的收获,得到很多有趣的结论,而且纵观这几年中考命题趋势,第24题的几何综合题越来越需要我们有辅助圆的思想和思维了,而辅助圆思想又是学习四点共圆的基础.构造辅助圆的基本思路:1、共顶点,等线段想辅助圆(圆的定义);2、不共线的三点确定一个圆(即做这个三角形的外接圆);3、利用四点共圆的判定作辅助圆.1、如图,在四边形ABCD中,AB=AC=AD,∠BCD=150°,求∠BAD的度数.DCBA2、(大兴期末)已知四边形ABCD,A B∥CD,且AB=AC=AD=a,BC=b,且2a>b求cos DBA∠的值.3、(2014年海淀一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0180α<<,连接AD、BD.(1)如图1,当∠BAC=100°,60α=时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,20α=时,求∠CBD的大小;(3)已知∠BAC的大小为m(60120m<<),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.图2DCBA图1AB C4、(2011海淀期末)如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点, 点P 是直线AB 上异于A ,B 的一个动点,且满足30CPD ∠=︒,则( )A .点P 一定在射线BE 上B .点P 一定在线段AB 上C .点P 可以在射线AF 上 ,也可以在线段AB 上D .点P 可以在射线BE 上 ,也可以在线段5、(2011西城一模)平面直角坐标系xOy 中,抛物线244y ax ax a c=-++与x轴交于点A 、点B , 与y 轴的正半轴交于点C ,点 A 的坐标为(1, 0),OB =OC , 抛物线的顶点为D . (1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P 满足∠APB =∠ACB ,求点P 的坐标;(3) Q 为线段BD 上一点,点A 关于∠AQB 的平分线的对称点为A ',若2=-QB QA 求点Q 的坐标和此时△QAA '的面积.C6、(2013海淀期中)初三(1)班的同学们在解题过程中,发现了几种利用尺规作一个角的半角的方法.题目:在△ABC中,80ACB∠=︒,求作:40ADB∠=︒.图1 图2仿照他们的做法,利用尺规作图解决下列问题,要求保留作图痕迹.(1)请在图1和图2中分别出作20APB∠=︒;(2)当60ACB∠=︒时,在图3中作出30APB∠=︒,且使点P在直线l上.lACBDACB EA B板块二:四点共圆判定:1、到一定点的距离相等的四个点共圆(圆的定义) 2、共斜边的直角三角形的顶点共圆 (圆的定义)(此判定考察最多)3、同底且同侧张角相等的两个三角形的顶点共圆 (同弧所对圆周角相等逆定理)4、对角互补或有一个外角等于其内对角的四边形的顶点共圆(圆内接四边形逆定理)另注:四点共圆的判定还有很多,我们只讲中考中涉及到的这四种,其实基本上所有的圆幂 定理的逆定理都可以判定四点共圆,比如相交弦定理,切割线定理及推论,托勒密定 理等.有兴趣的同学等暑假我们再讲.用途:圆中的性质很多,知道四点共圆后,我们可以利用其性质去解决一些几何证明题,判 断动点轨迹题及动点最值问题等,就会显得山穷水尽疑无路,柳暗花明又一村.7、证明判定3和4的成立(反证法)8、(海淀)已知:AOB △中,2AB OB ==,COD △中,3CD OC ==,ABO DCO =∠∠.连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点.图1 (1) 如图1,若A 、O 、C 三点在同一直线上,且60ABO =∠,则PMN △的形状是________________,此时ADBC=________; (2) 如图2,若A 、O 、C 三点在同一直线上,且2ABO α=∠,证明PMN BAO △∽△,并计算ADBC的值(用含α的式子表示); (3) 在图2中,固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值.9(海淀)如图一,在△ABC 中,分别以AB ,AC 为直径在△ABC 外作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心. F 是边BC 的中点,点D 和点E 分别为两个半圆圆弧的中点.(1)连结1122,,,,,O F O D DF O F O E EF ,证明:12DO F FO E △≌△;(2)如图二,过点A 分别作半圆1O 和半圆2O 的切线,交BD 的延长线和CE 的延长线于点P 和点Q ,连结PQ ,若∠ACB =90°,DB =5,CE =3,求线段PQ 的长;(3)如图三,过点A 作半圆2O 的切线,交CE 的延长线于点Q ,过点Q 作直线F A 的垂线,交BD 的延长线于点P ,连结P A . 证明:P A 是半圆1O 的切线.图一A B CDE1O 2O 2O 1O AE B DP图二AB CEFDPQ1O 2O 图三10、(海淀期末) 如图,以(0,1)G 为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,CF AE ⊥于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为( ) A . 32π B .33π C .34π D .36π11、(2014年房山一模) 将等腰Rt △ABC 和等腰Rt △ADE 按图1方式放置,∠A=90°, AD 边与AB 边重合, AB =2AD =4.将△ADE 绕点A 逆时针方向旋转一个角度α(0°≤α≤180°),BD 的延长线交直线CE 于点P .(1)如图2,BD 与CE 的数量关系是 , 位置关系是 ; (2)在旋转的过程中,当AD ⊥BD 时,求出CP 的长; (3)在此旋转过程中,求点P 运动的路线长.12、(2012朝阳)在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E 、F ,连接EF . (1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF 的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF 的中点所经过的路线长.(0,1)I 图1图2DB EB ABA备用图D F A B E13、(2015北京四中12月月考)如图,在边长为2的菱形ABCD 中,∠A =60°,M是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A'MN ,连接A'C ,则A'C 长度的最小值是_______.14、(2013昌平一模)在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.C 1C BA 1A图2A 1C 1ABC图1图3PP 1E A 1A C 115、(2013通州期末)在平面直角坐标系xOy 中,点B (0,3),点C 是x 轴正半轴上一点,连结BC ,过点C 作直线CP ∥y 轴. (1)若含45°角的直角三角形如图所示放置.其中,一个顶点与点O 重合,直角顶点D在线段BC 上,另一个顶点E 在CP 上.求点C 的坐标; (2)若含30°角的直角三角形一个顶点与点O 重合,直角顶点D 在线段BC 上,另一个顶点E 在CP 上,求点C 的坐标.备用图备用图第24题图。

四点共圆问题

四点共圆问题

四点共圆问题第四讲四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.1 “四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′)=(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明AP =AM ,从而有AB ′2+PB ′2=AC ′2+MC ′2. 故MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM=∠CBK .求证:∠DMA =∠CKB .分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠A DC=180°,∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆?∠CMD =∠DKC .A B C K M N P Q B ′C ′A B C O O O O 123A B C DK M··但已证∠AMB =∠BKA ,∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. 分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°?C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ? OC =OK ?∠OMC =∠OMK . 但∠GMC =∠BMK ,故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D . 试证:I A I B I C I D 是矩形.分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B ?A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时∠AI C I D =180°-∠ABI D =180°-21∠ABC,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形.(4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°.A BO K N CMG故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆?∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大.例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ . 分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称?MQ ′=MQ . 又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径( ∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ .练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.) 3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.4.在Rt △ABC 中,AD 为斜边BC 上的高,P 是AB 上的点,过A 点作PC 的垂线交过B 所作AB 的垂线于Q 点.求证:PD 丄QD . (提示:证B ,Q ,E ,P 和B ,D ,E ,P 分别共圆)A BC D E F KG ······5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B 引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

中考数学满分之路(二)—四点共圆

中考数学满分之路(二)—四点共圆

中考数学满分之路(二) ——四点共圆一、使用定义解题圆的定义 平面上到一个定点的距离等于定长的点的集合叫做圆. 在题目中出现共端点的等线段时,可尝试作出圆辅助求解.例 (1)如图,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2,则BD 的长为______.(2)如图,在等腰△ABC中,AB AC =D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点F ,则AD AF ⋅的值为______.E1. 如图,抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点. (1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△'BC D ,若点'C 恰好落在抛物线的对称轴上,求点'C 和点D 的坐标;(3)设点P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.2. 问题背景如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是2BC BDAB AB= 迁移应用(1)如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .ⅰ)求证:△ADB ≌△AEC ;ⅱ)请直接写出线段AD ,BD ,CD 之间的等量关系式. 拓展延伸(2)如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .ⅰ)求证:△CEF 是等边三角形; ⅱ)若AE =5,CE =2,求BF 的长.图1图2图33. 如图,AB 是半圆⊙O 的直径,点C 为半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接F A ,FC ,若2AFC BAC ∠=∠,求证:F A ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接F A ,FG ,FG 与AC 相交于点P ,且AF FG =.①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE BD =,90GOE ∠=,⊙O 的半径为2,求EP 的长.图1 图2二、圆内接四边形的性质与判定定理性质定理1 圆的内接四边形的对角互补.定理2 圆内接四边形的外角等于它的内角的对角.圆周角定理的推论同弧所对的圆周角相等.判定圆内接四边形判定定理1 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.圆内接四边形判定定理2 如果一个四边形一边与一对角线的夹角等于其对边与另一对角线的夹角,那么这个四边形的四个顶点共圆.上述定理在应用时的书写格式如下①∵A,B,C,D四点共圆,∴∠BAD+∠BCD=180°.②∵A,B,C,D四点共圆,∴∠DCE=∠BAD.③∵A,B,C,D四点共圆,∴∠ACB=∠ADB. ④∵∠BAD+∠BCD=180°,∴A,B,C,D四点共圆.⑤∵∠DCE=∠BAD,∴A,B,C,D四点共圆.⑥∵∠ACB=∠ADB,∴A,B,C,D四点共圆.EE4. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于点E ,若4BC =,△AOE 的面积为6,则sin BOE ∠的值为______.5. 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =. (1)求证:AC AD CE =+;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作PQ DP ⊥,交直线BE 与点Q ;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.DBP6. 如图,已知△ABC 是等边三角形,点D ,E 分别在边AC ,AB 上,且CD AE =,BD 与CE 相交于点P . (1)求证:△ACE ≌△CBD ;(2)如图2,将△CPD 沿直线CP 翻折得到对应的△CPM ,过C 作CG ∥AB ,交射线PM 于点G ,PG 与BC 相交于点F ,连接BG .ⅰ)试判断四边形ABGC 的形状,并说明理由;ⅱ)若四边形ABGC的面积为,1PF =,求CE 的长.图1图2三、与圆有关的比例线段相交弦定理 圆内的两条弦,被交点分成的两条线段长的积相等.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等. 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.上述定理在应用时的书写格式如下 由相交弦定理, 得PA PB PC PD ⋅=⋅.由割线定理, 得PA PB PC PD ⋅=⋅.由切割线定理, 得2PA PB PC =⋅.7. 如图,已知AB 是⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P . 求证:PE =PC .P8. 如图1,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =4,CD =16.(1)求⊙O 的半径r 的长度;10r =; (2)求tan ∠CMD ;(3)如图2,直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求H E H F ⋅的值.图1图29. 已知BC 为⊙O 的直径,AC 为⊙O 的切线,C 为切点,AD =BD .(1)如图1,求证:∠A =45°;(2)如图2,E 为⊙O 上一点,连接DE 交BC 于点F ,过点F 作BC 的垂线交BE 于点G ,求证:FG =FC ;(3)如图3,在(2)的条件下,若EG BDF 的面积为15(BF >BD ),求⊙O 的面积.图1BC图2CB图3BC10. (蝴蝶定理)如图,过⊙O的弦PQ的中点M引任意两条弦AB,CD,连接AD,BC分别交PQ于X,Y两点. 求证:MX=MY.证明:分别取AD ,CB 的中点E ,F , 连接OE ,OF ,OM ,OX ,OY ,ME ,MF , ∵∠A =∠C ,∠D =∠B ,∴△ADM ∽△CBM , ∴AM ADCM CB=,又AD =2AE ,CB =2CF , ∴22AD AE AE CB CF CF ==,∴AM AECM CF=,又∠A =∠C , ∴△AEM ∽△CFM ,∴∠AEM =∠CFM ,∵点M ,E ,F 分别是⊙O 的弦PQ ,AD ,CB 的中点, ∴OM ⊥PQ ,OE ⊥AD ,OF ⊥CB ,∴∠OEX +∠OMX =180°,∠OFY +∠OMY =180°, ∴O ,M ,X ,E 四点共圆,O ,M ,Y ,F 四点共圆, ∴∠MOX =∠AEM ,∠MOY =∠CFM ,又∠AEM =∠CFM , ∴∠MOX =∠MOY ,又OM =OM ,∠OMX =∠OMY =90°, ∴△OMX ≌△OMY ,∴MX =MY . 证法二证明:过点D 作DE ∥PQ 交⊙O 于另一点E ,连接MO 并延长交DE 于E , ①当PQ 为直径时,四边形ACBD 为矩形,易证MX =MY ; ②当PQ 不是直径时,由垂径定理推论,得OM ⊥PQ ,又DE ∥PQ , ∴MN ⊥DE ,又MN 过圆心O ,∴MN 垂直平分DE , ∴MD =ME ,∴∠MDE =∠MED ,又PQ ∥DE ,∴∠PMD =∠MDE ,∠QME =∠MED , ∴∠PMD =∠QME ,∠QME =∠MDE ,∵C ,D ,B ,E 四点共圆,∴∠MDE +∠CBE =180°, ∴∠QME +∠CBE =180°, ∴M ,E ,B ,Y 四点共圆,∴∠MEY =∠MBC ,又∠MBC =∠ADC ,∴∠ADC =∠MEY ,又MD =ME ,∠PMD =∠QME , ∴△MDX ≌△MEY ,∴MX =MY .证明:过X 作'XX AB ⊥于'X ,过X 作"XX CD ⊥于"X , 过Y 作'YY CD ⊥于'Y ,过Y 作"YY AB ⊥于"Y ,∵∠A =∠C ,∠D =∠B ,''90AX X CY Y ∠=∠=,""90CX X BY Y ∠=∠=, ∴△'AX X ∽△'CY Y ,△"DX X ∽△"BY Y , ∴''AX XX CY YY =,……①,""DX XX BY YY =,……②, ①×②,得'"'"AX DX XX XX CY BY YY YY ⋅=⋅, ∴'""'AX DX XX XX CY BY YY YY ⋅=⋅⋅,又由相交弦定理及平行线分线段成比例定理,得PX QX MX MXQY PY MY MY ⋅=⋅⋅, ∴22()()()()MP MX MP MX MX MP MY MP MY MY -⋅+=-⋅+,即222222MP MX MX MP MY MY -=-, 根据比例的基本性质,得22222222222222()1()MP MX MX MP MX MX MP MP MY MY MP MY MY MP --+====--+, ∴22MX MY =,∴MX =MY . 证法四证明:连接PA ,PD ,QC ,QB ,根据共圆定理,(共圆定理:同圆或等圆中的三角形面积比等于三边乘积之比) 得PAD QCB S PA PD AD PA PD ADS QB QC BC QB QC BC∆∆⋅⋅==⋅⋅⋅⋅, 又△PAM ∽△BQM ,△PDM ∽△CQM ,△ADM ∽△CBM , ∴22PAD AMDQCB CMBS PA PD AD AM MP AM AM S S QB QC BC MQ MC MC MC S ∆∆∆∆=⋅⋅=⋅⋅==, ∴QCB PAD AMD CMB S S S S ∆∆∆∆=,即PX QYMX MY=, ∴1MY QY MY QY MQ MX PX MX PX MP +====+, ∴MX =MY .B证明:连接AO 并延长交⊙O 于另一点E ,连接CO 并延长交⊙O 于另一点F ,连接BF ,DE 交于点G , 六边形CFBAED 内接于⊙O ,CF 交AE 于点O ,FB 交ED 于点G ,BA 交DC 于点M ,根据帕斯卡定理,得M ,O ,G 三点共线, 连接MG ,GX ,GY ,∵AE ,CF 为⊙O 的直径,∴∠ADE =90°,∠CBF =90°, ∵MP =MQ ,PQ 不是⊙O 的直径,(PQ 为直径时,易证) ∴OM ⊥PQ ,∴D ,G ,M ,X 四点共圆,B ,G ,M ,Y 四点共圆, ∴∠MGX =∠ADM ,∠MGY =∠CBM ,又∠ADM =∠CBM , ∴∠MGX =∠MGY ,又MG =MG ,∠GMX =∠GMY , ∴△GMX ≌△GMY , ∴MX =MY .帕斯卡定理 如果一个六边形内接于一条二次曲线(圆、椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.B中考不考系列(二)——2019IMO第2题在三角形ABC中,点A1在边BC上,点B1在边AC上. 点P和Q分别在线段AA1和BB1上,且满足PQ平行于AB. 在直线PB1上取点P1,使得点B1严格位于点P与点P1之间,并且∠PP1C=∠BAC. 类似地,在直线QA1上取点Q1,使得点A1严格位于点Q与点Q1之间,并且∠CQ1Q=∠CBA.证明:点P,Q,P1,Q1共圆.证明:延长1AA ,1BB 分别交△ABC 的外接圆于2A ,2B ,连接22A B , ∵PQ ∥AB ,∴22ABB PQB ∠=∠,又222ABB AA B ∠=∠, ∴222PQB AA B ∠=∠,∴22,,,P Q A B 四点共圆,连接2B C ,∵1PPC BAC ∠=∠,2BB C BAC ∠=∠, ∴12PPC BB C ∠=∠,∴121,,,P B B C 四点共圆,连接12PB ,∵11212B PB B CB ∠=∠,222AA B ACB ∠=∠, ∴2122B PP B A P ∠=∠,∴122,,,P A P B 四点共圆,连接2A C ,∵1CQ Q CBA ∠=∠,2CA A CBA ∠=∠, ∴12CQ Q CA A ∠=∠,∴121,,,Q A A C 四点共圆,连接12Q A ,∵11212AQ A ACA ∠=∠,222BB A BCA ∠=∠, ∴2122A QQ A B Q ∠=∠,∴122,,,Q B Q A 四点共圆, ∴2112,,,,,P Q A Q P B 六点共圆, ∴点11,,,P Q P Q 共圆.上述答案是从官方答案翻译而来.【附】官方答案.。

四点共圆知识点总结

四点共圆知识点总结

四点共圆知识点总结四点共圆是指如果四个点A、B、C、D在同一圆上,那么称这四个点共圆。

四点共圆是圆的性质之一,也是解几何问题中常见的题型。

在这篇文章中,我将对四点共圆的性质、证明方法、应用以及相关定理进行总结和归纳。

一、四点共圆的性质1. 四点共圆的定义四点共圆是指若四个点A、B、C、D在同一圆上,那么称这四个点共圆。

这就是四点共圆的基本定义。

2. 四点共圆的性质四点共圆具有以下性质:(1)任意三个点共圆,那么这三点构成的圆上的所有点也共圆。

(2)如果四个点共圆,那么这四个点所在的圆是唯一的。

3. 四点共圆的方法确定四点共圆的方法一般有以下几种:(1)利用圆的性质,通过证明四个点在同一圆上,从而得出四点共圆的结论。

(2)通过等角的关系来证明四点共圆。

二、证明四点共圆的方法1、利用圆的性质证明四点共圆的方法之一是利用圆的性质。

根据圆的性质,我们可以利用圆的直径、相交弦的性质等进行证明。

比如,通过证明四边形的对角线互相平分、垂直平分或者等长等等,从而得出四点共圆的结论。

2、利用等角关系利用等角的关系也是证明四点共圆的一种常见方法。

当我们能够找到四点共圆的特殊角度关系时,就可以得出四点共圆的结论。

比如,利用相交弦与此弦的交点处的两个相等角,利用垂径定理等等。

三、四点共圆在解题中的应用四点共圆是解几何问题中常见的题型,尤其是在证明题中经常会用到四点共圆的性质。

常见的应用有以下几个方面:1、辅助证明定理在证明定理的过程中,我们经常需要利用四点共圆的性质来推出结论。

比如,证明一个四边形为菱形或者矩形时,就可以利用四点共圆的性质。

2、判断点的位置在解题过程中,有时需要判断一个点是否在同一圆上,这就需要利用四点共圆的性质来确定。

3、证明等价关系在解题中,有时候需要利用四点共圆的性质来证明等价关系,比如利用四点共圆来证明辅助线与所给线段平行等等。

四、四点共圆的相关定理在几何中,和四点共圆相关的定理较多,下面介绍几个常见的定理:1、相交弦定理在一个圆上,如果两条弧所对的两条弦相交,那么这两个相交点和弦的两端点构成的四个点共圆。

中考数学圆中的重要模型四点共圆模型

中考数学圆中的重要模型四点共圆模型

圆中的重要模型-四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。

相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。

本文主要介绍四点共圆的四种重要模型。

四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。

这也是圆的基本定义,到定点的距离等于定长点的集合。

条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。

例1、(2023•连云港期中)如图,点O为线段BC的中点,点A、C、D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是.例2.(2022秋·江西赣州·九年级校联考期中)如图,点O为线段AB的中点,点B,C,D到点O的距离相等,连接AC,BD.则下面结论不一定成立的是()A.∠ACB=90°B.∠BDC=∠BAC C.AC平分∠BAD D.∠BCD+∠BAD=180°例3.(2021·湖北随州·统考中考真题)如图,在R t A B C中,90∠A C B∠=︒,O为A B的中点,O D平分A O COF例4.(2022·北京·清华附中九年级阶段练习)如图,四边形A B C D 中,D A D B D C==,72BD C ∠=︒,则B A C∠的度数为______.模型2、定边对双直角共圆模型同侧型 异侧型 1)定边对双直角模型(同侧型)条件:若平面上A 、B 、C 、D 四个点满足90A B DA C D ∠=∠=︒,结论:A 、B 、C 、D 四点共圆,其中AD 为直径。

“四点共圆”在中考数学解题中的应用赏析

“四点共圆”在中考数学解题中的应用赏析

“圆”来如此简单——“四点共圆”在中考解题中的应用赏析2012年8月,在暑假集体备课之际,新浙教版数学教材以焕然一新的面貌出现在大家眼前。

与老版相比,新版教材增加了一些传授内容。

其中,九年级上册的《圆内接四边形》就是一节新增内容。

而且与之配套的《数学教学参考书》在3.6《圆内接四边形》这一课时末尾,颇有用意地在第103页“相关资源”中对于如何判定四点共圆作了批注。

原文如下:如何判定四点共圆。

对于四点共圆的判定一般有以下两种方法:1.如图,四边形中同一边所对的两个边与对角线所成的角相等(如),则这个四边形为圆内接四边形,也就是四边形的四个顶点共圆。

2.如果四边形的两个对角互补,那么这个四边形为圆内接四边形,也就是四边形的四个顶点共圆。

判定四点共圆会给许多几何问题的解决带来方便。

近年来,经过笔者的收集整理和实践探究,发现很多地方的中考试题,都能通过妙用四点共圆达到事半功倍的效果。

现就四点共圆问题在中考解题中的应用,采撷几例,剖析解法,供大家分享。

一、四点共圆与线段问题结合的应用举例例1.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB 的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.原方法分析:第(2)小题作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH=90°,则∠FEQ=∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG=EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ= BE ,在△AEH 中,根据余弦函数的定义得出EH=AE ,又BE=AE ,进而求出EF :EG 的值.原方法解答:(1)略(2)解:如图,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH=90°,∴∠FEQ=∠GEH=90°﹣∠QEG ,又∵∠EQF=∠EHG=90°,∴△EFQ ∽△EGH ,∴EF :EG=EQ :EH .∵AC :AB=1:,∠CAB=90°,∴∠B=30°.在△BEQ 中,∵∠BQE=90°,∴sin ∠B= ,∴EQ= BE .在△AEH 中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos ∠AEH=EH AE ∴EH= AE .∵点E 为AB 的中点,∴BE=AE ,∴EF :EG=EQ :EH=BE :AE=1:.该方法采用了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH 是矩形.下面赏析四点共圆方法解(2):解:连结GF,DE∵在△ABC中,∠CAB=90° AC:AB=1:∴∠CBA=300∵AD⊥BC ∴△BAD是直角三角形∵点E为AB的中点∴DE=BE ∴∠EDB=∠CBA=300∵EF⊥CE,AD⊥BC,∴四边形DGEF对角互补∴D、G、E、F四点共圆∴∠FGE=∠FDE=300∴EF:EG=tan∠FGE=1:例2(2013•呼和浩特)如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.原方法分析:第(2)题在BA边上截取BK=NE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE ≌△ECP,于是结论得出;原方法解答:(1)(3)略(2)证明:在BA边上截取BK=NE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DC P=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,易得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;该方法采用了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此方法综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.解:连结AC、AP∵在正方形ABCD中∠BCD=900CP是正方形外角的平分线∴∠ACD=450∠PCD=450∴∠ACP=900∵∠AEP=90°∴A、E、C、P四点共圆∴∠APE=∠ACE=450∴△EAP是等腰直角三角形∴AE=EP二、四点共圆与函数问题结合的应用举例例3如图(1),直线交坐标轴于A、B两点,交双曲线于点C,且(1)求k的值.(2)如图(2),A,G关于y轴对称,P为双曲线上一点,过P作PD⊥x轴于D,分别交BG,AB于F,E,求证:DE+DF=4(3)Q为双曲线上另一动点,连OQ,过C作CM⊥OQ,CN⊥y轴于N,如图(3),当Q点运动时,∠OMN是否是定值?说明你的理由。

圆锥曲线中的四点共圆问题

圆锥曲线中的四点共圆问题

圆锥曲线中的四点共圆问题摘要:I.引言- 圆锥曲线简介- 四点共圆问题的背景和意义II.四点共圆问题的定义和性质- 四点共圆的定义- 四点共圆问题的相关性质III.解决四点共圆问题的方法- 圆锥曲线的性质及其应用- 解析几何方法- 参数方程方法IV.四点共圆问题的应用- 在数学教育中的应用- 在实际问题中的应用V.结论- 对四点共圆问题的总结和展望正文:I.引言圆锥曲线是数学中的一个重要领域,其研究对象为圆锥与平面的交线。

在数学教育中,圆锥曲线常常作为高中数学和大学数学的重要内容,其相关问题也常常出现在各类考试中。

四点共圆问题是圆锥曲线中的一个经典问题,具有较高的理论和实际应用价值。

本文将对四点共圆问题进行详细探讨,包括其定义、性质、解决方法和应用。

II.四点共圆问题的定义和性质四点共圆问题是指在平面上给定四个点,判断这四个点是否共圆。

如果这四个点共圆,则它们可以被一个圆所包围;如果它们不共圆,则它们无法被一个圆所包围。

对于四点共圆问题,有如下几个重要的性质:1.如果四个点共圆,则它们的距离满足特定的关系。

2.如果四个点不共圆,则它们的距离不满足特定的关系。

3.如果四个点共圆,则它们的中点共线。

4.如果四个点不共圆,则它们的中点不共线。

III.解决四点共圆问题的方法解决四点共圆问题的方法有很多,下面介绍几种常用的方法:1.圆锥曲线的性质及其应用:根据圆锥曲线的定义和性质,可以得到一些关于四点共圆问题的结论。

例如,在椭圆或双曲线中,如果四个点满足特定的条件,则它们共圆;在抛物线中,如果四个点满足特定的条件,则它们不共圆。

2.解析几何方法:通过解析几何的方法,可以将四点共圆问题转化为关于x 和y 的方程,然后通过求解方程来判断四个点是否共圆。

3.参数方程方法:通过参数方程的方法,可以将四点共圆问题转化为关于参数的方程,然后通过求解方程来判断四个点是否共圆。

IV.四点共圆问题的应用四点共圆问题在数学教育中有着广泛的应用,例如在高中数学的解析几何部分,大学数学的微分几何和拓扑学部分,都会涉及到四点共圆问题。

四点共圆在平面几何问题解决中的应用

四点共圆在平面几何问题解决中的应用

BEA 交 ⊙O 于 E,A,割线 CGA 交 ⊙O 于 G、A. 求证:E、B、C、
G 四点共圆.
通过以上 3 个方面的问题的探讨,使学生学会了用四
点共圆的方法解平面几何问题,利用四点共圆可以将三角
形问题,四边形问题转化为圆的问题. 通过问题的变式训
练,拓宽了学生的视野,进一步提高学生分析问题和解决
问题的能力. 并培养学生的“应用数学意识”,落实到初中
数学竞赛教学中去,从而提高学生学习数学的兴趣,逐步
形成应用数学方法解决问题的良好习惯.
作者简介 蒋必昆,男,1971 年生,中学高级教师,温州市
优秀教师,温州市首届学科骨干教师,温州市第三届教坛中坚.
一道初中生也能解的高考题
江苏南京金陵中学河西分校 210019 李玉荣
等腰直角三角形,显然 AF = 槡2x,即 y = 10 - 槡2x. 解 连接 PF. 因为 PE ⊥ PB,BC ⊥ CE,所以 ∠BPE +
∠BCE = 180°,即 P、B、C、E 四 点 共 圆,所 以 ∠PBE = ∠PCE = 45°. 因为 ∠BFE = ∠BPE = 90°,即 P、F、B、E 四 点共圆,所以 ∠PFE = ∠PBE = 45°.
分析 从求证出发考虑问
题,应 用 四 点 共 圆 方 法 来 证 明 Nhomakorabea图6
△PDE 与 △FPD 相似.
证明 连接 PB,DE,PC,FD. 因为 PD ⊥ BC,PE ⊥
AB,所以 ∠PDB + ∠PEB = 180°,即 P、D、B、E 四点共圆,
所以 ∠PED = ∠PBD,∠PDE = ∠PBE. 因为 PD ⊥ BC,
∠PBD,所以 ∠PDE = ∠PFD,∠PED = ∠PDF,从而

“四点共圆”在解题中的妙用

“四点共圆”在解题中的妙用

“四点共圆”在解题中的妙用众所周知,在同一个圆中,相等(相同)的弧(弦)所对的圆周角相等;相等(相同)的弧(弦)所对的圆心角相等;四个顶点在同一个圆的四边形(圆内接四边形)对角互补,任一内角的外角等于其内角的对角,。

巧妙运用这一知识点可轻松解决一些角度的等量代换及比例问题。

通常我们判定平面上的四个点是否在同一个圆上所用的模型有以下几种:(1)两个直角三角形的斜边为同一个;(2)同一个线段所对的角相等(图中的角度为随意给出,表示两个角相等);(3)四边形对角互补(图中的角度为随意给出,表示对角互补)。

【例1】在△ABC中,BD⊥AC于点D,CE⊥AB于点E,连接ED。

求证:△ABC∽△ADE。

【解析】∵BD⊥AC,CE⊥AB,∴B、C、D、E四点共圆,∴∠AED=∠ACB,∠ADE=∠ABC,故△ABC∽△ADE。

【例2】如图,已知△PAB中,PA=PB,∠APB=2∠ACB,PD=3,PB=4,求AD·DC 的值。

【解析】因为∠APB=2∠ACB,故作∠APB的角平分线可获得与∠ACB相等的角,从而利用四点共圆和角平分线定理可解此题。

如图,作∠APB的角平分线PM,交AD于点M,则∠MPD=∠ACB,故B、C、P、M四点共圆。

∴MD·DC=PD·DB=3·(4-3)=3;∵PM平分∠APD,根据角平分线定理:AP∶PD=AM∶MD=4∶3,“四点共圆”在解题中的妙用(二)【例3】如图,已知△ABC内接于⊙O,AB=AC,点P、Q分别为CA、AB延长线上的点,且AP=BQ。

求证:O、A、P、Q四点共圆。

【解析】如图,连接OA、OB、OP、OQ。

(只要证明∠P=∠Q就行了)∵AB=AC,∴∠BAO=∠CAO=∠ABO,∴∠QBO=∠PAO,在△QBO和△PAO中:∵∠QBO=∠PAO,OB=OA,BQ=AP∴△QBO≌△PAO∴∠P=∠Q,即O、A、P、Q四点共圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二----四点共圆的应用
【知识点】
1、如果同一平面内的四个点在同一个圆上,则称这四个点共圆,简称“四点共圆”;
2、性质:①共圆的四个点所连成同侧共底的两个三角形的顶角相等; ②圆内接四边形的对角互补;
③圆内接四边形的一个外角等于它的内对角;
3、判定:①若两个直角三角形共斜边,则四个顶点共圆,且直角三角形的斜边为圆的直径; ②共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆; ③对于凸四边形ABCD ,若对角互补,则A 、B 、C 、D 四点共圆; ④相交弦定理的逆定理:
对于凸四边形ABCD ,其对角线AC 、BD 交于P ,若PA ·PC=PB ·PD ,则A 、B 、C 、D 四点共圆; ⑤割线定理的逆定理:
对于凸四边形ABCD ,两边AB 、DC 的延长线相交于点P ,若PB ·PA=PC ·PD ,则A 、B 、C 、D 四点共圆; 4、四点共圆的妙用:巧用四点共圆可以帮助我们在解题过程中快速地求角等、边等、相似、边长、最值等问题。

【例1】如图,点C 为线段AB 上任意一点(不与点A ,B 重合),分别以AC 、BC 为一腰在AB 的同侧作等腰△ACD 和△BCE ,CA=CD ,CB=CE ,且∠ACD=∠BCE ,连接AE 交CD 于M ,连接BD 交CE 于点N ,AE 与BD 交于点P ,连接CP 。

求证:∠APC=∠BPC
【变式1】如图,在正方形ABCD 中,E 为CD 上一动点,连接AE 交对角线BD 于点F ,过点F 作FG ⊥AE 交 BC 于点G ,求证:△AFG 为等腰直角三角形。

A
D
C
B
D
P
A
B
C
D
E F
G
【例2】如图,在正方形ABCD 中,点E 是BC 边上的点,∠AEP=90°,且EP 交正方形外角的平分线CD 于 点P , 交边CD 于点F ;求证:AE=EP
【变式2】如图,在Rt △ABC 和在Rt △DBC 中,∠BAC=∠BDC=90°,点O 、M 分别为BC 、AD 的中点, 求证:OM ⊥AD
【例3】如图,△ABC 和△EFG 均为边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M ,当△EFG 绕点D 旋转时,线段EM 长的最大值是 ;
【变式3】如图,在△ABC 中,∠ABC=90°,AB=6,BC=8,O 为AC 的中点,
过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于 E 、F ,则EF 的最小值为
【例4】如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE ,过点C 作CF ⊥BE ,垂足为点F,连接OF ,则OF 的长为
A B
E C
P
D
A
B
C
D
O
M
A
B C
D
F G
M E
A
B C
D
O
E
F
【变式4】如图,正方形ABCD 的中心为O 点,面积为25;点P 为正方形内一点,且∠OPB=45°,
PA :PB=3:4,则PB=
【检测练习】
1、如图,正方形OABC 的边长为2,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是 .
2、如图,在△ABC 中,∠
ACB=65°,BD ⊥AC 于点D ,CE ⊥AB 于点E ,则∠AED= ,∠CED= 。

3、如图,C 为半圆⊙O 上一点,AB 为直径,且AB=2a ,∠COA=60°,延长CP 交半圆于点D ,过P 点作AP 的垂线交AD 的延长线于点H ,则PH 的长度为
5、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为点O ,连接AO , 如果AB=4,AO=2
6,则AC 的长为
6、已知△ABC 为等腰直角三角形,∠C 为直角,延长CA 到D
,以AD 为直径作圆,连接BD 与⊙O 交于点E , 连接CE ,CE 的延长线交⊙O 于另一点F ,则BD :CF=
7、如图,若PA=PB ,∠APB=2∠ACB ,AC 与PB 交于点D ,且PB=5,PD=3,则PD ·DC= 8、如图,AB 为⊙O 的直径,AD 、BC 为圆的两条弦,且BD 与AC 相交于点E ;求证:AC ·AE+BD ·BE=AB 2
A
C
O
E F
C
A
B
C
D
E
A
O
B
P
H
D C
F
B C
O
E
A
B
A B
P
C
D。

相关文档
最新文档