弧长与扇形面积经典习题(有难度)

合集下载

弧长及扇形面积的计算(习题精选)

弧长及扇形面积的计算(习题精选)

弧长及扇形面积的计算(历年中考题)1如图,半径为1cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为2 如图,一枚直径为4cm 的圆形古钱币沿着直线滚动一周,圆心移动的距离是3 如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点.作△ABC 的外接圆⊙O ,则弧AC 的长等于4 (2011•桂林)如图,将边长为a 的正六边形A 1A 2A 3A 4A 5A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( )A .3324+∏a B. 3348+∏a C. 334+∏a D. 6324+∏a5 如图(甲),水平地面上有一面积为30πcm 2的灰色扇形OAB ,其中OA 的长度为6cm ,且与地面垂直.若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB 垂直地面为止,如图(乙)所示,则O 点移动的距离为( )A.20cmB. 24cmC. 10∏cmD. 30∏cm6.如图为某物体的三视图,友情提醒:在三视图中,AB=BC=CD=DA=EI=IG=NZ=MZ=KY=YL ,θ=60°,FE=GH=KN=LM=YZ .现搬运工人小明要搬运此物块边长为acm 物块ABCD 在地面上由起始位置沿直线l 不滑行地翻滚,翻滚一周后,原来与地面接触的面ABCD 又落回到地面,则此时点B 起始位置翻滚一周后所经过的长度是( )A . 3132+∏a B. 2aC. 3a ∏ D. a ∏7、如图,将边长为2cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是cm.(结果保留π)8、如图,一根木棒(AB)长为2a,斜靠在与地面(OM)垂直的墙壁(ON)上,与地面的倾斜角(∠ABO)3 )a,B端沿直线OM向右滑动到B′,则木棒为60°,当木棒A端沿N0向下滑动到A′,AA′=( 2中点从P随之运动到P′所经过的路径长为9、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50米,半圆的直径为4米,则圆心O所经过的路线长是米.10.如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).11、(2010•台州)如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O所经过的路径总长为(结果保留π)..12、(2011•东营)如图,已知点A、B、C、D均在已知圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.(1)求此圆的半径;(2)求图中阴影部分的面积13、某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.(1)写出判定扇形相似的一种方法:若,则两个扇形相似;(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧为;(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径14.(2010•温州)如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.15、(2010•邵阳)阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、弧EF及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S= (用含S1、S2的代数式表示);(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.16、如图,已知⊙O的半径为R,直径AB⊥CD以B为圆心,以BC为半径作弧CED.求弧CED与弧CAD围成的新月形ACED的面积S.17、如图,已知半圆的直径AB=12cm,点C、D是这个半圆的三等分点,求弦AC、AD有弧CD围成的阴影部分的面积.(结果用π表示)18、如图,⊙C经过原点且与两坐标轴分别交于A、B两点,点A的坐标是(0,4),M是圆上一点,∠BMO=120°,求⊙C的半径和圆心C的坐标.19、如图,在⊙M中,弦AB所对的圆心角为120度,已知圆的半径为2cm,并建立如图所示的直角坐标系.(1)求圆心M的坐标;(2)求经过A,B,C三点的抛物线的解析式;(3)设点P是⊙M上的一个动点,当△PAB为Rt△PAB时,求点P的坐标.20.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.。

专题17 与弧长和扇形面积有关的计算(原卷版)

专题17 与弧长和扇形面积有关的计算(原卷版)

九年级数学下册解法技巧思维培优专题17 与弧长和扇形面积有关的计算题型一静态中直接利用公式进行计算【典例1】(2019•安徽)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、̂的长为.E两点,则劣弧DE【典例2】(2019•德城区一模)如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为cm【典例3】(2019•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).题型二动态中弧长计算【典例4】(2019•益阳模拟)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为()A .3π2B .4π3C .4D .2+3π2 【典例5】(2019•柯桥区校级模拟)已知一个圆心角为270°扇形工件,未搬动前如图所示,A 、B 两点触地放置,搬动时,先将扇形以B 为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A 、B 两点再次触地时停止,若半圆的半径为3m ,则圆心O 所经过的路线长是 m .(结果保留π)【典例6】(2019•天心区校级自主招生)如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A .10cmB .4πcmC .72πcmD .52cm 题型三 直接利用规则图形的和、差求面积【典例7】(2019•宁夏)如图,正六边形ABCDEF 的边长为2,分别以点A ,D 为圆心,以AB ,DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是( )A .6√3−43πB .6√3−83πC .12√3−43πD .12√3−83π 【典例8】(2019•南岸区校级模拟)如图,在边长为8的菱形ABCD 中,∠BAD =45°,BE ⊥AD 于点E ,以B 为圆心,BE 为半径画弧,分别交AB 、CB 于点F 、G ,则图中阴影部分的面积为 (结果保留π)【典例9】(2019•河南)如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2√3,则阴影部分的面积为.【典例10】(2019•慈溪市期中)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2√3),OC与⊙D交于点C,∠OCA=30°.求(1)⊙D的半径;(2)圆中阴影部分的面积(结果保留根号和π)题型四利用割补法求面积【典例11】(2019•凉山州)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A .π2B .2πC .178πD .198π【典例12】(2019•青山区一模)如图,在扇形AOB 中,∠AOB =90°,AĈ=BC ̂,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2√2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣4【典例13】(2019•南岸区校级月考)如图,矩形ABCD 中,AB =2√2,BC =1,以AB 为直径作⊙O ,与CD 交于E 、F 两点,则图中阴影部分的面积为( )A .π4−√2B .π2−√2C .π4−1D .π2−1 题型五 利用等面积法求面积【典例14】(2019•包头模拟)如图,等边三角形ABC 内接于⊙O ,若⊙O 的半径为2,则图中阴影部分的面积等于( )A .π3B .2π3C .4π3D .2π【典例15】(2019•瑶海区二模)如图,半圆O 的直径AB =2,弦CD ∥AB ,CD =1,则图中阴影部分的面积为【典例16】(2019•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2√3.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)巩固练习1.(2019•滨海新区期末)在半径为12的⊙O中,150°的圆心角所对的弧长是()A.24πB.12πC.10πD.5π2.(2019•建邺区一模)如图,在扇形纸片AOB中,OA=10,∠AOB=36°,OB在桌面内的直线l上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12πB.11πC.10πD.10π+5√5−5 3.(2019•丰润区二模)如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B,C 的对应点分别为点D,E,则阴影部分的面积为()A .√3+π3B .√3−π3C .π3D .π−√34.(2020•武汉模拟)如图,在边长为2的正方形ABCD 中,以点D 为圆心,AD 为半径画AĈ,再以BC 为直径画半圆,若阴影部分①的面积为S 1,阴影部分②的面积为S 2,则图中S 2﹣S 1的值为( )A .3π2−4B .3π2+4C .3π4−2D .3π4+25.(2019•保康模拟)如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1﹣S 2为( )A .12−13π4B .12−9π4C .6+13π4D .66.(2019•海安市期末)下列是关于四个图案的描述:图1所示是太极图,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.这四个图案中,阴影部分的面积小于该图案外圈大圆面积一半的是( )A .图1和图3B .图2和图4C .图2和图3D .图1和图47.(2019•官渡区二模)如图,⊙O 是正八边形ABCDEFGH 的外接圆,连接AE ,CE ,若⊙O 的半径为2,则图中阴影部分的面积为( )A .π2+1B .π+2C .π+4D .2π+18.(2019•寿光市模拟)如图,将半径为1、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A 'O 'B '处,则顶点O 经过的路线总长为 .9.(2019•江干区期末)如图,已知正三角形ABC ,分别以A 、B 、C 为圆心,以AB 长为半径画弧,得到的图形我们称之为弧三角形.若正三角形ABC 的边长为1,则弧三角形的周长为 .10.(2019•西湖区校级月考)圆心角为120°,半径为6的弧的弧长是 .11.(2019•道里区期末)一个扇形的半径为6,弧长为3π,则此扇形的圆心角为 度.12.(2019•静安区二模)如图,点A 、B 、C 在半径为2的⊙O 上,四边形OABC 是菱形,那么由BĈ和弦BC 所组成的弓形面积是 .13.(2019•朝阳区校级期末)已知扇形的面积为4π,半径为6,则此扇形的圆心角为 度.14.(2019•开封二模)运用图形变化的方法研究下列问题:如图EF 是⊙O 的直径,CD 、AB 是⊙O 的弦,且AB ∥CD ∥EF ,EF =20,CD =16,AB =12,则图中阴影部分的面积是 .15.(2019•成都校级月考)已知:△ABC 内接于⊙O ,AB =AC ,D 是BĈ一点,E 是DB 延长线上一点,AE =AD .(1)如图1,求证:BE =CD ;(2)如图2,若AB =2,∠BAC =90°,BD ̂=12CD ̂,求阴影部分的面积.16.(2019•玄武区期末)如图,AB 是⊙O 的弦,AB =4,点P 在AmB ̂上运动(点P 不与点A 、B 重合),且∠APB =30°,设图中阴影部分的面积为y .(1)⊙O 的半径为 ;(2)若点P 到直线AB 的距离为x ,求y 关于x 的函数表达式,并直接写出自变量x 的取值范围.。

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

01已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8【考点】圆锥的计算.【分析】根据圆锥的侧面展开图的弧长=2πr=,求出r以及圆锥的高h即可解决问题.【解答】解:设圆锥的底面半径为r,高为h.由题意:2πr=,解得r=2,h==4,所以tanα==,圆锥的主视图的面积=×4×4=8,表面积=4π+π×2×6=16π.∴选项A、B、C错误,D正确.故选D.【点评】本题考查圆锥的有关知识,记住侧面展开图的弧长=2πr=,圆锥的表面积=πr2+πrl是解决问题的关键,属于中考常考题型.02如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S 答案:B 解析如图,过点C 作CF 垂直AO 于点F,过点D 作DE 垂直CO 于点E, ∵CO=AO=1,∠COA=45°所以CF=FO=22,∴S △AFC=22121⨯⨯42=则面积最小的四边形面积为D 无限接近点C 所以最小面积无限接近42但是不能取到∵△AOC 面积确定,∴要使四边形AODC 面积最大,则要使△COD 面积最大。

专题3弧长和扇形面积(专项练习含答案

专题3弧长和扇形面积(专项练习含答案

专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。

弧长以及扇形面积的计算-练习题 含答案

弧长以及扇形面积的计算-练习题 含答案

1 / 4弧长以及扇形面积的计算副标题1. 如图,在中,,,以BC 的中点O为圆心分别与AB ,AC 相切于D ,E 两点,则的长为A.B.C.D.【答案】B【解析】解:连接OE 、OD ,设半径为r ,分别与AB ,AC 相切于D ,E 两点,,,是BC 的中点,是中位线,,, 同理可知:,,,由勾股定理可知,,故选:B.连接OE 、OD ,由切线的性质可知,,由于O 是BC 的中点,从而可知OD 是中位线,所以可知,从而可知半径r 的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE 、OD 后利用中位线的性质求出半径r 的值,本题属于中等题型.2. 一个扇形的弧长是,面积是,则此扇形的圆心角的度数是A. B. C. D.【答案】B【解析】解:一个扇形的弧长是,面积是,,即,解得:,,解得:,故选B利用扇形面积公式1求出R的值,再利用扇形面积公式2计算即可得到圆心角度数.此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.3.的圆心角对的弧长是,则此弧所在圆的半径是A. 3B. 4C. 9D. 18【答案】C【解析】解:根据弧长的公式得到:解得.故选C.根据弧长的计算公式,将n及l的值代入即可得出半径r的值.此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般.二、填空题(本大题共1小题,共3.0分)4.如图,已知等边的边长为6,以AB为直径的与边AC、BC分别交于D、E两点,则劣弧的长为______.【答案】【解析】解:连接OD、OE,如图所示:是等边三角形,,,,、是等边三角形,,,,的长;故答案为:.连接OD、OE,先证明、是等边三角形,得出,求出,再由弧长公式即可得出答案.3 / 4本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.三、解答题(本大题共1小题,共8.0分)5. 如图,AB 为半圆O 的直径,AC 是的一条弦,D 为的中点,作,交AB 的延长线于点F ,连接DA .求证:EF 为半圆O 的切线;若,求阴影区域的面积结果保留根号和 【答案】证明:连接OD ,为的中点,,,,,,,,即,,为半圆O 的切线;解:连接OC 与CD ,,,, 又,,,,为等边三角形,,,,,, 在中,,, 在中,,,,,, 由,是等边三角形,,,, 故,.【解析】直接利用切线的判定方法结合圆心角定理分析得出,即可得出答案;直接利用得出,再利用,求出答案.此题主要考查了切线的判定与性质以及扇形面积求法等知识,得出是解题关键.。

专题 弧长及扇形面积的计算(学生版)

专题  弧长及扇形面积的计算(学生版)

专题41弧长及扇形面积的计算题型一弧长的计算1.如图,已知O 的直径6AB =,点C 、D 是圆上两点,且30BDC ∠=︒,则劣弧BC 的长为()A .πB .2πC .32πD .2π2.如图,正六边形ABCDEF 内接于O ,O 的半径为1,则AB 的长为()A .6πB .3πC .2πD .π3.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为150︒,AB 的长为30cm ,BD 的长为15cm ,则DE 的长为()A .254πcm B .252πcm C .25πcm D .50πcm4.如图,在44⨯的正方形网格中,每个小正方形的边长都为1,AOB ∆的三个顶点都在格点上,现将AOB ∆绕点O 逆时针旋转90︒后得到对应的COD ∆,则点A 经过的路径弧AC 的长为()A .32πB .πC .2πD .3π5.如图,PA、PB是O的切线,切点分别为A、B,若2OA=,60P∠=︒,则AB的长为()A.23πB.πC.43πD.53π6.如图,ABCD中,70B∠=︒,6BC=,以AD为直径的O交CD于点E,则DE的长为()A.13πB.23πC.76πD.43π7.如图,“凸轮”的外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段等弧组成.已知正三角形的边长为a,则“凸轮”的周长等于()A.aπB.2aπC.12aπD.13aπ8.如图,以O为圆心的圆与直线3y x=-+交于A、B两点,若OAB∆恰为等边三角形,则弧AB的长度为()A.23πB.πC2D.13π9.如图,半圆O的直径4AB=,P,Q是半圆O上的点,弦PQ的长为2,则AP与QB的长度之和为.10.如图,花园边墙上有一宽为1m 的矩形门ABCD ,量得门框对角线AC 的长为2m ,现准备打掉部分墙体,使其变成以AC 为直径的圆弧形门,则打掉墙体后,弧形门洞的周长(含线段)BC 为.题型二扇形面积的计算11.如图,边长为2的正方形ABCD 内接于O ,则阴影部分的面积为()A .12π+B .12π-C .14π+D .14π-12.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若2AC BC ==,则图中阴影部分的面积是()A .4πB .124π+C .2πD .122π+13.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为()A .24π-B .48π-C .28π-D .44π-14.如图,在Rt ABC ∆中,90ACB ∠=︒,5AB =,2BC =,以点A 为圆心,AC 的长为半径画弧,交AB 于点D ,交AC 于点C ,以点B 为圆心,AC 的长为半径画弧,交AB 于点E ,交BC 于点F ,则图中阴影部分的面积为()A .8π-B .4π-C .24π-D .14π-15.如图,正三角形ABC 的边长为4cm ,D ,E ,F 分别为BC ,AC ,AB 的中点,以A ,B ,C 三点为圆心,2cm 长为半径作圆.则图中阴影部分的面积为()A .2(23)cm π-B .2(3)cm π-C .2(432)cm π-D .2(223)cm π-16.如图,在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,2BC =,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,则阴影部分的面积是()A .2233π-B .2433-C .4233π-D .23π17.如图所示的图案(阴影部分)是这样设计的:在ABC ∆中,2AB AC cm ==,30ABC ∠=︒,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是.(结果保留)π18.如图,在扇形OAB 中,90AOB ∠=︒,半径2OA =.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则整个阴影部分的面积为.19.如图,在ABC ∆中,90C ∠=︒,AC BC =,斜边42AB =,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90︒的扇形OEF ,EF 经过点C ,则图中阴影部分的面积为()A .24π-B .4π-C .2π-D .48π-20.如图,在平行四边形ABCD 中,6BC =,BC 边上高为4,120B ∠=︒,M 为B C 中点,若分别以B 、C 为圆心,BM 长为半径画弧,交A B ,CD 于E ,F 两点,则图中阴影部分面积是()A .243π-B .123π-C .9242π-D .3242π-21.如图,在ABC ∆中,AB AC =,以AB 为直径的O 分别与BC ,AC 交于点D ,E ,过点D 作DF AC ⊥,垂足为点F ,若O 的半径为43,15CDF ∠=︒,则阴影部分的面积为()A .16123π-B .16243π-C .20123π-D .20243π-22.如图,在菱形ABCD 中,60D ∠=︒,2AB =,以B 为圆心、BC 长为半径画AC ,点P 为菱形内一点,连接PA ,PB ,PC .当BPC ∆为等腰直角三角形时,图中阴影部分的面积为()A .23132π+-B .23132π--C .2πD .3122π--23.如图,正方形ABCD 的边长为2,O 为对角线的交点,点E ,F 分别为BC ,AD 的中点.以C 为圆心,2为半径作圆弧BD ,再分别以E ,F 为圆心,1为半径作圆弧BO ,OD ,则图中阴影部分的面积为()A .1π-B .3π-C .2π-D .4π-24.如图,在菱形ABCD 中,60B ∠=︒,2AB =,把菱形ABCD 绕BC 的中点E 顺时针旋转60︒得到菱形A B C D '''',其中点D 的运动路径为DD ',则图中阴影部分的面积为.25.如图,在矩形ABCD 中,23AB =,4BC =,以点A 为圆心,AD 长为半径画弧交BC 于点E ,连接AE ,则阴影部分的面积为()A .833π-B .2433π-C .2633π-D .8663π26.如图,在菱形ABCD 中,以AB 为直径画弧分别交BC 于点F ,交对角线AC 于点E ,若4AB =,F 为BC 的中点,则图中阴影部分的面积为()A .2233π-B .23C .4333π-D .23π题型三圆锥27.已知圆锥底面半径为4cm ,侧面积为232cm π,设圆锥的母线与高的夹角为θ,如图,则tan θ的值()A .33B 3C .12D .1428.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为.29.圆柱体内挖去一个与它不等高的圆锥,如其实物图和其剖面图所示.锥顶O 到AD 的距离为1,30OCD ∠=︒,4OC =,则挖去后该物体的表面积是.30.如图,圆锥的轴截面ABC ∆是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径4BC cm =,母线6AB cm =,则由点B 出发,经过圆锥的侧面到达母线AC 的最短路程是.31.底面半径为3,母线长为4的圆锥的侧面积为.(结果保留)π32.已知圆锥的底面周长是2π分米,母线长为1分米,则圆锥的侧面积是平方分米.33.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120︒的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m .34.用一个半径为4,圆心角度数为120︒的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为.35.如图,圆锥的底面半径6r =,高8h =,则圆锥的侧面积是()A .15πB .30πC .45πD .60π36.用一个圆心角为180︒,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.37.如图,从一块直径是4m 的圆形铁皮上剪出一个圆心角为60︒的扇形,如果剪出来的扇形围成一个圆锥,那么围成的圆锥的高是()A .3mB 23C 105D 43。

弧长与扇形面积练习题与答案

弧长与扇形面积练习题与答案

知识点:1、 弧长公式: l n R(牢记)180在半径是 R 的圆中, 360 度的圆心角多对的弧长就是圆的周长 Cn R2 12、扇形面积公式: S扇形=或 S 扇形= 1lR (牢记) 360 23、圆锥的侧面积和全面积(难点) 圆锥的侧面展开图形是一个扇形,这个扇形的半径是圆锥的母线长R ,扇形的弧长是圆锥底面圆的周长。

典型例题1.已知圆锥的高是 30cm ,母线长是 50cm ,则圆锥的侧面积是 【关键词】圆锥侧面积、扇形面积答案:22000 cm 2;2. (2010 年福建省晋江市) 已知:如图,有一块含 30 的直角三角板 OAB 的直角边长 BO的长恰与另一块等腰直角三角板 ODC 的斜边 OC 的长相等,把该套三角板放置在平面 直角坐标系中,且 AB 3.(1) 若双曲线的一个分支恰好经过点A ,求双曲线的解析式;(2) 若把含 30 的直角三角板绕点 O 按顺时针方向旋转后,斜边 OA 恰好与 x 轴重叠,点 A 落在点 A ,试求图中阴影部分的面积 (结果保留 ).弧长和扇形面积答案:解: (1) 在 Rt OBA 中, AOB 30 , AB 3,OBcot AOB ,AB∴ OB AB cot30 3 3 ,∴点 A 3,3 3设双曲线的解析式为 ykk 0x∴3 3 k, k 9 393 ,则双曲线的解析式为 y3x(2) 在 Rt OBA 中,AOB 30 , AB 3 ,AB3sin AOB , sin30 ,OAOA∴ OA 6.关键词】反比例函数、扇形面积 yBO C AyA由题意得: AOC 60 ,260 62360在 Rt OCD 中, DOC 45 , OC OB 3 3 ,OD OC cos45332 3622212 1 3627.S ODC OD2224S阴=S扇形 AOA'SODC6 2743. (2010 年浙江省东阳市)在如图的方格纸中,每个小方格 都是边长为 1 个单位的正方形, △ABC 的三个顶点 都在 格点上(每个小方格的顶点叫格点) .( 1)如果建立直角坐标系,使点 B 的坐标为(- 5,2 ),点C 的坐标为(- 2, 2),则点 A 的坐标为 ▲ ; (2) 画出 △ABC 绕点P顺时针旋转 90 后的△A 1B1C,并求线段 BC 扫过的面积 .关键词:扇形面积公式 答案:(1)A(-4,4)(2)图略线段 BC 扫过的面积= (4 -1 )= 15444、( 2010 福建德化) 已知圆锥的底面半径是 3cm ,母线长为 6cm ,则侧面积为__________________________________________________________ cm 2.(结果保留 π) 关键词:圆锥侧面积答案: 185、已知圆锥的底面半径为 关键词:圆锥的高 3,侧面积为 15 ,则这个圆锥的高为 ▲ 答案: 4S扇形 AOA'6(2010年门头沟区).如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为 AB 的等腰梯形,上底CD的端点在圆周上,且 CD=10cm.求图中阴影部分的面积.【关键词】圆、梯形、阴影部分面积答案】 解:连结 OC , OD ,过点 O 作 OE ⊥CD 于点 E. ∵OE ⊥CD ,∴CE=DE=5, ∴OE= CO 2CE 2102 52 =5 3,∵∠ OED=9°0 ,DE= 1 OD , ∴∠DOE=3°0 ,∠DOC=6°0 . 2S△ OCD =2·OE ·CD= 25 3 (cm 2)50 2∴S 阴影 = S 扇形 - S △OCD = ( π- 25 3) cm3 50∴阴影部分的面积为 ( 530π- 25 3) cm 2.60102∴ S扇形36050(cm 2)33分7. (2010 年山东省济南市)如图,四边形 OABC 为菱形,点 ⌒B 、C 在以点 O 为圆心的 EF 上,若 OA =1,∠ 1=∠2,则扇形 OEF 的面积为 π π πA. B. C. 6 4 3 【关键词】扇形的面积 【答案】 C D.2πO8. ( 2010年台湾省) 如图(十三),扇形 AOB 中, OA=10, AOB =36 。

《弧长及扇形面积》练习题(含答案)

《弧长及扇形面积》练习题(含答案)

ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。

2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。

4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。

5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。

6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。

7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。

②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。

8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。

9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。

10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。

扇形的弧长与面积 单选题

扇形的弧长与面积 单选题

D. 4
14.一个半径为 的扇形,他的周长是 ,则这个扇形所含的弓形的面积是( )
A.
B.
C.
D.
15.已知扇形的周长为 6cm,面积为 2cm2 , 则扇形的圆心角的弧度数为 ( )
A. 1
B. 4
C. 1 或 4
D. 2 或 4
16.已知扇形 OAB 的圆心角为 ै⺂ ,其面积是 2cm2 则该扇形的周长是( )cm。
A.
B. 2π
C. ै
D. ै
8.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:
弧田面积= 弦 矢 矢 ,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”
指半径长与圆心到弦的距离之差。现有圆心角为 ,半径等于 4 米的弧田.下列说法不正确的是( )
A. π
B. π
C. π
D. D. π
35.中心角为 ै 的扇形 ै ,它的弧长为 ,则三角形 ै 的内切圆半径为( )
A.
B.
C.
D.
36.点 P 从点 A(1,0)出发,沿单位圆 x2+y2=1 逆时针方向运动 弧长到达点 Q,则点 Q 的坐标是( )
A. (﹣ , ) B. ( , ) C. (﹣ ,﹣ ) D. (﹣ , )
现有圆心角为 ,半径等于 米的弧田.按照上述方法计算出弧田的面积约为( )
A. 平方米
B. 平方米
C. 平方米
D. ै 平方米
32.某扇形的圆心角为 ै ,所在圆的半径为 ,则它的面积是( )
A.
B. ै
C.
D.
33.弧长为 3,圆心角为 ै⺂ 的扇形面积为( )

专题3.8 弧长和扇形面积(专项训练)(解析版)

专题3.8 弧长和扇形面积(专项训练)(解析版)

专题3.8 弧长和扇形面积(专项训练)1.(2021•天心区一模)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,则纸扇外边缘弧BC长为 cm.【答案】【解答】解:纸扇外边缘弧BC的长==(cm),故答案为:.2.(2021•成都模拟)已知圆上一段弧长为4πcm,它所对的圆心角为120°,则该圆的半径为 cm.【答案】6【解答】解:设圆的半径为rcm,则=4π,解得,r=6,故答案为:6.4.(2020秋•镇江期末)分针长为2厘米,经过25分钟,分针的外端点绕钟面轴心转过的弧长= 厘米.(结果保留π)【答案】【解答】解:分针25分针旋转了30°×5=150°,分针的外端点绕钟面轴心转过的弧长==(cm),故答案为:.5.(2020秋•金寨县期末)如图,在正方形网格中建立平面直角坐标系,一条圆弧经过点A(0,4),B(﹣4,4),C(﹣6,2).(1)若该圆弧所在圆的圆心为D,则AD的长为 .(2)该圆弧的长为 .【答案】(1)2;(2)π.【解答】解:(1)分别作线段BA和BC的垂直平分线EF、MN,则直线EF和直线MN 的交点为D,则D为已知弧的圆心,如图,∵A(0,4),B(﹣4,4),∴OA=4,AB=4,∴OD=2,在Rt△AOD中,由勾股定理得:AD===2,故答案为:2;(2)连接AC、CD,∵A(0,4),B(﹣4,4),C(﹣6,2),OD=2,∴由勾股定理得:CD==,AD==,AC==,∴CD2+AD2=AC2,∴∠ADC=90°,∴圆弧的长度是=π.6.(2020秋•历城区期末)如图,已知等边三角形ABC,分别以点A,B,C为圆心,以AB的长为半径作、、,三段弧所围成的图形就是一个曲边三角形,如果这个曲边三角形的周长为2π,那么这个这个等边三角形ABC的边长为 .【答案】2【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,设AB=BC=AC=R,∵这个曲边三角形的周长为2π,∴++=2π,解得:R=2,即这个等边三角形的边长是2,故答案为:2.7.(2022•河南模拟)如图,水平地面上有一面积为30πcm2的扇形AOB,半径OA=6cm,且OA与地面垂直在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O 点移动的距离为 .【答案】10πcm【解答】解:设优弧AB的长是l.根据扇形的面积公式,得l===10π(cm).故答案为10πcm.8.(2021秋•房山区期末)如果一个扇形的半径是1,圆心角为120°,则扇形面积为 .【答案】【解答】解:这个扇形的面积==.故答案是:.9.(2021秋•岚皋县期末)如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB 长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.【答案】【解答】解:∵AB =30cm ,BD =18cm ,∴AD =AB ﹣BD =30﹣18=12(cm ),∴纸扇上贴纸部分的面积S =S 扇形BAC ﹣S 扇形DAE=﹣=300π﹣48π=252π(cm 2).10.(2021秋•梅里斯区期末)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°.把△ABC 绕点A 按顺时针方向旋转60°后得到△AB ′C ′,若AB =4,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 .(结果保留π).【答案】2π【解答】解:扇形BAB ′的面积是:=,在直角△ABC 中,BC =AB •sin60°=4×=2,AC =AB =2,S △ABC =S △AB ′C ′=AC •BC =×2×2=2.扇形CAC ′的面积是:=,则阴影部分的面积是:扇形BAB ′的面积+S △AB ′C ′﹣S △ABC ﹣扇形CAC ′的面积=﹣=2π.故答案为:2π.11.(2021秋•亭湖区期末)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的公式为:弧田面积=(弦×矢+矢2).如图,弧田由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角∠AOB 为120°,弦长AB =2m 的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(取π近似值为3,近似值为1.7)【解答】解:(1)∵OD ⊥AB ,OD 为半径,∴AC =AB =×2=(m ),∠AOC =∠AOB =×120°=60°,在Rt △ACO 中,∠OAC =30°,∴设OC =x ,则AO =2x ,∴x 2+=(2x )2,解得:x =1或﹣1(不符合题意,舍去),∴OA =2m ,∴弧田的实际面积=S 扇形AOB ﹣S △OAB=﹣×2×1=(﹣)m 2,∴弧田的实际面积为(﹣)m 2;(2)∵圆心到弦的距离等于1,∴矢长为1,∴弧田面积=(2×1+12)=(+)m 2,∴两者之差为:﹣﹣(+)≈﹣1.7﹣1.7﹣=0.1(m 2).12.(2022•德阳)一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是( )A.16πB.52πC.36πD.72π【答案】C【解答】解:如图,AB=8,SA=SB=9,所以侧面展开图扇形的弧BC的长为8π,由扇形面积的计算公式得,圆锥侧面展开图的面积为×8π×9=36π,故选:C.13.(2022•遂宁)如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是( )A.cm2B.cm2C.175πcm2D.350πcm2【答案】C【解答】解:在Rt△AOC中,AC==25(cm),所以圆锥的侧面展开图的面积=×2π×7×25=175π(cm2).故选:C.14.(2022•昭化区模拟)如图,聪聪用一张半径为6cm、圆心角为120°的扇形纸片做成一个圆锥,则这个圆锥的高为( )A.B.C.D.【答案】A【解答】解:设这个圆锥的底面半径为rcm,根据题意得2πr=,解得r=2.所以这个圆锥形的高==4(cm).故选:A.15.(2022•周村区一模)如图,将半径为15cm的圆形纸片剪去圆心角为144°的一个扇形,用剩下的扇形围成一个圆锥的侧面(接缝忽略不计),这个圆锥的高是( )A.8cm B.12cm C.20cm D.18cm【答案】B【解答】解:设圆锥的底面圆的半径为rcm,根据题意得2πr=解得r=9,所以圆锥的高==12(cm).故选:B.16.(2022•潜江模拟)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是( )A.3B.4C.5D.6【答案】D【解答】解:设该圆锥的母线长为l,根据题意得×2π×3×l=18π,解得l=6,即该圆锥的母线长是6.故选:D.17.(2022•西山区一模)如图,从一块半径为2m的圆形铁皮上剪出一个扇形ABC,且经过圆心O.如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为( )mA.2B.1C.D.【答案】C【解答】解:连接OA、OB、OC,如图,∵AB=AO=AC=OB=OC,∴△ABO和△ACO都为等边三角形,∴∠OAB=∠OAC=60°,∴∠BAC=120°,设该圆锥的底面圆的半径为rm,根据题意得2πr=,解得r=,即该圆锥的底面圆的半径为m.故选:C.18.如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,OC交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=,求图中阴影部分的面积.【解答】解:(1)直线BC与⊙O的位置关系是相切,理由是:连接OB,∵CP=CB,OA=OB,∴∠A=∠OBA,∠CPB=∠CBP,∵∠APO=∠CPB,∴∠APO=∠CBP,∴∠A+∠APO=∠CBP+∠OBA,∵OC⊥OA,∴∠AOP=90°,∴∠CBP+∠OBA=∠A+∠APO=180°﹣90°=90°,即∠OBC =90°,∴OB ⊥BC ,∵OB 过O ,∴直线BC 与⊙O 的位置关系是相切;(2)∵∠AOP =90°,∠A =30°,OP =,∴AP =2OP =2,AO ===3,即OB =3,∵∠A =∠OBA =30°,∴∠AOB =180°﹣∠A ﹣∠OBA =120°,∵∠AOC =90°,∴∠COB =∠AOB ﹣∠AOC =120°﹣90°=30°,∴OC =2BC ,由勾股定理得:OC 2=CB 2+OB 2,即BC 2=(2BC )2+32,解得:BC =,∴阴影部分的面积S =S △OBC ﹣S 扇形OBD =3×﹣=﹣π.。

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案(共29页)-本页仅作为预览文档封面,使用时请删除本页-弧长与扇形面积一、选择题1.(2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016兰州,12,4分)如图,用一个半径为 5cm 的定滑轮带动重物上升,滑轮上一点 P 旋转了 108º,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)πcm (B) 2πcm(C) 3πcm (D) 5πcm【答案】:C【解析】:利用弧长公式即可求解【考点】:有关圆的计算3.(2016福州,16,4分)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016·四川资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC 的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△A B C﹣S扇形C B D即可得出结论.【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△A B C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.5. (2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6. (2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2π B.πC.πD.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.7.(2016吉林长春,7,3分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C. D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.(2016·广东深圳)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A.42-πB.84-πC.82-πD.44-π 答案:A考点:扇形面积、三角形面积的计算。

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习

【精品试卷】人教版数学九年级上册《24.4 弧长和扇形面积》练习
的圆弧与AE交于,则弧AH的弧长为( )
13
A.
6
13
π
B.
4
π
5
C.
3
π
5
D.
2
π

3.把一个弧长AC为10π cm的扇形AOC围成一个圆锥,测得母线OA = 13cm,则圆锥的
高ℎ为( )
A. 12cm
B. 10cm
C. 6cm
D. 5cm
4.如图,正方形ABCD的边长为8,以点为圆心,AD为半径,画圆弧DE得到扇形
∴ 由勾股定理得:ℎ = 12.
故选:.
根据扇形的弧长求得圆锥的底面半径,然后利用勾股定理求得高即可.
考查了圆锥的计算,解答该题的关键是了解圆锥的底面周长等于扇形的弧长,难度不
大.
4.【答案】D;
【解析】解:设圆锥的底面圆的半径为,
根据题意可知:
AD = AE = 8,∠DAE = 45°,
答案和解析
1.【答案】B;
【解析】解:设弧所在圆的半径为 cm,
135πr
由题意得, 180
= 2π × 3 × 5

解得, = 40.
故选:.
设出弧所在圆的半径,由于弧长等于半径为3cm的圆的周长的5倍,所以根据原题所给
出的等量关系,列出方程,解方程即可.
解决本题的关键是熟记圆周长的计算公式和弧长的计算公式,根据题意列出方程.
故选:.
从2:00到4:00,这根分针的尖走了2圈,根据圆的周长 = 2πr,计算即可.
此题主要考查弧长的计算,解答该题的关键是理解题意,灵活运用所学知识解决问
题.
10.【答案】B;
阴影 = 2扇形 ‒ 正方形 = 2 ×

九年级数学:弧长及扇形的面积练习(含答案)

九年级数学:弧长及扇形的面积练习(含答案)

九年级数学:弧长及扇形的面积练习(含答案)1.如果扇形的半径为r ,圆心角为n °,扇形的弧长为l ,那么扇形的面积S 扇形=________=________.2.求不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等,把不规则图形转化为规则图形求解.A 组 基础训练1.一条弧所对的圆心角为90°,半径为R ,则这条弧所对的扇形面积为( ) A.πR 2 B.πR 22 C.πR 4 D.πR 242.已知⊙O 的半径OA =6,扇形OAB 的面积等于12π,则AB ︵所对的圆周角的度数是( ) A .120° B .90° C .60° D .30° 3.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( )A .4B .2C .4πD .2π 4.(内江中考)如图,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )第4题图A .π-4 B.23π-1 C .π-2 D.23π-25.已知扇形的面积是24πcm 2,弧长是8πcm ,则扇形的半径是________cm.6.若面积相等的两个扇形的圆心角分别是60°和45°,则这两个扇形的半径之比为________.7.如图,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为________个平方单位.第7题图8.(河北中考)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S 扇形=________cm 2.第8题图9.如图,一水平放置的圆柱形油桶的截面半径是R ,油面高为32R ,求截面上有油的弓形(阴影部分)的面积.第9题图10.如图,AB 为半圆O 的直径,C 、D 是AB ︵上的三等分点,若⊙O 的半径为2,E 是直径AB 上任意一点,求图中阴影部分的面积.第10题图B 组 自主提高8.在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ︵,如图,若AB =4,AC =2,S 1-S 2=π4,则S 3-S 4的值是( )第11题图A.29π4 B.23π4 C.11π4 D.5π412.(咸宁中考)如图,在扇形OAB 中,∠AOB =90°,点C 是AB ︵上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E.若DE =1,则扇形OAB 的面积为________.第12题图13.如图,以正三角形ABC 的AB 边为直径画⊙O ,分别交AC ,BC 于点D ,E ,AB =6cm ,求DE ︵的长及阴影部分的面积.第13题图C组综合运用14.已知点P是正方形ABCD内的一点,连结PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置,如图所示.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中,边PA所扫过区域的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.第14题图参考答案3.8 弧长及扇形的面积(第2课时)【课堂笔记】 1. n πr 2360 12lr【课时训练】 1-4. DCCC 5. 6 6. 3∶2 7. π 8. 49. 连结OA,OB.S 阴=S 扇形OAB 阴影+S △AOB ,∵∠AOB =120°,∴S 扇形OAB 阴影=240πR 2360,S △AOB =12×12R×3R,∴S 阴=23πR 2+34R 2.10. 连OC 、OD 、CD,∵AB 为半圆的直径,C 、D 为弧AB ︵的三等分点,∴∠AOC =∠COD=∠BOD =13×180°=60°,而OC =OD,∴△OCD 为等边三角形,∴∠OCD =60°,∴CD ∥AB,∴S △ECD =S △OCD ,∴阴影部分的面积=S 扇形OCD =60·πR 2360=16π·22=23π.11. D 12.π213. 连结OD,OE,AE,DE.第13题图∵△ABC 是等边三角形,AB 是直径,∴AE ⊥BC,BE =OB,∠B =60°,∴OE 平行且等于AD,OA =OE,∴四边形OADE 是菱形,∴∠DOE =∠AOD=∠OBE=60°,∵AB =6cm ,∴OD =OE =BE =3cm ,∴AE =62-32=33(cm ),∴△OBE 中底边BE 上的高以及△AOD 中底边OD 上的高都为:332cm ,∴弧DE 的长=60180π·3=π(cm ),S 阴影=S △OBE +S △AOD +S扇形ODE=12×3×332+12×3×332+60π·9360=(932+32π)cm 2. 14.(1)根据旋转变换,AP 扫过的面积为扇形BAC 与扇形BPP′的差,∴S =90πa 2360-90πb 2360=π4(a 2-b 2); (2)连结PP′,则PP′=BP 2+BP′2=42,∵BP =BP′,∠PBP ′=90°,∴∠BP ′P =45°,∵∠BP ′C =∠BPA=135°,∴∠PP ′C =90°,∴△PP ′C 是Rt △,∴PC =PP′2+P′C 2=6.。

《弧长和扇形区域面积计算》练习题

《弧长和扇形区域面积计算》练习题

《弧长和扇形区域面积计算》练习题弧长和扇形区域面积计算练题本文将提供一些关于弧长和扇形区域面积计算的练题,帮助您巩固相关知识。

弧长计算1. 已知一个圆的半径为5cm,求其所对的弧长。

解答:弧长可以通过以下公式计算:弧长 = 半径 ×弧度其中,弧度是弧所对应的圆心角的度数除以360度并乘以2π。

假设所对的圆心角为60度,则弧度为60/360 × 2π = π/3。

因此,弧长= 5cm × π/3 ≈ 5.24cm。

2. 若一个圆的弧长为8π cm,求其所对的圆心角的度数。

解答:由弧长的公式可得:弧长 = 半径 ×弧度设所对的圆心角的度数为x度,则弧度为x/360 × 2π。

代入已知信息可得:8π = 半径× x/360 × 2π化简得到:x = 8 × 360 / 2 = 144度因此,所对的圆心角的度数为144度。

扇形区域面积计算3. 已知一个扇形区域的半径为6cm,圆心角为60度,求其面积。

解答:扇形区域的面积可以通过以下公式计算:面积 = 1/2 ×半径^2 ×弧度其中,弧度是圆心角的度数除以360度并乘以2π。

假设圆心角为60度,则弧度为60/360 × 2π = π/3。

因此,面积= 1/2 × 6^2 × π/3 = 18π ≈ 56.55cm²。

4. 若一个扇形区域的面积为12π cm²,圆心角为x度,求其半径。

解答:根据扇形区域面积的公式可得:面积 = 1/2 ×半径^2 ×弧度设圆心角的度数为x度,弧度为x/360 × 2π。

代入已知信息可得:12π = 1/2 × 半径^2 × x/360 × 2π化简得到:半径^2 = 24 / (x/360 × 2)因此,半径= √(24 / (x/360 × 2))。

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)

弧长公式、扇形面积公式及其应用(含经典习题)说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

(2)弓形的周长=弦长+弧长(3)弓形的面积图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积知识小结:圆锥与圆柱的比较名称圆锥圆柱图形图形的形成过程由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。

由一个矩形旋转得到的,如矩形ABCD绕直线AB旋转一周。

图形的组成一个底面和一个侧面两个底面和一个侧面侧面展开图的特征扇形矩形面积计算方法【典型例题】例 1. (2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是()A. B. C. D.例2. (2003.福州)如图所示,已知扇形AOB 的圆心角为直角,正方形OCDE内接于扇形AOB,点C,E,D分别在OA,OB及AB弧上,过点A作AF⊥ED交ED的延长线于F,垂足为F,如果正方形的边长为1,那么阴影部分的面积为()例3. 如图所示,直角梯形ABCD中,∠B=90°,AD∥BC,AB=2,BC=7,AD=3,以BC为轴把直角梯形ABCD旋转一周,求所得几何体的表面积。

弧长与扇形面积的押轴题解析汇编二弧长与扇形面积

弧长与扇形面积的押轴题解析汇编二弧长与扇形面积

弧长与扇形面积的押轴题解析汇编二弧长与扇形面积 一、选择题3.(2011年内蒙古呼和浩特,3,3)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为( ) A.2 B.4 C.2π D.4π解题思路】根据圆柱的侧面积的计算公式:圆柱的侧面积=底面周长⨯高.【答案】D【点评】本题考查圆柱的侧面积的求法,应明确圆柱的侧面展开图是矩形,矩形的长是圆柱的底面圆的周长,矩形的宽是圆柱的母线长.难度较小.4. (2011广东珠海,3,3分)圆心角为600且半径为3的扇形的弧长为( )A 、2πB 、πC 、23πD 、3π 【解题思路】根据弧长公式L=180R n π=180360⨯π=π。

可知选项B 正确.难度适中. 【答案】B .【点评】本题考查了扇形的弧长计算方法和计算公式。

1. (2011安徽,7,4分)如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长 ( )A.5π B.25π C. 35π D. 45π【解题思路】由弧长公式L=可知,只要求出弧BC 所对的圆心角度数即可.连接OB 、OC ,得∠BOC=2∠A=2×36°= 72°,所以L=,应选B.【答案】B.【点评】本题主要考查圆中弧长公式和圆周角定理的应用.难度较小. 2. (2011贵州毕节,15,3分)如图,在△ABC 中,AB =AC =10,CB=16,分别以AB 、AC 为直径作半圆,则图中阴影部分面积是( ) A 、4850-π B 、4825-π C 、2450-π D 、24225-π 【解题思路】设半圆与BC 的交点为D,连结AD,可得阴影部分面积等于两个半圆面积之和减去三角形ABC 的面积。

故答案B 正确。

A 、C 、D 均不正确。

【答案】B【点评】本题考查了圆中阴影部分面积的求法,在解题是要善于把阴影部分进行分割,把它转化为弓形、三角形、扇形等图形。

数学九年级上册专题24.10 弧长与扇形的面积-重难点题型(人教版)(学生版)

数学九年级上册专题24.10 弧长与扇形的面积-重难点题型(人教版)(学生版)

专题24.10 弧长与扇形的面积-重难点题型【人教版】【知识点1 弧长与扇形的面积】【题型1 弧长的计算】【例1】(2021•庐阳区校级模拟)如图,▱ABCD中,∠C=110°,AB=2,以AB为直径的⊙O交BC于点E,则AÊ的长为()A.π9B.7π18C.7π9D.2π9【变式1-1】(2021•毕节市)某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,AB̂,CD̂所在圆的圆心为O,点C,D分别在OA,OB上.已知消防车道半径OC=12m,消防车道宽AC=4m,∠AOB =120°,则弯道外边缘AB̂的长为()圆的周长圆的弧长圆的面积扇形面积2C rπ=180n rlπ=2S rπ=213602n rS rlπ==r为圆的半径;n为弧所对的圆心角的度数;l为扇形的弧长rn︒lA .8πmB .4πmC .323πm D .163πm【变式1-2】(2021•余姚市一模)如图,四边形ABCD 的顶点B ,C ,D 都在⊙A 上,AD ∥BC ,∠BAD =140°,AC =3,则BĈ的弧长为( )A .53πB .52πC .32πD .56π【变式1-3】(2020秋•西湖区期末)如图,将正方形ABCD 绕着点A 逆时针旋转得到正方形AEFG ,点B 的对应点E 落在正方形ABCD 的对角线上,若AD =3√3,则CF̂的长为( )A .3√6π8B .3√6π4C .3√3π8D .3√3π4【题型2 弧长计算中的最值问题】【例2】(2021•安阳二模)如图,半圆O 的直径AB =2cm ,AC ̂=2BC ̂,点E 是BC ̂上一个动点,弦DE ∥AB ,OF ⊥AB 交DE 于点F ,OH =EF ,则图中阴影部分周长的最大值为 cm .【变式2-1】(2021•辽宁模拟)如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交弧BC 于点D .点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【变式2-2】(2021•邓州市一模)如图,AB是⊙O的直径,且AB=10,过点O作OC⊥AB交⊙O于点C,̂所围成的图形周长最小值为.∠CAD=30°,点P是直径AB上的动点,求PC,PD,CD【变式2-3】(2021•诸城市二模)如图,以BC为直径作圆O,A,D为圆周上的点,AD∥BC,AB=CD=AD=1.若点P为BC垂直平分线MN上的一动点,则阴影部分图形的周长最小值为.【题型3 扇形面积的计算】【例3】(2021•东营)如图,在▱ABCD中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若∠BAC=60°,∠ABC=100°,BC=4,则扇形BEF的面积为.【变式3-1】(2021•宜昌)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为平方厘米.(圆周率用π表示)̂上【变式3-2】(2021•邵阳县模拟)如图,半圆的直径AB长为6cm,O是圆心,C是半圆上的点,D是AC的点,若∠ADC=108°,则扇形OAC的面积为.(结果保留π.)【变式3-3】(2021•霍邱县一模)如图,从一块半径是√13cm的圆形铁皮(⊙O面)上剪出一个圆心角(∠BAC)为60°的扇形BAC,点B和点C在⊙O的圆周上,若OA=2cm,则所剪出扇形的面积等于cm2.【题型4 求不规则图形阴影部分的面积】【例4】(2021•南关区校级二模)扇子在我国已经有三、四千年的历史,中国扇文化有丰富的文化底蕴.如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为150°.AB的长为30cm,扇面BD的长为20cm,则扇面的面积为cm2.【变式4-1】(2021•洛阳一模)如图,在扇形AOB中,∠AOB=90°,OA=2,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧于点D、E,则阴影部分的面积为.【变式4-2】(2021•河南模拟)如图1,是一枚残缺的古代钱币,如图2,经测量发现,钱币完好部分的弧长为3π,其内部正方形ABCD的边长为1.已知正方形ABCD的中心与⊙O的圆心重合,且点E,F分别是边BC,CD的延长线与⊙O的交点,则图中阴影部分的面积为.【变式4-3】(2021•卫辉市二模)已知,如图,扇形AOB中,∠AOB=120°,OA=4,若以点A为圆心,AO长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为点D,则图中阴影部分的面积为.。

(完整版)弧长与扇形面积经典习题(有难度)

(完整版)弧长与扇形面积经典习题(有难度)

弧长与扇形面积练习题1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4π C。

3π D。

2π2. 如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.35cm C.8cm D.53cm3.如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( )A.60° B.90° C.120° D.180°12cm 6cm7.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B',则图中阴影部分的面积是( ).A。

3B。

6 C. 5 D. 48.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点,且PC=23 BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(64π+)cm B.5cm C.35cm D.7cm9.如图,半径为1的小圆在半径为 9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( )A . 17πB 。

32πC 。

49πD 。

80π10。

如图,AB切⊙O于点B,OA=2错误!,AB=3,弦BC∥OA,则劣弧错误!的弧长为().A.错误!πB.错误!πC.πD.错误!π11。

在半径为错误!的圆中,45°的圆心角所对的弧长等于.12. 已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是 m.(结果用π表示)13。

如图,圆锥的底面半径OB 为10cm ,它的展开图扇形的半径AB 为30cm ,则这个扇形的圆心角a 的度数为____________.14. 如图,点A 、B 、C 在直径为32的⊙O 上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧长与扇形面积练习题1. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB. 4πC.3πD.2π2. 如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.35cm C.8cm D.53cm3.如图,是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A.60° B.90° C.120° D.180°12cm 6cm7.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π8.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC= 6cm,点P是母线BC上一点,且PC=23BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A.(64π+)cm B.5cm C.35cm D.7cm9.如图,半径为1的小圆在半径为 9 的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为()A . 17πB . 32πC . 49πD . 80π10. 如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧⌒BC的弧长为().A.33πB.32πC.πD.32π11. 在半径为4π的圆中,45°的圆心角所对的弧长等于.12. 已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m,则圆心O所经过的路线长是 m。

(结果用π表示)13.如图,圆锥的底面半径OB为10cm,它的展开图扇形的半径AB为30cm,则这个扇形的圆心角a的度数为____________.14. 如图,点A、B、C在直径为32的⊙O上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π).2、如果一条弧长等于l,它的半径等于R,这条弧所对的圆心角增加1,则它的弧长增加()A.lnB.180RπC.180lRπD.360l3、已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的面积为()A、18πcm2B、36πcm2C、12πcm2D、9πcm24、圆的半径增加一倍,那么圆的面积增加到()A、1倍B、2倍C、3倍D、4倍5、一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A、1.5cmB、7.5cmC、1.5cm或7.5cmD、3cm或15cm8、扇形的周长为16,圆心角为360π,则扇形的面积是()A.16 B.32 C.64 D.16π10、如图,AC是⊙O的直径,BD是⊙O的弦,EC∥AB交⊙O于E,则图中与12∠BOC相等的角共有()A、2个B、3个C、4个D、5个15、如图,将三角尺ABC(其中∠B=60°,∠C=90°,AB=6)绕点B按顺时针转动一个角度到A1BC1的位置,使得点A、B、C1在同一条直线上,点A所经过的路程是()A、2πB、4πC、8πD、12π16、如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为()13、如图,扇形OAB 的圆心角为90,且半径为R ,分别以OA ,OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么P 和Q 的大小关系是()A.P Q =B.P Q >C.P Q <D.无法确定17、如图,在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻,当甲带球冲到A 点时,乙已跟随冲到B 点。

从数学角度看,此时甲是自己射门好,还是将球传给乙, 让乙射门好?答 简述理由 .11、如图,在Rt △ABC 中,∠ACB=90°,AC=BC=3,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △AB ′C ′,点B 经过的路径为弧B ’B ,求图中阴影部分的面21.如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD=120,四边形ABCD 的周长为15. (1) 求此圆的半径;(2)求图中阴影部分的面积。

22.如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD , ∠ACD =120°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.如图,在Rt △ABC 中,90C ∠=,60A ∠=,3cm AC =,将△ABC 绕点B 旋转至△A BC ''的位置,且使点A ,B ,C '三点在同一直线上,则点A 经过的最短路线长是cm .第27题. 一块等边三角形的木板,边长为1,若将木板沿水平线翻滚(如图),则点B 从开始至结束走过的路径长度为( ).O B M NAC Q O AP C BBC A A B C B A C BA.3π2B.4π3C.4D.322+π弧长扇形和圆锥1.如图,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm2.2.如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的半径都是1,顺次连接四个圆心得到四边形ABCD,则图形中四个扇形(空白部分)的面积之和是___________.3.如图,圆锥的侧面积恰好等于其底面积的2倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60 B.90 C.120 D.1804.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是__________.5.如图,线段AB与⊙O相切于点C,连结OA,OB,OB交⊙O于点D,已知,.(1)求⊙O的半径;(2)求图中阴影部分的面积.一.选择题(共1小题)1.(2013•镇江)用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3 B.C.2 D.二.填空题(共15小题)2.(2013•营口)一个圆锥形零件,高为8cm,底面圆的直径为12cm,则此圆锥的侧面积是_________ cm2.3.(2013•宿迁)已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是_________ .4.(2013•随州)高为4,底面半径为3的圆锥,它的侧面展开图的面积是_________ .5.(2013•黔西南州)如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_________ .6OA OB==63AB=COA BD(第3题)6.(2013•泸州)如图,从半径为9cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_________ cm.7.(2013•聊城)已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为_________ cm.8.(2013•呼伦贝尔)150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是_________ cm.9.(2013•黑龙江)将半径为4cm的半圆围成一个圆锥,这个圆锥的高为_________ cm.10.(2013•大庆)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为_________ .11.(2012•自贡)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是_________ .12.(2012•广安)如图,Rt△ABC的边BC位于直线l上,AC=,∠ACB=90°,∠A=30°.若Rt△ABC由现在的位置向右无滑动地旋转,当点A第3次落在直线l上时,点A所经过的路线的长为_________ (结果用含有π的式子表示)13.(2011•宜宾)一个圆锥形零件的母线长为4,底面半径为1.则这个圆锥形零件的全面积是_________ .14.(2011•巴中)如图所示,一扇形铁皮半径为3cm,圆心角为120°,把此铁皮加工成一圆锥(接缝处忽略不计),那么圆锥的底面半径为_________ .15.(2010•兰州)如图,扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是_________ .16.(2010•贵港)如图所示,AB为半圆O的直径,C、D、E、F是上的五等分点,P为直径AB上的任意一点,若AB=4,则图中阴影部分的面积为_________ .2.已知:扇形的圆心角为150°,半径为6,求扇形的面积3.已知:扇形的圆心角为60°,半径为10,求扇形的弧长和面积4.若75°的圆心角所对的弧长是 5.2,求此弧所在圆的半径12,圆心角为120°,求扇形的面积5.已知:一扇形的弧长为π7.圆锥的底面半径为3,母线长为5,求圆锥的侧面积15,底面半径为3,求圆锥的高。

8.圆锥的侧面积为π19.若圆锥的底面半径为2cm,母线长为3cm,求它的侧面积.20.若圆锥的底面积为16cm2,母线长为12cm,求它的侧面展开图的圆心角.15.一个扇形的弧长是π3,面积是π9,求扇形的圆心角16.圆锥的底面半径为12,母线长为20,求圆锥的侧面积16、如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为()17、如图中正方形的边长为1,分别以四个顶点为圆心,r为半径画圆,给中间涂色就得到如图所示的图案,则()(17) (18) (19)(20)18、如图,已知半圆O的直径AB=6,点C、D是半圆的两个三等份点,则弦BC、BD和弧CD围成的图形的面积为 ( )(结果可含有π)19、如图,扇形AOB中,∠AOB=60°,弧 CD的圆心也为O,且弦AB与弧 CD 相切,若AB=4,则阴影部分的面积等于()20、如图,在⊙O中,弧ADB=90°,弦AB=a,以B为圆心,以BA为半径画圆弧交⊙O于另一点C,则由两条圆弧所围成的月亮形(阴影部分)的面积S=()18.(2015•山东临沂)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留).19.(2015•浙江金华)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求EG的长.20. (2015•浙江丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.。

相关文档
最新文档