Zemax软件设计教程_2(长春光机所)
【ZEMAX光学设计软件操作说明详解】2-上
第十三章表面类型§1 简介ZEMAX 模拟了许多种类型的光学元件。
包括常规的球面玻璃表面,正非球面,环带,柱面等。
ZEMAX 还可以模拟诸如衍射光栅、“薄”透镜、二元光学、菲涅耳透镜、全息元件之类的元件。
因为ZEMAX 支持大量的表面类型,用常用的电子表格形式安排用户界面就比较困难。
例如,对于一个没有发生衍射的表面,开辟“衍射阶数”一列就没什么必要。
为了使用户界面尽可能不显得乱,ZEMAX 使用了不同的类型界面以便指出定义某一种类型的表面时,需要哪一些数据。
§2 参数数据一个标准的表面可以是一个紧随着一均匀介质(如空气,反射镜或玻璃)的平面、球面或圆锥非球面。
所要求的参数仅仅是半径(半径也可以是无穷大,使之成为一个平面),厚度,圆锥系数(缺省值为0,表示是球面),和玻璃类型的名字。
其他的表面类型除使用一些其他值外,同样使用这些基本数据。
例如,“偶次非球面”表面就是使用所有的“标准”列数据再加上八个附加值,这些附加值是用来描述多项式的系数的。
这八个附加值被称为参数,且被称为参数1,参数2,等等。
要理解的参数值的最重要特性是它们的意思会随着所选择的表面类型的不同而改变意思。
例如,“偶次非球面”表面类型用参数1 来指定非球面近轴抛物线项的系数,而“近轴”面则用参数1 来指定表面焦距。
两个表面同样使用参数1,但用途却不同,因为这两个表面类型永远不会同时在同一个面上使用。
数据存储的共享性简化了ZEMAX 界面,也减少了运行程序时所要求的总内存。
但由于你必须去记每一个参数的作用,是否这样的共享反而会使ZEMAX 用起来变得麻烦呢?回答是否定的,因为ZEMAX始终掌握着你所定义的每一面上的每一个参数代表什么的记录。
当你将一个表面从“标准的”改成其他的表面类型后,ZEMAX 会自动改变参数列的列头以使你知道你对表面上的每一个参数作了什么改动。
所有需要你做的只是在正确的格子中键入适当的数据。
当你将光标从一个格子移动到另一个时,列头会一直显示该格是用来作什么的。
光学设计软件zemax中文教程
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§§§§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
Zemax软件设计教程_3(长春光机所)
在3D layout中选 择5条Y轴光线
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
改变通光孔径 ZEMAX中默认的通光孔径为圆形,这里需设置10×10的矩形通光孔径 在第2及第6面上进行如下更改
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在第4表面进行如下修改
更新3D视图
在第5面上设置position solve使3~5 面间距始终为2100
在第2面上设置glass solve为model 确认以下参数
设置反射镜厚度
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在多重结构中设置不同的decenter 来实现多片拼接镜 使用两个Coordinate Break 面分别恢复decenter和tilt
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在LDE中添加一个表面,如图并设置 pick-up solve
因为zemax中规定光线只能通过表面1次(无论反射或者折射) 为了设计从底部反射镜反射回来的光束,我们需要再次定义分束棱镜
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
设置离轴拼接镜Y=270mm X=0 插入一个组态,确认以下参数 轴外镜Z向位置坐标可由decenter 值、反射镜曲率、conic系数来计算 我们可以利用ZEMAX中提供SSAG 操作数计算 打开MFE在CONF2中插入SSAG 并利用CONS和SUMM来计算
在Surface选项卡中 可以选择 HEXAGON.UDA
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在LDE中输入以下表面
ZEMAX光学设计软件操作说明详解_光学设计
ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
ZEMAX操作步骤
ZEMAX操作步骤1.打开ZEMAX软件:双击ZEMAX桌面图标或从开始菜单中找到ZEMAX 图标并单击打开。
2. 创建新的工程文件:点击“File”菜单,选择“New”,然后选择工程文件类型,如“Sequential”或“Non-Sequential”等。
3. 设置工作环境:在“Settings”菜单中可以设置工作环境,如单位制和光线追迹方式等。
点击“Units”可以设置长度和角度单位,点击“Ray Aiming”可以设置光线追迹参数。
4. 在“System Explorer”中创建光学系统:点击“Object”菜单,选择“New System”,在弹出的对话框中输入系统名称。
然后,在“System Explorer”中可以看到创建的光学系统。
5.在系统中添加光学元件:双击光学系统名称,在弹出的对话框中可以选择添加光学元件,如透镜、镜面等。
选择元件后可以在对话框中设置元件的属性,如曲率、厚度和物质等。
6. 设置光源:点击“Source”菜单,选择合适的光源类型,如点光源、平行光源等。
在弹出的对话框中可以设置光源的参数,如波长、功率等。
7. 设定探测器:点击“Analysis”菜单,选择“New Detector”,在弹出的对话框中可以设置探测器的位置和尺寸。
探测器用于测量系统中的光强分布和光束参数。
8. 进行光学仿真:点击“Run”按钮,ZEMAX将按照设定的参数进行光线追迹和光学分析。
在仿真结束后,可以查看系统中的光学效果和性能参数,如光强、光斑直径和MTF曲线等。
9. 优化光学系统:通过修改系统中光学元件的参数,可以优化系统的性能指标。
点击“Tools”菜单,选择“System Explorer”打开系统的属性对话框,在对话框中可以调整元件的参数。
10. 分析结果并导出数据:通过点击“Analysis”菜单中的各种分析功能,可以查看系统的性能曲线和参数。
可以选择将分析结果保存为图像或数据文件,如TXT或EXCEL格式。
光学设计软件zema中文教程
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§§§§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
光学设计软件zemax中文教程
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§8.12.10 波长和内透过率的关系 (101)§8.12.11 玻璃图 (101)§8.12.10 系统总结图 (101)§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
光学设计与Zemax02
风车星系照片(位于大熊星座, 距地球约2700万光年 )
银河北平面的象鼻星云
Editors
Merit function Default Merit Function
Tools
按出dialog box,后按 Load Reset Ok
即可,实际上此dialog box 中还有许多选项可改,这也是改变优化过程的方 法之一。
光学系统结构优化
可以按实际情况作其他选择,改变优化过程。
光学设计与Zemax
第二讲
用ZEMAX软件设计光学系统的基本过程
ZEMAX用户界面简要说明
窗口类型 主窗口 编辑窗口(Editors) 图形窗口(Graphic windows) 文本窗口(Text windows) 对话框(Dialog windows)
光学系统模型的建立
Analysis
畸变和像散像面弯曲 Analysis 或 Miscellaneous Fcd Calculations 或 MTF Analysis MTF Sei Seidel coefficients Field Curv/Dist
Seidel 像差系数 Analysis
Modulation Transfer Function
光学系统结构优化
按Button Opt ,按出dialog box,预定优化次数,即可进行优化,但之前须 规定Merit Function (优化目标函数)及变量。关于变量,将结构数据框作double click,得有关dialog box,就可以将此结构数据作为变量(variable)或改为Fixed 不变。 关于Merit Function,最简单的做法是用程序内的Default Merit Function,通过 下列方法,即可调用适当的Default Merit Function:
【ZEMAX光学设计软件操作说明详解】
【ZEMAX光学设计软件操作说明详解】第二章用户界面概述本章介绍了对ZEMAX用户界面进行操作的一些习惯用法,以及一些常用的窗口操作的快捷键。
一旦您学会了在整个程序中通用的简单的习惯用法,ZEMAX用起来就很容易了。
在线教程中,也有逐步学习ZEMAX使用方法的例子。
视窗的类型ZEMAX有不同类型的窗口,每类窗口完成不同的任务。
这些类型有:1、主窗口:这个窗口有很大的空白空间,顶端有标题栏,菜单栏和工具栏。
菜单栏中的命令通常与当前的光学系统相联系,成为一个整体。
2、编辑窗口:有六种不同的编辑1)透镜数据编辑;2)绩效函数编辑;3)多重结构编辑;4、额外数据(ZEMAX-EE);5)公差数据编辑;和非顺序组件编辑(ZEMAX-EE)。
3、图形窗口:这类窗口用作呈现图像数据,例如:系统图;光线扇形图(Ran fan);光学传递函数(MTF);曲线(Dot Spot)……等等。
4、文本窗口:用来列出文本数据,例如:指定数据、像差系数、计算数据等。
5、对话窗口:对话框是弹出窗口,不能改变大小。
对话窗口用来改变选项和数据,如:视场;波长;孔径光阑;表面类型等。
在图像和文本窗口中,对话框也被广泛地用来改变选项,比如改变系统图中光线的数量。
除了对话框,所有窗口都能通过使用标准鼠标这键盘按钮进行移动和改变大小。
如果你对这些方法不熟悉,请参考有关Windows使用的书籍或者Windows的说明书。
主窗口的操作方法主窗口栏有几个菜单标题。
大部分菜单标题与这本手册后面的章节标题相对应。
从这些章节能够找到使用每一菜单项的具体方法。
以下是菜单的标题:File:用于镜头文件的打开、关闭、保存、重命名;Editors:用作调用(显示)其他的编辑窗口;System:用于确定整个光学系统的属性;Analysis:分析中的功能不是用于改变镜头数据,而是根据这些数据进行数字计算和图像显示分析。
包括:系统图(Layout)、Ray fans,Spot diagrams,Diffraction calculations and more。
Zemax软件设计教程(共85张PPT)
Wav
ZEMAX最多允许定义12个波长,必须指定参考波长,可以根据不同波长的重要
性,设定不同的权重。
波长的单位为微米。
Select-〉功能可以选择多种默认的波长
Lens Data Editor
一定存在的3个表面:OBJ、STO和IMA
对于后者,除了图形窗口,如果你要查看文本窗口的内容,点击菜单栏中的 “Text”
Dialog boxes
用来编辑其他窗口或系统的数据,比如General,Field Data, Wavelength Data,Glass Catalog,Lens Catalogs……
序列模式
这种模式下的光学设计和仿真可按照下列步骤进行:
在这里定义和编辑优化函数
• Multi-Configuration Editor
给变焦距透镜和其它的多结构系统定义参数变化表
• Tolerance Data Editor
定义和编辑公差
• Extra Data Editor
一个扩展的透镜数据编辑器,为那些需要很多参数才能定义的表面准备的,比如表面类型 Binary 2
中的θ是实际边缘光线与光轴的夹角
Fie
ZEMAX支持4种不同视场形式: Field angle: XZ和YZ平面上主光线与Z轴的夹角。常用于无限共轭系统。 Object height: 物面上X,Y高度。常用于有限共轭系统。 Paraxial Image height: 像面上的近轴像高。用于需要固定像的大小的设计中(只用于近轴 光学系统中) Real image height: 像面上实际像高。用于需要固定像幅的设计中(如camera lenses)。
Zemax软件设计教程_2(长春光机所)
一、序列模式介绍
序列模式下layout参数设置对话窗口
以zemax自带镜头为例 Samples > Sequential > Objectives > Double Gauss 28degree field.zmx
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
Spot diagram
是分析光学系统几何像差常用的工具
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
注意: 通过移动鼠标位置 可以看到不同位置 处的数据值 这在分析菜单栏都 是普遍适用的
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
MTF 分析
Samples > Sequential > Objectives > Cooke 40 degree field.zmx
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
再来对比一下序列模式和非序列模式下的衍射计算 将光源及探测器参数做如下修改
Source # Analysis Rays: 3000 (reduced to speed up the detector trace) Detector Data Type: 1 PSF Wave#: 2
更新3D Layout
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
第三步,加入探测器部件 重复上一步的过程设置如下参数
Z position = 60.177 X half Width = 0.01 Y half Width = 0.01 # X Pixels = 100 # Y Pixels = 100
zemax操作详解
ZEMAX光学设计软件操作说明详解找到一些资料希望对大家有用!【ZEMAX光学设计软件操作说明详解】介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
光学设计软件zemax中文教程
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§8.12.10 波长和内透过率的关系 (101)§8.12.11 玻璃图 (101)§8.12.10 系统总结图 (101)§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
ZEMAX操作教程
ZEMAX操作教程ZEMAX是一个可以用来设计光学系统、模拟光线传播和优化光学元件的软件。
本篇文章将向大家介绍一些关于ZEMAX的基本操作方法和一些常用功能。
希望通过这篇文章,读者可以对ZEMAX有一个初步的了解,并能够在实际使用中应用相关技巧。
在开始设计光学系统之前,我们首先需要创建一个新的光学系统。
点击菜单栏中的"File",选择"New",然后选择"System"。
在弹出的对话框中,输入光学系统的名称和初始物方参数。
点击"OK"后,一个新的光学系统将被创建。
接下来,我们需要添加光学元件。
点击菜单栏中的"Insert",可以选择向光学系统中添加各种不同类型的元件,例如透镜、反射镜、衍射光栅等。
选择相应的元件后,将其拖动到视窗中的适当位置即可。
对于一些元件,还可以通过点击右键来修改其属性和参数。
添加完所有的光学元件后,我们需要设置光源和探测器。
点击菜单栏中的"Insert",选择"Source"和"Detector",然后将它们分别拖动到光学系统的适当位置。
通过右键点击光源和探测器,我们可以设置它们的参数,例如波长、功率、位置等。
设置完光源和探测器后,我们可以进行光线追迹仿真。
点击菜单栏中的"Analyze",选择"Sequential Mode"。
在弹出的对话框中,选择适当的仿真参数,例如光线追迹的方式、光线数目等。
点击"OK"后,ZEMAX将自动进行光线追迹仿真,并在视窗中显示光线的传播路径和光强分布。
进行光线追迹仿真后,我们可以对光学系统进行优化。
点击菜单栏中的"Tools",选择"Optimization"。
在弹出的对话框中,选择适当的优化方法和目标函数。
《zemax教程》课件2
5. Zemax中的光学元件和参数设置
介绍Zemax中常用的光学元件,以及如何进行参数设置和调整,以满足不同的设计需求。
6. Zemax中的光路图、传输函数和MTF分析
学习如何在Zemax中绘制光路图,进行传输函数分析和模态传递函数(MTF)分析,以评估系统的性能。
7. Zemax中的光学优化方法
《Zemax教程》PPT课件
欢迎来到《Zemax教程》PPT课件! 这个课件将带你深入了解Zemax光学设计软 件的基本概念、优势以及各种设计和分析方法。
1. Zemax的基本概念和优势
通过一些例子和应用说明Zemax的基本概念、光学设计原理以及使用Zemax进 行设计和分析的优势。
2. 安装Zemax软件及使用
介绍Zemax软件的安装步骤和基本界面,以及如何使用Zemax和界面 设置
详细介绍Zemax软件的各个界面元素、工具和设置选项,帮助你更好地进行光 学设计和分析。
4. 简单的光学设计和分析实例
通过实际的实例和案例,演示如何使用Zemax进行简单的光学设计和分析,让 你更熟悉和掌握工具的使用。
探讨Zemax中常用的光学优化方法,包括全局优化、局部优化和多参数优化,以及如何选择适合你的设计问题 的方法。
8. 基于Zemax的光学系统设计 案例分析
通过一些实际的案例分析,展示如何使用Zemax进行复杂光学系统的设计,包 括镜头设计、光纤系统设计等。
Zemax软件设计教学教程3(长春光机所)
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
通常扫描镜并不是完全以它的顶点旋转,例如扫描镜为一个多面 体时,扫描镜为绕在其表面后某位置的一点旋转。 我们需要将旋转中心点设置到整个扫描镜的中心位置
polygon.ZMX
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
ZEMAX光学软件培训课程 (第三讲)
中国科学院长春光学精密机械与物理研究所
CIOMP.CAS
主要内容
一、分光棱镜 二、扫描光学系统 三、主动光学望远镜 四、衍射元件设计 五、变焦距系统设计 六、如何建立自己的评价函数
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、分光棱镜
在这一部分,我们将练习以下内容: 在序列模式下用多重结构建立分束棱镜 在光路图及分析窗口中同时追迹透射/反射光线 计算透射光束及反射光束的光功率
三、主动光学望远镜
在这一部分我们将学习设计一个 拼接的反射式主动望远镜
拼接的反射式望远镜可以通过调 整每个组件的位置来使像面处的像差 达到最小
对于天文望远镜,使用主动光学 能够减小一部分由大气引入的像差
主动光学可以在序列、非序列及混合模式中设计,这里作为初探使用序 列模式中多重结构的方式来实现
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在Surface选项卡中 可以选择 HEXAGON.UDA
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在LDE中输入以下表面
将第6面反射镜表面设置为Irregular surface 并将semi-diameter 修改为 150mm
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
2024版zemax教程
zemax教程•zemax软件介绍•zemax软件安装与启动•zemax软件基本操作•zemax软件光学设计基础目•zemax软件光学设计实例•zemax软件高级功能介绍录01 zemax软件介绍01Zemax是一款光学设计软件,广泛应用于光学系统的设计和分析。
02它提供了全面的光学设计工具,包括光线追迹、优化、公差分析等。
03Zemax软件支持多种操作系统,如Windows、Linux等。
优化Zemax 内置了多种优化算法,可以对光学系统进行自动优化以提高性能。
多种分析工具Zemax 还提供了多种分析工具,如MTF 、点列图、波前图等,用于评估光学系统的性能。
公差分析Zemax 可以对光学系统的公差进行分析,以评估实际制造和装配过程中的性能变化。
光线追迹Zemax 可以模拟光线在光学系统中的传播路径。
望远镜、显微镜、摄影镜头等光学仪器的设计。
虚拟现实、增强现实等光学系统的设计。
zemax软件应用领域激光器、光纤通信等光电子领域的设计。
医学、生物科学等领域的光学成像系统设计。
02 zemax软件安装与启动zemax软件安装步骤下载zemax软件安装包从官方网站或授权渠道下载最新版本的zemax 软件安装包。
安装准备确保计算机满足最低系统要求,并关闭所有正在运行的程序。
运行安装程序双击安装包,按照提示进行安装。
选择安装目录和组件,并遵循安装向导完成安装过程。
1 2 3在安装完成后,桌面上通常会生成一个zemax软件的快捷方式。
双击该快捷方式即可启动软件。
桌面快捷方式点击计算机左下角的“开始”按钮,在程序列表中找到zemax软件,并单击以启动。
开始菜单对于高级用户,可以通过命令行输入特定的命令来启动zemax软件。
命令行启动zemax软件启动方法工具栏位于菜单栏下方,提供常用命令的快捷按钮,如新建、打开、保存、打印等。
菜单栏位于界面顶部,包含文件、编辑、视图、工具、窗口和帮助等菜单选项。
通过菜单栏可以访问各种功能和命令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在这一部分,我们将学会用非序列模式建立如下的光学系统
包含: filament source parabolic reflector plano-convex lens rectangular lightpipe
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在Detector Viewer中的setting里确认如下设置,得到探测器上的辐 照度分布
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
将其和序列模式下的轴上Spot Diagram图进行对比, 可看出序列模式和非序列模式几何光线追迹的差别, 我们发现两者形式相同。
序列模式下光线追迹(ray tracing)的特点: •以光学面(surface)为对象来构建光学系统模型; •光线从物面开始(常为surface 0) •按光学面的顺序计算(surface 0,1,2…),对每个光学面只计算 一次; •每个面都有物空间和像空间; •需要计算的光线少,计算速度快; •可进行analysis,Optimization及Tolerancing
是分析光学系统几何像差常用的工具
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
注意: 通过移动鼠标位置 可以看到不同位置 处的数据值 这在分析菜单栏都 是普遍适用的
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
MTF 分析
Samples > Sequential > Objectives > Cooke 40 degree field.zmx
一、序列模式介绍
序列模式下layout参数设置对话窗口
以zemax自带镜头为例 Samples > Sequential > Objectives > Double Gauss 28degree field.zmx
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
Spot diagram
Samples > Sequential > Tilted systems & prisms > Tilted mirror.zmx
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
Samples > Sequential > Telescopes > Unobscured Gregorian.zmx
点选YES键
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
转换成完全的非序列模式后,将不再出现LDE窗口,而是非序列元件 编辑窗口(Non-sequential Component Editor)
打开3D Layout,如右图
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
第二步,插入一个非序列光源 双击Object Type,在出现的 对话框中,Type一栏中选择 Source Ellipse点击OK
ZEMAX光学软件培训课程 (第二讲)
中国科学院长春光学精密机械与物理研究所
CIOMP.CAS
主要内容
一、序列模式介绍 二、将序列转换为非序列 三、建立非序列模型 四、单透镜设计 五、离轴抛物面设计 六、ZPL设计语言及实例
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
更新3D Layout
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
第三步,加入探测器部件 重复上一步的过程设置如下参数
Z position = 60.177 X half Width = 0.01 Y half Width = 0.01 # X Pixels = 100 # Y Pixels = 100
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
进一步设置该表面的参数
Z position = -10 (平行光入射,位置在第一片镜左侧即可) # Layout Rays = 10 # Analysis Rays = 100000 X Half Width = 5 Y half Width = 5
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
参数设置中第一项“Pattern”定义光 瞳面上的光线分布模式,默认为六 角形(Hexapolar), 还可以设置为方形或随机。
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
Ray and OPD fan
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
打开Analysis>Layout> NSC 3D Layout
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
进一步创建光源,重复上一步中的操作选择Source Filament
输入如下参数: Z position: 50 (focus of the parabolic reflector) # Layout Rays 20 # Analysis Rays 5000000 Length: 20 Radius 5 Turns 10
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
打开Analysis>Detector>Detector Viewer 此时,输出为空白窗口,需要进行一次光线追迹 打开Analysis>Detector>Ray Trace / Detector Control
点击Clear detector清除当前的数据 之后点击 Trace, ZEMAX将追迹我们设置的100000条光线
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
适用于传统成像系统设计,包括摄影物镜、望远镜、显微镜、 光谱仪等。
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
一、序列模式介绍
序列模式下ZEMAX界面如图
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
Samples/Sequentia/lObjectives/Cooke 40 degree field.zmx
目标: 将1~6面转换成非序列元 件; 在原像面位置加入一个非序 列的探测器; 加入一个非序列的光源表示 物空间的轴上光束
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在编辑窗口插入若干表面 将第一个表面设置为抛物面反射镜 点选Standard Surface并输入以下参数
Material: Mirror Radius: 100 Conic: -1 (parabola) Max Aper: 150 Min Aper: 20 (center hole in the reflector)
将Detector Viewer 设置为coherent irradiance.
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
三、建立非序列模型
•所有object都是3D shell or solids; •每个object都在一个空间坐标系中定义了其特性; •需要定义光源的发光特性和位置,定义detector收集光线; •光线一直追迹,直到它遇到下列情况才终止: Nothing, 能量低于定义的阈值。 •计算时光学元件的相对位置由空间坐标确定;对同一元件,可同 时进行穿透、反射、吸收及散射的特性计算; •无法作优化,要进行公差分析必须实用macro; 这种情况下,可以对光线进行分光,散射,衍射,反射,折射。
STOP只在序列追 迹中起作用,首 先,将STOP移出 我们需要转换的 元件
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在对话窗口中选择我们希望 转换的表面,现在为2~7面
得到包含非序列元 件的混合模式
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
继续另一个例子,将光学系统转换成完全的非序列模式
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
打开新建立的Detector Viewer 为了说明反射引起的能量损失 在Detector Control中点选Use Polarization
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
打开Analysis >Detectors > Detector Viewer
注意! layout 和detector viewer 进行的是独立的计算 只有进行追迹后才能显示
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
在NSC Shaded Model Layout 中设置栏中点选 “Color pixels by last analysis”
中国科学院长春光学精密机械D layout
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
此时的光源方向为Z向,我们希望设置它为X向,需将其进行旋转
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
中国科学院长春光学精密机械与物理研究所 Ciomp.CAS
二、将序列转换为非序列
在对序列元件进行优化、分析、公差计算后,通常 会将序列元件转换为非序列元件,进行进一步的光机分析。例如杂散光分析。
ZEMAX提供了一个方便的转换工具: Tool>Miscellaneous>Convert to NSC Group