第三章 平稳时间序列分析1

合集下载

《时间序列分析》讲义 第三章 平稳时间序列分析

《时间序列分析》讲义 第三章 平稳时间序列分析

k
1 k1 2 k2,k
2
自相关系数
自相关系数的定义
k
k 0
平稳AR(p)模型的自相关系数递推公式
k 1k 1 2 k 2 p k p
常用AR模型自相关系数递推公式
AR(1)模型 k 1k , k 0
AR(2)模型
1,
k
1
1 2
1k1 2 k2
k 0 k 1 k2
自回归系数多项式
(B) 11B 2B2 pBp
特征方程
中心化AR(p)模型
xt 1 xt1 2 xt2 p xt p t
可以看成p阶常系数非齐次线性差分方程
xt 1 xt1 2 xt2 p xt p t
它对应的齐次方程的特征方程为
p 1 p1 p1 p 0
1 12
协方差函数
在平稳AR(p)模型两边同乘xt-k,再求期望
E(xt xtk ) 1E(xt1xtk ) p E(xt p xtk ) E(t xtk )
根据
E( t xtk ) 0 ,k 1
得协方差函数的递推公式
k 1 k1 2 k 2 p k p
例题
例3.3 求平稳AR(1)模型的协方差
12
2 2
,
0,
k 0 k 1
k 2 k 3
偏自相关系数
滞后k偏自相关系数由Yule-Walker方程 确定
zt a1 zt1 a2 zt2 a p zt p h(t)
齐次线性差分方程
zt a1 zt1 a2 zt2 a p zt p 0
齐次线性差分方程的解
特征方程
p a1p1 a2p2 ap 0
特征方程的根称为特征根,记作1,2,…,p

第三章平稳时间序列分析

第三章平稳时间序列分析

第 3章 安稳时间序列剖析一个序列经过预办理被辨别为安稳非白噪声序列,那就说明该序列是一个包含着有关信息的安稳序列。

3.1 方法性工具 3.1.1 差分运算 一、 p 阶差分记x t 为 x t 的 1 阶差分:x t x t x t 1记2x t 为 x t 的 2 阶差分:2x tx tx t 1xt2x t 1xt 2以此类推:记 px t 为 x t 的 p 阶差分:px tp 1x tp 1x t 1二、 k 步差分记 k xt 为 x t 的 k 步差分: kxtx t x t k延缓算子一、定义延缓算子相当与一个时间指针,目前序列值乘以一个延缓算子,就相当于把目前序列值的时间向过去拨了一个时辰。

记 B 为延缓算子,有x t 1 Bx t x t 2 B 2x tx t pB P x t二、用延缓算子表示差分运算 1、 p 阶差分 2 、 k 步差分 3.2ARMA 模型的性质AR 模型延缓算子的性质:1. B 0 12. 若 c 为任一常数,有 B(c x t ) c B( x t ) c x t 13. 对随意俩个序列 { x t } 和 { y t } ,有 B( x ty t )x t 1yt 14. Bnx t x t nnn! 5. (1 B)n( 1) i C n i B i ,此中 C n ii 0i!( n i )!定义拥有以下构造的模型称为p 阶自回归模型,简记为AR(p):xt 0 1xt 1 2xt 2pxt p tp0, E( t ) 0,Var ( t )2, E( s t ) 0, s tEx s t0, s t(3.4)AR(p) 模型有三个限制条件:条件一:p0 。

这个限制条件保证了模型的最高阶数为p 。

条件二: E( t ) 0,Var ( t )2, E( s t ) 0, s t 。

这个限制条件其实是要求随机扰乱序列{ t } 为零均值白噪声序列。

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限。

所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计。

目前对平稳序列最常用的预测方法是线性最小方差预测。

线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小。

在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的。

二、课后习题第十七题:根据某城市过去63年中每年降雪量数据(单位:mm)得:(书本P94)程序:data example17_1;input x@@;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot x*time=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= (0:5) q=(0:5);run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot x*time=1 forecast*time=2 l95*time=3 u95*time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;(1)判断该序列的平稳性与纯随机性该序列的时序图如下(图a)图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图(图b)图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值。

时间序列平稳性分析(课件)

时间序列平稳性分析(课件)

时间序列平稳性分析(课件)时间序列平稳性分析文章结构•时间序列的概念•平稳性检验•纯随机性检验•spss的具体操作1.1时间序列分析的概念•时间序列是一个按时间的次序排列起来的随机数据集合。

而时间序列分析是概率论与数理统计学科的一个重要分支,它以概率统计学为理论基础来分析随机数据序列(或称为动态数据序列)并对其建立相应的数学模型,即对模型定阶,进行参数估计,进一步将用于预测。

在对时间序列进行分析的时候我们的前提任务是如何进行的呢?2.1平稳性检验•••••特征统计量平稳时间序列的定义平稳时间序列的统计性质平稳时间序列的意义平稳性检验概率分布•概率分布的意义随机变量族的统计性质完全由它们的联合分布函数或联合密度函数决定•时间序列概率分布族的定义{ }Ft1,t2,...,tm(x1,x2,...,xm)m(1,2,...,m),t1,2,...,T•实际应用局限性概率分布•概率分布的意义随机变量族的统计性质完全由它们的联合分布函数或联合密度函数决定•时间序列概率分布族的定义{ }Ft1,t2,...,tm(x1,x2,...,xm)m(1,2,...,m),t1,2,...,T•实际应用局限性特征统计量•均值t EXt•方差Var(Xt)E(Xt t)xdFt(x)2(x t)dFt(x)•协方差•自相关系数(t,s)E(Xt t)(XS)S(t,s)(t,s)DXt DXs平稳时间序列的定义•严平稳严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随时间的推移而发生变化时,该序列才能被认为平稳•宽平稳宽平稳是使用序列的特征统计量来定义的一种平稳性。

它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。

•满足如下条件的序列称为严平稳序列正整数m,t1,t1,...,tm T,正整数t,有Ft1,t2,...,tm(x1,x2,...,xm)Ft1t,t2t,...,•满足如下条件的序列称为宽平稳序列1)EXt,t T2)EXt,为常数,t T2tmt(x1,x2,...,x3)(t,s)(k,k s t),t,s,k且k s t T•常数性质•自协方差函数和自相关函数只依赖于时间的平移长度而与时间的起止点无关1)延迟k自协方差函数(k)(t,t k),k为整数2)延迟k自相关系数k(k)(0)自相关系数的性质••••规范性对称性非负定性非唯一性平稳性的检验•时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应、无明显该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征•自相关图检验平稳序列通常具有短期相关性。

平稳时间序列分析

平稳时间序列分析

0
varX t
(1
2 1
2 q
)
2
1
cov( X t , X t1 )
(1
1 2
2 3
q
1
q
)
2
q 1
cov( X t ,
X t q1 )
( q1
1
q
)
2
q
cov( X t , X tq )
q
2
当滞后期不小于q时,Xt旳自协方差系数为0。
所以:有限阶移动平均模型总是平稳旳。
3、ARMA(p,q)模型旳平稳性
• 有时,虽然能估计出一种较为满意旳因果关系回归方程, 但因为对某些解释变量将来值旳预测本身就非常困难,甚 至比预测被解释变量旳将来值更困难,这时因果关系旳回 归模型及其预测技术就不合用了。
在这些情况下,我们采用另一条预测途径:经过时间 序列旳历史数据,得出有关其过去行为旳有关结论,进而 对时间序列将来行为进行推断。
0
2 X
2
12
在稳定条件下,该方差是一非负旳常数,从而有 ||<1。
而AR(1)旳特征方程
(z) 1 z 0
旳根为
z=1/
AR(1)稳定,即 || <1,意味着特征根不小于1。
例 AR(2)模型旳平稳性。 对AR(2)模型
X t 1 X t1 2 X t2 t
方程两边同乘以Xt,再取期望得:
所使用旳工具主要是时间序列旳自有关函数 (autocorrelation function,ACF)及偏自有关函 数(partial autocorrelation function, PACF )。
1、AR(p)过程
(1)自有关函数ACF 1阶自回归模型AR(1)

计量经济学:平稳时间序列分析-差分方程与延迟算子

计量经济学:平稳时间序列分析-差分方程与延迟算子

f (t)
11 0
f (t1)
11
1
f (1)
11 t 1
t
, , 给出初值y-1, y-2,…,y-p以及 0 1
t 的值,即可得到yt。
定理:矩阵F的特征根满足的特征方程为
p 1 p1 2 p2 p1 p 0
1、具有相异特征根的p阶差分方程的通解
如果矩阵F的特征根是相异的,那么存在一个非奇异矩阵
1
0
0
F 0 1 0
0 0 0
p1 p
0
0
0 0 ,
1 0
t
0
Vt
0
0
则原p阶差分方程变为一阶向量差分方程
t Ft1 Vt
参照一阶向量差分方程的递归解法有
t
F
t
1 1
F tV0
F t1V1
F t2V2
FVt1 Vt

yt
yt 1
y1
y2
0
0
t 21
1
2 1 2 3
1 p 2 p
t p1
1
p 1 p 2
p p1
将此结果代入 ci t1iti1 即得
ci
p
p1 i
k1(i k )
k i
如果从t期开始迭代,则有
yt j
f ( j1)
11
yt 1
f y ( j1)
12
t2
f y ( j1)
11 0
f (t1)
11
1
f (1)
11 t 1
t
其中
f ( j)
11
c11j
c22j
cppj

时间序列分析第三章平稳时间序列分析

时间序列分析第三章平稳时间序列分析

应用时间序列分析实验报告实验名称第三章平稳时间序列分析一、上机练习data example3_1;input x;time=_n_;cards;;proc gplot data=example3_1;plot xtime=1;symbol c=red i=join v=star;run;建立该数据集,绘制该序列时序图得:根据所得图像,对序列进行平稳性检验;时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;从图上可以看出,数值围绕在0附近随机波动,没有明显或周期,其本可以视为平稳序列,时序图显示该序列波动平稳;proc arima data=example3_1;identify var=x nlag=8;run;图一图二样本自相关图图三样本逆自相关图图四样本偏自相关图图五纯随机检验图实验结果分析:1由图一我们可以知道序列样本的序列均值为,标准差为,观察值个数为84个;2根据图二序列样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟3阶之后,自相关系数都落入2倍标准差范围以内,而且自相关系数向衰减的速度非常快,延迟5阶之后自相关系数即在值附近波动;这是一个短期相关的样本自相关图;所以根据样本自相关图的相关性质,可以认为该序列平稳;3根据图五的检验结果我们知道,在各阶延迟下LB检验统计量的P值都非常小<,所以我们可以以很大的把握置信水平>%断定该序列样本属于非白噪声序列;proc arima data=example3_1;identify var=x nlag=8minic p= 0:5q=0:5;run;IDENTIFY命令输出的最小信息量结果某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;为了尽量避免因个人经验不足导致的模型识别问题,SAS系统还提供了相对最优模型识别;最后一条信息显示,在自相关延迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMRp,q模型中,BIC信息量相对最小的是ARMR0,4模型,即MA4模型;需要注意的是,MINIC只给出一定范围内SBC最小的模型定阶结果,但该模型的参数未必都能通过参数检验,即经常会出现MINIC给出的模型阶数依然偏高的情况;estimate q=4;run;本例参数估计输出结果显示均值MU不显著t的检验统计量的P值为,其他参数均显著t检验统计量的P值均小于,所以选择NOINT选项,除去常数项,再次估计未知参数的结果,即可输入第二条ESTIMATE 命令:estimate q=4 noint;run;参数估计部分输出结果如图六所示:图六ESTIMATE命令消除常数项之后的输出结果显然四个未知参数均显著;拟合统计量的值这部分输出五个统计量的值,由上到下分别是方差估计值、标准差估计值、AIC信息量、SBC信息量及残差个数,如图七所示:图七ESTIMATE命令输出的拟合统计量的值系数相关阵这部分输出各参数估计值的相关阵,如图八所示:图八ESTIMATE命令输出的系数相关阵残差自相关检验结果这部分的输出格式图九和序列自相关系数白噪声检验部分的输出结果一样;本例中由于延迟各阶的LB统计量的P值均显著大于aa=,所以该拟合模型显著成立;图九ESTIMATE命令输出的残差自相关检验结果拟合模型的具体形式ESTIMA TE命令输出的拟合模型的形式序列预测forecast lead=5id=time out=results;run;其中,lead是指定预测期数;id是指定时间变量标识;out是指定预测后的结果存入某个数据集;该命令运行后输出结果如下:FORECAST命令输出的预测结果该输出结果从左到右分别为序列值的序号、预测值、预测值的标准差、95%的置信下限、95%的置信上限;利用存储在临时数据集RESULTS里的数据,我们还可以绘制漂亮的拟合预测图,相关命令如下:proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;输出图像如下:拟合效果图注:图中,S号代表序列的观察值;连续曲线代表拟合序列曲线;虚线代表拟合序列的95%上下置信限;所谓预测就是要利用序列以观察到的样本值对序列在未来某个时刻的取值进行估计;目前对平稳序列最常用的预测方法是线性最小方差预测;线性是指预测值为观察值序列的线性函数,最小方差是指预测方差达到最小;在预测图上可以看到,数据围绕一个范围内波动,即说明未来的数值变化时平稳的;二、课后习题第十七题:根据某城市过去63年中每年降雪量数据单位:mm得:书本P94程序:data example17_1;input x;time=_n_;cards;2579588397 110;proc gplot data=example17_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example17_1;identify var=x nlag=15minic p= 0:5q=0:5;run;estimate p=1;run;estimate p=1 noin;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay;symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图a图a由时序图显示过去63年中每年降雪量数据围绕早70mm附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图b图b时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图c图c根据图c的检验结果我们知道,在6阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选择适当模型拟合该序列的发展;模型识别如下图图d图d假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3:估计模型中未知参数的值;4:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该城市未来5年的降雪量.由2可以知道该模型是AR1模型;预测结果如下图图e由图得未来564-68年的降雪量分别为、、、、;18. 某地区连续74年的谷物产量单位:千吨data example18_1;input x;time=_n_;cards;;proc gplot data=example18_1;plot xtime=1;symbol c=red i=join v=star;run;proc arima data=example18_1;identify var=x nlag=18minic p= 0:5q=0:5;run;estimate q=1;run;forecast lead=5id=time out=results;run;proc gplot data=results;plot xtime=1 forecasttime=2 l95time=3 u95time=3/overlay; symbol1c=black i=none v=start;symbol2c=red i=join v=none;symbol3c=green i=join v=none l=32;run;1判断该序列的平稳性与纯随机性该序列的时序图如下图f图f时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;由时序图显示过去74年中每年谷物产量数据围绕早千吨附近随机波动,没有明显趋势或周期,基本可以看成平稳序列,为了稳妥起见,做了如下自相关图图g图g样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟2阶之后,自相关系数都落入2倍标准差范围以内,自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图h图h根据图h的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;选择适当模型拟合该序列的发展;如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图i图i假如某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:A:求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;B:根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;C:估计模型中未知参数的值;D:检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;E:模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;F:利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA1,0模型,既AR1模型;它们的自相关系数都呈现出拖尾性和呈指数衰减到零值附近的性质;自相关系数是按负指数单调收敛到零;利用拟合模型,预测该地区未来5年的谷物产量,预测结果如下图图j 由2可知,该模型为AR1模型;图j未来5年的谷物产量一次为,,,;19. 现有201个连续的生产记录data example19_1;input x;time=_n_;cards;图l时序图就是一个平面二维坐标图,通常横轴表示时间,纵轴表示序列取值;时序图可以直观地帮助我们掌握时间序列的一些基本分布特征;根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界的特点;如果观察序列的时序图,显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列;样本的自相关图我们可以知道该图横轴表示自相关系数,综轴表示延迟时期数,用水平方向的垂线表示自相关系数的大小;我们发现样本自相关图延迟1阶之后,自相关系数都落入2倍标准差范围以内, 自相关图显示该序列自相关系数一直都比较小,1阶开始控制在2倍的标准差范围以内,可以认为该序列自始自终都在零轴附近波动,这是随即性非常强的平稳时间序列;纯随机性检验见下图:图m根据图m的检验结果我们知道,在各阶延迟下LB检验统计量的P值显著小于,所以我们可以以很大的把握置信水平>95%断定这个拟合模型的残差序列属于非白噪声序列;2如果序列平稳且非白躁声,选折适当模型拟合序列的发展模型识别如下图图n某个观察值序列通过序列预处理,可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列建模;建模的基本步骤如下:1、求出该观察值序列的样本自相关系数ACF和样本偏自相关系数PACF的值;2、根据样本自相关系数和偏自相关系数的性质,选择适当地ARMAp,q模型进行拟合;3、估计模型中未知参数的值;4、检验模型有效性;如果拟合模型不通过检验,转向步骤B,重新选择模型再拟合;5、模型优化;如果拟合模型通过检验,仍然转向步骤B,充分考虑各种可能,建立多个拟合模型,从所有通过检验中选择最优模型;6、利用拟合模型,预测序列的将来走势;最后一条信息显示,在自相数迟阶数小于等于5,移动平均延迟阶数也小于等于5的所有ARMAp,q模型中,BIC信息量相对最小的是ARMA0,1模型,即MA1模型;利用拟合模型,预测该城市下一时刻95%的置信区间;由2可得,该模型为MA1模型;下一时刻95%的置信区间,;实验小结:给定一个序列,我们首先应该判断平稳性,如果平稳,再检查是否是纯随机序列,如果序列平稳且非白躁声,选折适当模型拟合序列的发展,选择AR,MA,或ARMA模型,然后可以对该序列进行预测;三、实验体会通过本次实验使我掌握了一些对时间序列的处理,运用不同的语句对一个样本序列的平稳性检验和随机性检验,这对我们处理数据有很大的帮助;在生活中我们往往会遇到这样的现象,当我们所得到的样本信息太少,并且没有其他的辅助信息时,通常这种数据结构式没法进行分析的,但是序列平稳性的概念的提。

线性平稳时间序列模型

线性平稳时间序列模型
上一页 下一页 返回本节首页
第二节 建立线性时序模型旳原理 ——动态性
上一页 下一页 返回本节首页
动态性:就是指时间序列各观察值之间旳 有关性。
从系统旳观点看:动态性即指系统旳记忆 性,也就是某一时刻进入系统旳输入对 系统后继行为旳影响,图示如下:
输入
系统
输出(响应)

(1)某人在某一天打了一针,假如当日旳反应 是疼痛 0 ,而后来没有其他反应,那么系统 旳输入、输出如下:
假如一种时间序列是纯随机旳,得到一种 观察期数为 n旳观察序列,那么该序列旳 延迟非零期旳样本自有关系数将近似服 从均值为零,方差为序列观察期数倒数 旳正态分布
ˆ k
~
N (0, 1 ) n
,k 0
上一页 下一页 返回本节首页
2.假设条件
原假设:延迟期数不大于或等于m 期旳序 列值之间相互独立
H 0:1 2 m 0, m 1
这种情况可用模型概括为:xt 1at1
(3)假如当日旳反应是疼痛 0 ,第二天 出现了红肿 1 ,那么:
时间 输入 输出
t :1 2 at: 0 1 xt:0 0
3 45 0 00 1 0 0
这种情况可用模型概括为:xt 0at 1at1
(4)假如打针后来各个时刻都存在相应旳反 应,那么,有关该刺激旳总旳概括为:
原则正态白噪声序列纯随机性检验
样本自有关图
返回例题
检验成果
延迟
延迟6期 延迟12期
Q统计量检验
Q统计量值
P值
4.3435
0.63
14.171
0.29
因为P值明显不小于明显性水平 ,所以该序列不能
拒绝纯随机旳原假设。
返回例题

第三章平稳时间序列分析-1

第三章平稳时间序列分析-1
保证最高阶数为p p 0 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t E ( x ) 0, s t 保证残差白噪声 s t
保证t期的随机干扰与过 去s期的序列值无关
特别地、当φ 0=0时,称为中心化AR(p)模型
(较适合低阶AR模型,如1,2阶)

平稳域判别

平稳域—使特征根都在单位圆内的AP(p)的系数 集合,即 {1 ,2 ,, p 特征根都在单位圆内 }
AR(1)模型判断平稳性的条件
xt xt 1 t,即xt xt 1 t

特征根判别
特征方程为 0 特征根为 所以若AR(1)平稳,必有
1 2 1 12 42
2
1 12 42
2
{1 , 2 2 1,且 2 1 1}
例3.1续 平稳性判别 (1) xt 0.8xt 1 t
(2) xt 1.1xt 1 t
模 型
(1) (2) (3) (4)

k xt xt k
2、延迟算子


延迟算子类似于一个时间指针,当前序列值乘 以一个延迟算子,就相当于把当前序列值的时 间向过去拨了一个时刻。 记B为延迟算子,有
xt p B xt , p 1
p
延迟算子的性质:

B0 1
B(c xt ) c B( xt ) c xt 1 ,

非齐次线性差分方程的通解 齐次线性差分方程的通解和非齐次线性差分方 程的特解之和Zt z z z
t t t
线性差分方程在时间序列分析中很有用,某些时间序列模型及 自协方差或自相关函数本身就是线性差分方程,而线性差分方程 的特征根的性质,对平稳性的判定也很重要。

时间序列分析--第三章平稳时间序列分析

时间序列分析--第三章平稳时间序列分析

2019/9/23
课件
25
Green函数递推公式
原理 xt( BG )x(tB )tt (B)G(B)t t
方法
待定系数法
递推公式
2019/9/23
G G0j 1k j1kGjk, j1,2, ,其中 k 0k ,k ,kpp
非齐次线性差分方程的通解
齐次线性差分方程的通解和非齐次线性差分方程的
特解之和 z t
zt ztzt
2019/9/23
课件
10
3.2 ARMA模型的性质
AR模型(Auto Regression Model) MA模型(Moving Average Model) ARMA模型(Auto Regression Moving
2019/9/23
课件
38
例3.5:— (4 )x t x t 1 0 .5 x t 2t
自相关系数不规则衰减
2019/9/23
课件
39
偏自相关系数
定义
对于平稳AR(p)序列,所谓滞后k偏自相关系数就 是指在给定中间k-1个随机变量 的 xt1,xt2, ,xtk1 条件下,或者说,在剔除了中间k-1个随机变 量的干扰之后, x 对 tk x影t 响的相关度量。用数 学语言描述就是
2019/9/23
课件
29
例3.3:求平稳AR(1)模型的协方差
递推公式
k 1k11k0
平稳AR(1)模型的方差为
0


2
1 12
协方差函数的递推公式为
k
1k
2 112
,k1
2019/9/23
课件

时间序列分析方法 第03章 平稳ARMA模型

时间序列分析方法  第03章 平稳ARMA模型

第三章 平稳ARMA 过程一元ARMA 模型是描述时间序列动态性质的基本模型。

通过介绍ARMA 模型,可以了解一些重要的时间序列的基本概念,并且为描述单变量时间序列的动态性质提供一类十分有用的模型。

§3.1 预期、平稳性和遍历性3.1.1 预期和随机过程假设可以观察到一个样本容量为T 的随机变量t Y 的样本:},,,{21T y y y这意味着这些随机变量之间的是相互独立且同分布的。

例3.1 假设T 个随机变量的集合为:},,,{21T εεε ,),0(~2σεN i 且相互独立,我们称其为高斯白噪声过程产生的样本。

对于一个随机变量t Y 而言,它是t 时刻的随机变量,因此即使在t 时刻实验,它也可以具有不同的取值,假设进行多次试验,其方式可能是进行多次整个时间序列的试验,获得I 个时间序列:+∞=-∞=t t t y }{)1(,+∞=-∞=t t t y }{)2(,…,+∞=-∞=t t I t y }{)(将其中仅仅是t 时刻的观测值抽取出来,得到序列:},,,{)()2()1(I t t t y y y ,这个序列便是对随机变量t Y 在t 时刻的I 次观测值,也是一种简单随机子样。

定义3.1 假设随机变量t Y 是定义在相同概率空间},,{P ℜΩ上的随机变量,则称随机变量集合},2,1,0,{ ±±=t Y t 为随机过程。

例3.2 假设随机变量t Y 的概率密度函数为:]21exp[21)(22t t Y y y f t σσπ= 此时称此时密度为该过程的无条件密度,此过程也称为高斯过程或者正态过程。

定义3.2 可以利用各阶矩描述随机过程的数值特征:(1) 随机变量t Y 的数学期望定义为(假设积分收敛):⎰==+∞∞-tt Y t t t dy y f y Y E t )()(μ (3.1) 此时它是随机样本的概率极限:∑==∞→I i i t I t y I P Y E 1)(1lim)( (3.2) (2) 随机变量t Y 的方差定义为(假设积分收敛): 20)(t t t Y E μγ-= (3.3) 例3.3 几种重要类型的随机过程1) 假设},,{21 εε是一个高斯白噪声过程,随机过程t Y 为常数加上高斯白噪声过程:t t Y εμ+=则它的均值和方差分别为:μεμμ=+==)()(t t t E Y E2220)()(σεμγ==-=t t t t E Y E(2) 随机过程t Y 为时间的线性趋势加上高斯白噪声过程:t t t Y εβ+=则它的均值和方差分别为:t E t Y E t t t βεβμ=+==)()(2220)()(σεμγ==-=t t t t E Y E3.1.2 随机过程的自协方差函数将j 个时间间隔的随机变量构成一个随机向量),,,(1'=--j t t t t Y Y Y X ,通过随机试验可以获得该随机向量的简单随机样本。

第3章 平稳时间序列分析(1)

第3章 平稳时间序列分析(1)

第3章 平稳时间序列分析本章教学内容与要求:了解时间序列分析的方法性工具;理解并掌握ARMA 模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模与预测。

本章教学重点与难点:利用软件进行模型的识别、参数的估计以及序列的建模与预测。

计划课时:21(讲授16课时,上机3课时、习题3课时) 教学方法与手段:课堂讲授与上机操作§3.1 方法性工具一个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是一个蕴含着相关信息的平稳序列。

在统计上,我么通常是建立一个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。

ARMA(auto regression moving average)模型是目前最常用的一个平稳序列拟合模型。

时间序列分析中一些常用的方法性工具可以使我们的模型表达和序列分析更加简洁、方便。

一、差分运算 (一)p 阶差分相距一期的两个序列值之间的减法运算称为1阶差分运算。

记▽t x 为t x 的1阶差分:▽1t t t x x x --=对1阶差分后的序列再进行一次1阶差分运算称为2阶差分,记▽2t x 为t x 的2阶差分:▽2t x =▽t x -▽1-t x以此类推,对p-1阶差分厚序列再进行一次1阶差分运算称为p 阶差分。

记▽p t x 为t x 的p 阶差分:▽p t x =▽p-1t x -▽p-11-t x (二)k 步差分相距k 期的两个序列值之间的减法运算称为k 步差分运算。

记▽k t x 为t x 的k 步差分:▽k =k t t x x --例:简单的序列:t x :6,9,15,43,8,17,20,38,4,10,10,,1t =1阶差分:▽3x x x 122=-= ▽6x x x 233==-=……▽6x x x 91010=-=,即1阶差分序列▽t x :3,6,28,-35,9,3,18,-34,6,10,,2t =2阶差分:▽23x =▽3x -▽2x =3▽24x =▽4x -▽3x =22……▽210x =▽10x -▽9x =-40即2阶差分序列▽2t x :3,22,-63,-54,-6,16,-52,-40,10,,3t =2步差分:▽29x x x 133=-=▽234x x x 244=-=……▽2-28x x x 81010=-=即2步差分序列:9,34,-7,-26,12,21,-16,-28 二、延迟算子(滞后算子) (一)定义延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相当于把当前序列值的时间向过去拨去了一个时刻。

《平稳时间序列》课件

《平稳时间序列》课件
市场波动
通过分析股票市场的波动数据,平稳时间序列方法可以帮助预测未 来市场的波动情况,有助于投资者制定风险管理策略。
行业趋势
通过对不同行业股票数据的平稳时间序列分析,可以预测未来行业 的发展趋势,有助于投资者进行行业配置和投资决策。
06
时间序列分析软件介绍
EViews软件介绍
适用范围
EViews是专门用于时间序列分析的软件,广泛应用于经济学、金 融学等领域。
降水预测
通过对历史降水数据的分析,平稳时间序列方法可以帮助 预测未来降水情况,有助于农业生产和灾害防范。
极端天气事件
通过分析极端天气事件的历史数据,平稳时间序列模型可 以预测未来极端天气事件的频率和强度,有助于防范自然 灾害。
股票市场预测
股票价格
利用历史股票价格数据,平稳时间序列模型可以预测未来股票价 格的走势,有助于投资者制定投资策略和风险控制。
列。
Holt's线性指数平滑
02
结合了趋势和季节性因素,适用于具有线性趋势和季节性变化
的时间序列。
Holt-Winters指数平滑
03
适用于具有非线性趋势和季节性变化的时间序列,能更好地捕
捉数据的季节性变化。
季节性自回归积分滑动平均模型(SARIMA)预测
01
SARIMA模型
结合了季节性和非季节性因素,适用于具有季节性和非季节性变化的时
04
平稳时间序列的预测
线性预测
线性回归模型
通过建立自变量与因变量之间的线性关系,预测时间序列的未来 值。
线性趋势模型
适用于具有线性趋势的时间序列,通过拟合线性方程来预测未来 趋势。
简单移动平均模型
对时间序列进行移动平均处理,根据历史数据预测未来值。

3.1时间序列平稳性和单位根检验

3.1时间序列平稳性和单位根检验

• 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
• 数据非平稳,往往导致出现“虚假回归” (Spurious Regression)问题。
–表现为两个本来没有任何因果关系的变量,却有很高的 相关性。
–例如:如果有两列时间序列数据表现出一致的变化趋势 (非平稳的),即使它们没有任何有意义的关系,但进 行回归也可表现出较高的可决系数。
2、平稳性的定义
• 假定某个时间序列是由某一随机过程 (stochastic process)生成的,即假定时间 序列{Xt}(t=1, 2, …)的每一个数值都是从一 个概率分布中随机得到,如果满足下列条件:
–均值E(Xt)=是与时间t 无关的常数; –方差Var(Xt)=2是与时间t 无关的常数; –协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与
• 随机游走的一阶差分(first difference)是平 稳的: Xt=Xt-Xt-1=t ,t~N(0,2)
• 如果一个时间序列是非平稳的,它常常可通过 取差分的方法而形成平稳序列。
二、单整序列 Integrated Series
• 如果一个时间序列经过一次差分变成平稳的, 就称原序列是一阶单整(integrated of 1)序 列,记为I(1)。
m
X t t X t1 i X ti t i 1
模型1 模型2 模型3
零假设 H0:=0 备择假设 H1:<0
• 检验过程
–实际检验时从模型3开始,然后模型2、模型1。 –何时检验拒绝零假设,即原序列不存在单位根,为
平稳序列,何时停止检验。 –否则,就要继续检验,直到检验完模型1为止。
• ADF检验在Eviews中的实现

第三章 线性平稳时间序列分析

第三章 线性平稳时间序列分析
上海财经大学 统计与管理学院 5
λ + α1λ
p 1
+ + α p = 0
特征根 λ1 , λ2 ,… , λ p 为互不相同的实根 这时齐次线性差分方程的解为 t zt = c1λ1t + + c p λ p 特征根 λ1 , λ2 ,… , λ p 中有相同实根 这时齐次线性差分方程的解为 特征根 λ1 , λ2 ,… , λ p 中有复根 这时齐次线性差分方程的解为
j
j k
根据 Cauchy 不等式,我们可以得到
G j G j k ≤ ∑ G 2 ∑ G 2k ∑ j j j =∞ j =∞ j =∞
∞ ∞ ∞
12
<∞
所以级数
j =∞
∑GG
j∞Leabharlann j k收敛,故 { X t } 为平稳序列.
上海财经大学 统计与管理学院
10
,
3.1.2 线性过程的因果性和可逆性
1 j =1
(3.8)
其中
1 G 1 ( B ) = I ( B) = 1 ∑ I j B j j =1 ∞
(3.9)
称将 X t 变换为 ε t 的线性算子:
I ( B ) = ∑ I j B j , I 0 = 1
j =0

为逆函数 逆函数,称(3.8)为 X t 的逆转形式 逆转形式,也称为无穷阶自回归. 逆函数 逆转形式
j =0 ∞
便于使用的条件是: 便于使用的条件是:
∑ Gj < ∞

j =0
(3.7)
上海财经大学 统计与管理学院 13
在理论研究和实际问题的处理时, 通常还需要用 t 时刻及 t 时刻以前的 X t j ( j = 0,1, ) 来表示白噪声 ε t ,即

第3章平稳时间序列分析

第3章平稳时间序列分析

时间序列分析
(1) X t = X t −1 − 0.5 X t − 2 + at
• 自相关函数呈现出“伪周期”性
• 理论偏自相关函数
⎧2 ,k =1 ⎪3 ⎪ φkk = ⎨−0.5 , k = 2 ⎪0 ,k ≥ 3 ⎪ ⎩
• 样本偏自相关图
时间序列分析
(2) X t = − X t −1 − 0.5 X t − 2 + at
由于格林函数描述了系统的动态性,那么在随 机扰动序列已知的情况下,格林函数就完全 能够确定系统的行为,从而根据已知的扰动 序列和格林函数便可确定系统的响应 拟合AR(p)模型的过程也就是使相关序列独立 化的过程.
时间序列分析
• 平稳性的Green函数判别法
欲使序列平稳,则格林函数应满足
当j → ∞时,有G j → 0
ρ k 减小,且以指数速度减小,越来越与0接近,
这种现象称为拖尾.
时间序列分析
4、AR(1)的PACF (1) PACF的求解
AR (1)的 PACF 按照 PACF的递推公式有:
ρ 2 − ρ1φ11 φ12 − φ12 φ11 = ρ1; φ 22 = = =0 2 1 − ρ1φ11 1 − φ1 φ21 = φ11 − φ 22φ11 = φ1 ρ 3 − ρ 2φ 21 − ρ1φ 22 φ13 − φ12φ1 − 0 = =0 φ33 = 2 1 − ρ1φ 21 − ρ 2φ 22 1 − φ1 − 0
时间序列分析
(三)AR(1)的统计特征
1、 AR(1)的方差:
• 平稳AR(1)模型的传递形式为
∞ ∞ at i Xt = = ∑ (φ1 B) at = ∑ φ1i at −i 1 − φ1 B i =0 i =0

平稳时间序列分析

平稳时间序列分析

平稳时间序列分析平稳时间序列分析是一种常用的时间序列分析方法,它旨在研究时间序列在均值和方差上的稳定性,并将其用于预测未来的数据走势。

本文将详细介绍平稳时间序列分析的基本概念、建模方法和预测技术。

首先,让我们来了解什么是时间序列。

时间序列是按照一定的时间间隔收集到的一系列数据点的有序集合,它可以是连续的或离散的。

时间序列分析的目的是通过对过去的数据进行统计分析,揭示出时间序列中的内在规律和趋势,并预测未来的数据走势。

平稳时间序列是指在统计意义上具有稳定性的时间序列,即其均值和方差保持恒定不变。

平稳时间序列具有以下特点:1)均值是常数,不随时间变化;2)方差是常数,不随时间变化;3)协方差只与时间间隔有关,与具体的时间点无关。

为了实现平稳时间序列分析,我们需要进行以下几个步骤:1. 数据准备:收集所需的时间序列数据,并将其整理成适合分析的格式。

通常,我们会绘制时间序列图以直观地查看数据的趋势和模式。

2. 时间序列分解:时间序列通常包含趋势、季节性和随机成分。

我们需要对时间序列进行分解,将其分解为这些组成部分。

常用的分解方法有经典的加性模型和乘性模型。

3. 平稳性检验:对于时间序列分析,我们需要确保数据是平稳的。

平稳性检验的目的是判断时间序列的均值和方差是否是稳定的。

常用的平稳性检验方法有ADF检验、KPSS检验等。

4. 模型建立:如果时间序列被证实是平稳的,我们可以根据数据的模式和趋势选择适当的模型。

常用的模型包括自回归滑动平均模型(ARMA模型)、自回归积分滑动平均模型(ARIMA模型)等。

5. 模型识别与估计:在模型建立的基础上,我们需要对模型进行识别和估计。

模型识别的目的是选择最适合数据的模型阶数,常用的方法有自相关函数(ACF)和偏自相关函数(PACF)的分析。

模型的估计通常使用最大似然估计方法。

6. 模型检验:建立模型后,我们需要对模型进行检验,验证其拟合程度和预测准确度。

常用的模型检验方法有残差分析、DW检验、Ljung-Box检验等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即 (1 1 B p B p ) xt t
将 ( B) 1 1 B 2 B2 p B p ,称为自回归
系数多项式。 则中心化AR(p)模型可简记为
( B) xt t
4、AR模型平稳性判别


判别原因 AR模型虽是常用的平稳序列的拟合模型之 一,但并非所有的AR模型都是平稳的 判别方法,除时序图及自相关图法外,还有 特征根判别法 平稳域判别法
本章内容

方法性工具 ARMA模型 (AR MA ARMA ) 平稳序列建模 序列预测
3.1 方法性工具

差分运算 延迟算子 线性差分方程
1、差分运算

一阶差分
p阶差分 k步差分
xt xt xt 1
p xt p1 xt p1 xt 1


非齐次线性差分方程的通解 齐次线性差分方程的通解和非齐次线性差分方 程的特解之和Zt z z z
t t t
线性差分方程在时间序列分析中很有用,某些时间序列模型及 自协方差或自相关函数本身就是线性差分方程,而线性差分方程 的特征根的性质,对平稳性的判定也很重要。
3.2 ARMA模型的性质
1 i 2 2
1 3 2 2
1
1 3 2
2 0.5,2 1 1.5,2 1 0.5
作业
P98 习题三 3、4 实验1理论(sas简介及数据集创建)
xt ( ( t 1 xt 1 ) p xt p )
则变换yt=xt-μ称为中心化变换。
(相当于将整个非中心化序列进行了常数μ的平移。)
3、自回归系数多项式

引进延迟算子 xt 1 xt 1 p xt p t
(1 B p B p ) xt t
1 2 1 12 42
2
1 12 42
2
{1 , 2 2 1,且 2 1 1}
例3.1续 平稳性判别 (1) xt 0.8xt 1 t
(2) xt 1.1xt 1 t
模 型
(1) (2) (3) (4)
不相等实数根时
t zt c11 c2 t2 c p tp
有相等实根时(设有d个相等实根),则
t zt (c1 c2t cd t d 1 )1 cd 1td 1 c p tp
有复根时,复根必共轭出现
a bi re it (r a 2 b 2 , arccos
保证最高阶数为p p 0 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t E ( x ) 0, s t 保证残差白噪声 s t
保证t期的随机干扰与过 去s期的序列值无关
特别地、当φ 0=0时,称为中心化AR(p)模型
【例3.1】考察如下四个模型的平稳性
(1) xt 0.8xt 1 t
(2) xt 1.1xt 1 t
(3) xt xt 1 0.5xt 2 t
(4) xt xt 1 0.5xt 1 t
例3.1平稳序列时序图(1)(3)
(1) xt 0.8xt 1 t
(较适合低阶AR模型,如1,2阶)

平稳域判别

平稳域—使特征根都在单位圆内的AP(p)的系数 集合,即 {1 ,2 ,, p 特征根都在单位圆内 }
AR(1)模型判断平稳性的条件
xt xt 1 t,即xt xt 1 t

特征根判别
特征方程为 0 特征根为 所以若AR(1)平稳,必有
齐次线性差分方程的解
zt a1 zt 1 a2 zt 2 a p zt p 0

齐次线性差分方程特征方程
p a1p1 a2p2 a p 0

特征方程的根称为特征根(至少有p个非零 根),记作 1 , 2 ,, p

齐次线性差分方程的通解
zt r t (c1eit c2eit ቤተ መጻሕፍቲ ባይዱ c3t3 c ptp
a ) r
非齐次线性差分方程的解

非齐次线性差分方程的特解 使得非齐次线性差分方程成立的任意一个解 z t
zt a1 zt1 a2 zt2 a p zt p h(t )

k xt xt k
2、延迟算子


延迟算子类似于一个时间指针,当前序列值乘 以一个延迟算子,就相当于把当前序列值的时 间向过去拨了一个时刻。 记B为延迟算子,有
xt p B xt , p 1
p
延迟算子的性质:

B0 1
B(c xt ) c B( xt ) c xt 1 ,
k步差分
i 0
k xt xt k (1 B ) xt
k
3、线性差分方程

线性差分方程
对序列{xt,t=±1,±2,…}
zt a1 zt 1 a2 zt 2 a p zt p h(t )

齐次线性差分方程
zt a1 zt 1 a2 zt 2 a p zt p 0
上次课内容
平稳性的图检验法? 时序图检验、自相关图检验 纯随机性(白噪声)检验法? Q检验法(卡方检验) 时序图检验原理: 时序图应该呈现序列值始终在一个常数附近随机 波动,而且波动的范围有界、无明显趋势及周期特征。 自相关图检验原理: 自相关系数会很快地衰减为零。 Q检验法的检验原理: 一个平稳序列短期延迟的序列值间无显著相关性, 则长期延迟间一般更不存在。
2、AR(P)序列中心化变换

则x t (1 1 ... P ) 1 x t 1 2 x t 2 p x t p t ( ( t 1 x t 1 ) p x t p )
目的是将非中心化的AR(p)转化为中心化AR(p)。 0 令 1 1 p
| || | 1

平稳域判别 平稳域为 { | 1 1}
AR(2)模型判断平稳性的条件
xt 1 xt 1 2 xt 2 t,即xt 1 xt 1 2 xt 2 t

特征方程为
2 1 2 0

平稳域

特征根
(3) xt xt 1 0.5xt 2 t
例3.1非平稳序列时序图(2)(4)
(2) xt 1.1xt 1 t
(4) xt xt 1 0.5xt 1 t
AR模型平稳性判别方法

特征根判别


AR(p)模型平稳的充要条件是它的p个特征根都在 单位圆内(特征根|λi|<1) 根据特征根和自回归系数多项式的根成倒数的性 质,等价判别条件是该模型的自回归系数多项式 的根都在单位圆外(Ф (u)=0的根|ui|>1)
c为任意常数
B( xt yt ) xt 1 yt 1
B n xt xt n
n n
i (1 B ) ( 1) n C n Bi i 0

用延迟算子表示差分运算

p阶差分
p xt (1 B) p xt (1) p C ip xt i
p

1
(3) xt xt 1 0.5xt 2 t
(4) xt xt 1 0.5xt 1 t
平稳域判别 结论
平稳 非 平稳 平稳 非 平稳
特征根判别
1 0.8
1 1.1
1 i 2
0.8
1.1
2 0.5,2 1 0.5,2 1 1.5

AR模型(Auto Regression Model)
MA模型(Moving Average Model) ARMA模型(Auto Regression Moving Average model)


一、AR模型
1、定义:具有如下结构的模型称为p阶自回归 模型,简记为AR(p) xt 0 1 xt 1 2 xt 2 p xt p t
相关文档
最新文档