2-3-1提公因式、公式法(一).讲义学生版
14.3.1提公因式法说课稿2022-2023学年人教版八年级数学上册
14.3.1 提公因式法说课稿一、教学目标1.理解提公因式法的基本概念和运用方法;2.掌握利用提公因式法进行多项式的因式分解;3.培养学生的逻辑思维和解决问题的能力。
二、教学重难点1. 教学重点•提公因式法的基本概念和运用方法;•多项式的因式分解。
2. 教学难点•利用提公因式法进行复杂多项式的因式分解。
三、教学过程1. 导入(5分钟)引入提公因式法的概念和意义。
通过举例说明提公因式法的应用场景,如化简分式、求多项式的最大公因式等。
通过这些例子,激发学生对提公因式法的兴趣和学习的动力。
2. 知识讲解(20分钟)2.1 提公因式法的基本概念和运用方法提公因式法是一种将一个多项式表达式分解为两个因式的方法。
通过提取出多项式中的公因式,将多项式分解为乘法形式。
例如,对于多项式7x + 14y,我们可以提取出公因式7,得到7(x + 2y)。
通过提公因式法,我们成功将多项式分解为两个因式。
2.2 多项式的因式分解在提公因式法的基础上,我们可以进一步利用提公因式法进行多项式的因式分解。
例如,对于多项式x^2 - 4,我们可以将其因式分解为(x + 2)(x - 2)。
通过提公因式法,我们成功将多项式分解为两个因式。
3. 实例演练(25分钟)在讲解完提公因式法的基本概念和运用方法后,通过多个实例让学生进行实践操作。
从简单的例子开始,逐渐增加难度,让学生逐步掌握提公因式法的运用技巧。
示例1:将多项式3x + 9分解为公因式和提公因式。
解:3x + 9 = 3(x + 3)示例2:将多项式a^2 - 4a进行因式分解。
解:a^2 - 4a = a(a - 4)示例3:将多项式2x^3 + 4x^2 + 6x进行因式分解。
解:2x^3 + 4x^2 + 6x = 2x(x^2 + 2x + 3)4. 板书总结(5分钟)将提公因式法的基本概念和运用方法进行总结,并通过板书的形式呈现给学生。
重点标记提公因式法的关键步骤和注意事项,以便后续复习和巩固。
专题4.1 因式分解(提公因式法与运用公式法)(学生版)
专题4.1 因式分解(提公因式法与运用公式法)1.了解整式乘法与因式分解之间的互逆关系;2.会用提公因式法分解因式;3.会用运用公式法分解因式。
知识点01 因式分解的概念【知识点】因式分解的定义:把一个多项式化成了几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。
【知识拓展1】辨别因式分解与整式乘法例1.(2024·江苏常州·期中)下列等式由左边到右边的变形中,属于因式分解的是( ) A .2(1)(1)1a a a +-=- B .43222186?3x y x y x y -=- C .221(2)1x x x x ++=++ D .2269(3)a a a -+=-【即学即练】1.(2024·广东禅城·期末)下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【知识拓展2】应用因式分解的概念求参数例2.(2024·山东中区·初二期中)已知多项式x 2+ax ﹣6因式分解的结果为(x +2)(x +b ),则a +b 的值为( ) A .﹣4 B .﹣2C .2D .4【即学即练】1.(2024·贵州铜仁·初二期末)多项式26x mx ++可因式分解为()()23x x --,则m 的值为 ( ) A .6B .5±C .5D .5-2.(2024·江西昌江·景德镇一中初一期末)已知,,m n p 为实数,若1,4x x -+均为多项式32x mx nx p+++的因式,则2286m n p --+=__________.【知识拓展3】错题正解例3.(2024·上海市八年级期中)甲乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4),乙看错了a ,分解结果为(x +1)(x +9),则2a +b =_____. 【即学即练】1.(2024·张家界市初二期中)甲、乙两个同学分解因式x 2+ax+b 时,甲看错了b ,分解结果为(x+2)(x+4);乙看错了a ,分解结果为(x+1)(x+9),则a -b 的值是__________.知识点02 因式分解的方法(一)提公因式法【知识点】①提公因式法:pa +pb +pc =p (a +b +c );注意:挖掘隐含公因式;有时,公因式有显性完全相同类型,也有隐性互为相反数的类型。
七年级同步第10讲:提取公因式法、公式法分解因式-学生版
学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用.它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础.本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用,提取公因式法和公式法是因式分解的基本而又重要的两种方法.1、因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也提取公因式法、公式法内容分析知识结构知识精讲模块一:提取公因式法叫做把这个多项式分解因式. 2、因式分解与整式乘法互为逆变形:()m a b c ma mb mc ++++整式的乘积因式分解式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式.2、公因式:一个多项式中每一项都含有的因式叫做这个多项式的公因式.3、提取公因式法:多项式ma mb mc ++各项都含有公因式m ,可把公因式m 提到外面, 将多项式ma mb mc ++写成m 与a b c ++的乘积形式,此法叫做提取公因式法.4、提取公因式的步骤: (1)找出多项式各项的公因式. (2)提出公因式.(3)写成m 与a b c ++的乘积形式. 6、提取公因式法的几个技巧和注意点: (1)一次提净; (2)视“多”为“一”; (3)切勿漏1;(4)注意符号:在提出的公因式为负的时候,注意各项符号的改变;(5)化“分”为整:在分解过程中如出现分数,可先提出分数单位后再进行分解 ; (6)仔细观察:当各项看似无关的时候,仔细观察其中微妙的联系,转化后再分解.【例1】 判断下列各式从左到右的变形是否是分解因式,并说明理由.例题解析(1)()()22x y x y x y +-=-;(2)()322x x x x x x +-=+;(3)()23232x x x x +-=+-;(4)()()111xy x y x y +++=++.【例2】 指出下列各式中的公因式: (1)43224832a a b a b -,,; (2)2318m m a a -,; (3)()()()23369a b a b a b ++-+,,.【例3】 分解因式: (1)2368a a -; (2)322618m m m -+-; (3)2124ad bd d --+.【例4】 分解因式: (1)32228x y x y +;(2)22462a b ab ab --;(3)3121326m n m n m n x y x y x y -+--+.【例5】 分解因式:23229632x y x y xy ++.【例6】 把下列各式分解因式: (1)()()43x x y x y +-+;(2)()()2343x x y y x -+-;(3)()()()()32522322x y x y -----.【例7】 把下列各式分解因式: (1)()()68a m n b m n -+- ;(2)()()23m x y n y x -+-;(3)()()22a b x y ab x y -+-;(4)()2a b a b --+ .【例8】 把下列各式分解因式: (1)()()33113510m m ab a b a b b a +----;(2)()()()223222122418ab x y a b y x ab y x -+-+-.【例9】 分解因式:()()93168a x yb y x -+-.【例10】 分解因式:()()()222224168xy z x y z xyz z x y xy z x y +----+--.【例11】 先化简再求值:()()()2y x y x y x y x +++--,其中2x =-,12y =.【例12】 已知3210x x x +++=,求100999897x x x x +++的值.【例13】 试说明:一个三位数字,百位数字与个位数字交换位置后,则得到的新数与原数之差能被11整除.1、平方差公式:()()22a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反; ②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积. 2、完全平方公式: ()2222a ab b a b ++=+()2222a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式; ③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定.【例14】 把下列各式分解因式:模块二:公式法例题解析知识精讲(1)2119x -;(2)22114100m n -; (3)422591616x y -+.【例15】 把下列各式分解因式: (1)214a a --- ; (2)22269x y xyz z -+.【例16】 分解因式:(1)()()2222a b a b +--; (2)()()227216a b a b --+;(2)(3)()()2294a b c d a b c d +++--+-.【例17】 分解因式 (1)3312x x -;(2)2654a b b -;(3)()()3922x y x y ---.【例18】 分解因式:4416168125m n -.【例19】 把下列各式分解因式:(1)229991001-;(2)22119910022⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.【例20】 把下列各式分解因式:(1)2(2)10(2)25x y y x -+-+; (2)3241616m m m -+-.【例21】 分解因式:()()222248416x x x x ++++.【例22】 把下列各式分解因式:(1)()222224x y x y -+; (2)()()22114m n mn --+.【例23】 分解因式:1144n n n x x x +--+.【例24】 已知()222410a b a b +--+=,求()20062a b +的值.【例25】 证明:两个连续奇数的平方差能被8整除.师生总结【习题1】 观察下列从左到右的变形:(1)()()3322623a b a b ab -=-; (2)()ma mb c m a b c -+=-+;(3)()22261266x xy y x y ++=+; (4)()()22323294a b a b a b +-=-. 其中是因式分解的有__________(填括号).【习题2】 分解因式:(1)22242x y xy xy -++; (2)23364xy x y xy -+-;(3)423322222452790x y z x y z x y z -++.随堂检测【习题3】 分解因式:(1)2292416x xy y -+; (2)2844a a --.【习题4】 分解因式:(1)()()x a b y a b +++; (2)()()222a x y b x y ---; (3)()()233x y y x --+-; (4)()()()2x a b y b a a b -+---.【习题5】 不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.【习题6】 求代数式的值:()()()()()()22322132212123x x x x x x x -+--+++-,其中23x =-.【习题7】 分解因式:()()()()()322x x y z y z a x z z x y x y z x y x z a +-+-+--+----.【习题8】 分解因式(1)()()222391x x +--; (2)()()2222223553a b a b --+-.【作业1】 下面从左到右的变形哪些是因式分解?(1)()23632x xy x x y -=-; (2)()()225525x y x y x y -+=-; (3)()()2222a b c a b a b c -+=+-+; (4)221xy x y x xy y x y ⎛⎫++=++ ⎪⎝⎭.【作业2】 分解因式:(1)22624a x ax +;(2)223mn m n m n -+-; (3)29363m n mn n -+-;(4)322443151020x y x y x y -+-.【作业3】 分解因式:(1)()2211a b b b b -+-+-; (2)()()()3x a b y b a b a -+---;课后作业(3)()()23x a b y b a ---; (4)()()()262x y x y x y +--+.【作业4】 利用因式分解计算:(1)23.98 3.98 3.97-⨯;(2)81031010⨯-.【作业5】 分解因式:(1)()()222169m n m n --+;(2)()()224252m n m n -++-..【作业6】 分解因式:(1)211216mm-+;(2)()()()()222232333x x x x++++++.。
北师大版初中八年级下册数学课件 《提取公因式法》因式分解PPT(第1课时)
举一反三
2. 利用分解因式计算:(-2)²ºº¹+(-2)²ºº²× 1 2
解:(-2)²ºº¹+(-2)²ºº²×1 =(-2)²ºº¹×[1-(-2) ×] 2
1
=(-2)²ºº¹×0
2
=0
随堂检测
1.下列各式中,没有公因式的是( C )
A.ab-bc
B.y²-y
C.x²+2x+1 D.mn²-nm+m²
D
3. 把首项系数变为正数.
(1)-2x²y-2xy²=-()
(2)-2x²+3x-1=-() 2x²y+2xy²
2x²-3x+1
活动探究
探究点一 问题1:多项式ac+bc每项含有哪些因式?有相同的因式吗?3x²+x呢? mb²+nb+b呢? 解:多项式ac+bc的ac项含因式a、c、ac;bc项含因式b、c、bc.相同因式:c 多项式3x²+x含因式3、x、x²3x、3x²相同因式:x 多项式mb²+nb+b含因式m、b、b²mx²、n;相同因式:b
4.2提取公因式法 第1课时
八年级下册
学习目标 1 能确定多项式各项的单项式公因式; 2 会用提公因式法把多项式分解因式.
前置学习
1. 下列各式公因式是a的是()D
A. ax+ay+5B.3ma-6ma²C.4a²+10abD.a²-2a+ma
2. -6xyz+3xy²-9x²y的公因式是()
A.-3xB.3xzC.3yzD.-3xy
活动探究
探究点二 问题1:把下列各式因式分解: (1)3x+x³;(2)7x³-21x²; (3)8a³b²-12ab³c+ab;(4)-24x³+12x²-28x. 解:(1)原式=3•x+x²•x=x(3+x²); (2)原式=7x²•x+7x²•3=7x² (x-3); (3)原式=ab•8a²b-ab•12b²c+ab=ab(8a²b-12b²c+1); (4)-(24x³-12x²+28x)=-(4x•6x²-4x•3x+4x•7) =-4x(6x²-3x+7).
12.2因式分解的方法(第1课时 提公因式法)(课件)七年级数学上册(沪教版2024)
=4 a ( x - y )+2 b ( x - y )
=2( x - y )(2 a + b ).
7.先分解因式,再计算求值:
(1)4 x ( m -2)-3 x ( m -2)2,其中 x =1, m =3;
【解】4 x ( m -2)-3 x ( m -2)2
=(2 x + y )(2 x -3 y +3 x )=(2 x + y )(5 x -3 y ).
+ = ,
+ = ,
∵
∴
∴原式=3×(-2)=-6.
− = − .
+ = ,
14. 试说明817-279-913能被45整除.
【解】因为817-279-913=328-327-326
2)( a +4).将 a =-2代入,得原式=(-2-2)×(-2+
4)=-8.
分层练习-巩固
8. 计算320-318×6的值是( A
)
A. 319
B. 318
C. 3 2
D. 0
9. [新考法 数形结合法]△ ABC 的三边长分别为 a , b , c ,
且 a +2 ab = c +2 bc ,则△ ABC 是(
提取公因式法.
新知探究
如何将6 2 + 9因式分解?
先找出6 2 + 9各项的公因式,再用提取公因式法因式分解. 这个整式有两项
6 2 与9, 这两项的系数6与9有最大公因数3,这两项的字母部分 2 与都含
有字母和, 且和的最低次数都是1,因此可提取公因式3,得
− = ,
= ,
所以
解得
初二【数学(人教版)】因式分解——公式法(第一课时) 教学设计
2分钟1.5分钟0.5分钟归纳总结拓展提升例:利用因式分解计算22224914.35114.3)2(202120202020)1(⨯-⨯-+分析:(1)中2220212020-可利用平方差公式分解成)20212020()20212020(-⨯+,进而再进行化简运算;(1)中可以先提取共同的因数3.14,再利用平方差公式分解计算.解:2021202120202020)1()20212020(2020)20212020()20212020(2020202120202020)1(22-=--=-⨯++=-⨯++=-+28.6210014.3)4951()4951(14.3)4951(14.34914.35114.3)2(2222=⨯⨯=-⨯+⨯=-⨯=⨯-⨯例:如图,在一块长为a的正方形纸片的四角,各减去一个边长为b的正方形,其中a=1.86,b=0.34,求剩余部分面积.分析:求正方形减去四角后的面积,即用大正方形的面积,减去四个小正方面即可。
先可以列出式子为a2-4b2,若直接带入数值,发现运算量较大,所以可以先将a2-4b2因式分解后,再代入数值运算,可大大简化运算过程。
解:S剩= a2-4b2=(a+2b)(a-2b)把a=1.86,b=0.34带入S剩=(1.86+2×0.34)×(1.86-2×0.34)=2.72×1 =2.72四.归纳总结问题:今天我们主要学了哪些知识?利用平方差公式分解因式:))((22bababa-+=-问题:怎样判断能否利用平方差公式因式分解?利用平方差公式分解需要满足所给多项式能够写成两项平方差的形课后作业式,或者在变形后能够写成两项平方差的形式.平方差公式中的字母a,b可以表示数、单项式或多项式.问题:在运用平方差公式分解因式时,我们应该注意哪些问题?(1)若多项式中有公因式,应先提取公因式,再进一步分解因式;(2)因式分解要彻底,直到不能继续再分解为止.五.拓展提升如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+(22-12)=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.六.课后作业1.下列所向是能否用平方差公式分解因式?为什么?22222222)4()3()2()1(yxyxyxyx--+--+2.分解因式16)4(4)3(49)2(251)1(422222+----ayyxbaba3.已知x+2y=3, x2-4y2=-15,求x-2y的值和x, y的值.。
07-因式分解-提取公因式法、公式法(学生版)--丁慧
一、 热身练习1. 下列各式由左边到右边的变形,哪些是因式分解,哪些不是因式分解?为什么? (1)3(2)36x x +=+(2)226333(21)ax ax a a x x -+=-+ (3)22432(1)222x x x x x x -+=-+ (4)232534xy x y x y -+2(534)xy x x y =-+序号:07 初中数学备课组 教师:年级:初一 日期: 上课时间:学生:学生情况:主课题: 因式分解——提公因式法、公式法教学目的:1. 理解因式分解的概念;2. 理解多项式的公因式的概念,掌握运用提取公因式法,分解形如ma mb mc ++(m 不仅可以表示单项式也可以表示多项式)的多项式;3. 熟练掌握公式法,包括平方差公式,完全平方公式;4. 初步形成观察、分析、概括的能力和逆向思维方式。
教学重点:1. 掌握运用提取公因式法,公式法把多项式因式分解。
教学难点:1.确定多项式中各项的公因式及平方差公式、完全平方公式和理解因式分解的意义.2. 填空:(1)y x -=-( ); (2)n m --=-( ); (3)()x b a -=( )()a b -; (4)()()x y y x +-()x y =-+( ); (5)23()y x -3=-( ) (6)33()a y x --=( )3()x y - 3.运用平方差公式因式分解,直接填写结果: (1)22a b -= (2)21a -= (3)24b -= (4)29m -= (5)216n -= (6)225a -= (7)236b -= (8)2116y -= 4.先提取公因式,再用平方差公式把下列多项式分解因式:(1)21182x -; (2)3225a ab -; (3)334x y xy -; (4)422414a b a b -.二、 知识精要一、 因式分解的概念(1)把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
因式分解四种方法(讲义)
因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。
2-3-1提公因式、公式法(二).讲义教师版
板块一:公式法平方差公式:22()()a b a b a b -=+-①公式左边形式上是一个二项式,且两项的符号相反;②每一项都可以化成某个数或式的平方形式;③右边是这两个数或式的和与它们差的积,相当于两个一次二项式的积.完全平方公式:2222()a ab b a b ++=+2222()a ab b a b -+=-①左边相当于一个二次三项式;②左边首末两项符号相同且均能写成某个数或式的完全平方式;③左边中间一项是这两个数或式的积的2倍,符号可正可负;④右边是这两个数或式的和(或差)的完全平方,其和或差由左边中间一项的符号决定. 一些需要了解的公式:3322()()a b a b a ab b +=+-+ 3322()()a b a b a ab b -=-++33223()33a b a a b ab b +=+++ 33223()33a b a a b ab b -=-+- 2222()222a b c a b c ab ac bc ++=+++++【例1】 因式分解:a ab ab +-22,结果正确的是( )A .)2(-b aB .2)1(-b aC .2)1(+b aD .)2(-b ab【考点】因式分解【难度】1星【题型】选择【关键词】2010年,延庆二模,公式法,提取公因式法【解析】根据题意可知:()()2222211ab ab a a b b a b -+=-+=-,所以选择B【答案】B【例2】 分解因式:44a b -【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】44222222()()()()()a b a b a b a b a b a b -=-+=-++【答案】22()()()a b a b a b -++【例3】 分解因式:2249()16()m n m n +--【考点】因式分解【难度】2星【题型】解答 例题精讲提公因式法、公式法【关键词】公式法【解析】原式[][]7()4()7()4()m n m n m n m n =++-+--(113)(311)m n m n =++【答案】(113)(311)m n m n ++【巩固】 分解因式:22()()a b c d a b c d +++--+-【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】22()()(22)(22)4()()a b c d a b c d a c b d a c b d +++--+-=++=++【答案】4()()a c b d ++【巩固】 因式分解:224(2)y z x --【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】224(2)(22)(22)y z x y z x y z x --=+--+【答案】(22)(22)y z x y z x +--+【例4】 分解因式:481y -【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】422281(9)(9)(9)(3)(3)y y y y y y -=+-=++-【答案】2(9)(3)(3)y y y ++-【例5】 分解因式:229()4()m n m n --+【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】229()4()m n m n --+22[3()][2()]m n m n =--+(5)(5)m n m n =--【答案】(5)(5)m n m n --【巩固】 分解因式:22122x y -+ 【考点】因式分解【难度】2星【题型】解答【关键词】公式法 【解析】2222111122()2()()2422x y x y x y x y -+=--=-+- 【答案】112()()22x y x y -+-【巩固】 分解因式:22(32)16x y y --【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】22(32)16x y y --22(32)(4)x y y =--(32)(36)x y x y =+-3(32)(2)x y x y =+-【答案】3(32)(2)x y x y +-【例6】 分解因式:44()()a x a x +--【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】442222()()()()()()a x a x a x a x a x a x ⎡⎤⎡⎤+--=+--++-⎣⎦⎣⎦[][]22()()()()()()a x a x a x a x a x a x ⎡⎤=+--++-++-⎣⎦222222(22)8()x a a x ax a x =⋅⋅+=+ 【答案】228()ax a x +【例7】 分解因式:4232y -【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】442222322(16)2(4)(4)2(4)(2)(2)y y y y y y y -=-=+-=++-【答案】22(4)(2)(2)y y y ++-【巩固】 分解因式:81644x - 【考点】因式分解【难度】3星【题型】解答【关键词】公式法 【解析】884411164(2561)(161)(161)444x x x x -=-=+- 4224211(161)(41)(41)(161)(41)(21)(21)44x x x x x x x =++-=+++- 【答案】421(161)(41)(21)(21)4x x x x +++-【巩固】 分解因式:75()()a b b a -+-【考点】因式分解【难度】3星【题型】解答【关键词】公式法,提取公因式法【解析】7575525()()()()()()1()(1)(1)a b b a a b a b a b a b a b a b a b ⎡⎤-+-=---=---=--+--⎣⎦【答案】5()(1)(1)a b a b a b --+--【例8】 分解因式:2243()27()x x y y x ---【考点】因式分解【难度】3星【题型】解答【关键词】公式法,提取公因式法【解析】2243()27()x x y y x ---2242223()27()3()9()x x y x y x y x x y ⎡⎤=---=---⎣⎦[][]223()3()3()3()(43)(23)x y x x y x x y x y x y x y =-+---=----【答案】23()(43)(23)x y x y x y ----【例9】 利用分解因式证明:712255-能被120整除.【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】要证明712255- 能被120整除,就是在712255-分解的因式中是否含有120.()()()()727121214121221212112555555551551512451205⎡⎤-=-=-=-=+-=⨯=⨯⎣⎦【答案】见解析【例10】 分解因式:2844a a --= ;【考点】因式分解【难度】2星【题型】填空【关键词】公式法【解析】解首先把原式“理顺”,也就是将它的各项按字母a 降幂(或升幂)排列,从而有2844a a --2484a a =-+-24(21)a a =--+24(1)a =--按某个字母降幂排列是一个简单而有用的措施(简单的往往是有用的),值得注意.【答案】24(1)a --【巩固】 分解因式:2292416x xy y -+=【考点】因式分解【难度】2星【题型】填空【关键词】公式法【解析】2292416x xy y -+2(34)x y =-【答案】2(34)x y -【例11】 分解因式:3269x x x -+【考点】因式分解【难度】2星【题型】解答【关键词】淄博市中考,公式法【解析】322269(69)(3)x x x x x x x x -+=-+=-【答案】2(3)x x -【巩固】 分解因式:2363x x -+【考点】因式分解【难度】2星【题型】解答【关键词】太原市中考,公式法【解析】()()22236332131x x x x x -+=-+=-【答案】()231x -【例12】 已知 3.43 3.14x y ==,,求221222x xy y ---值 【考点】因式分解【难度】2星【题型】解答【关键词】2010年,密云二模,公式法【解析】原式()()2221144222x xy y x y =-++=-+,当 3.43 3.14x y ==,时,原式()21 6.86 3.14502=-+=- 【答案】50-【例13】 分解因式:22224946a b c d ac bd -+-++【考点】因式分解【难度】3星【题型】解答【关键词】应用公式法【解析】2222224946(2)(3)(23)(23)a b c d ac bd a c b d a c b d a c b d -+-++=+--=++-+-+【答案】(23)(23)a c b d a c b d ++-+-+【巩固】 分解因式2222_________________a ab b c -+-=.【考点】因式分解【难度】2星【题型】填空【关键词】哈尔滨中考,公式法【解析】222222()()()a ab b c a b c a b c a b c -+-=--=-+--【答案】()()a b c a b c -+--【例14】 分解因式:22222()4x y x y +-【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】22222222222()4(2)(2)()()x y x y x y xy x y xy x y x y +-=+-++=+-【答案】22()()x y x y +-【巩固】 分解因式:222224()a b a b -+【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】222222222224()(2)(2)()()a b a b ab a b ab a b a b a b -+=--++=--+【答案】22()()a b a b --+【例15】 分解因式:2222()4()4()m n m n m n +--+-;【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】[]222222()4()4()()2()(3)m n m n m n m n m n n m +--+-=+--=-;【答案】2(3)n m -【例16】 分解因式:22(5)2(5)(3)(3)m n n m n m n m +-+-+-;【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】[]2222(5)2(5)(3)(3)(5)(3)16()m n n m n m n m m n n m m n +-+-+-=+--=+【答案】216()m n +【例17】 分解因式:44222()4p q p q +-【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】4424444224422222222()4(2)(2)()()p q p q p q p q p q p q p q p q +-=+++-=+-22222()()()p q p q p q =+-+ 【答案】22222()()()p q p q p q +-+【例18】 分解因式:222()4()4x x x x +-++;【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】2222222()4()4(2)(1)(2)x x x x x x x x +-++=+-=-+;【答案】22(1)(2)x x -+【例19】 分解因式:24()520(1)x y x y ++-+-【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】2224()520(1)4()20()25(225)x y x y x y x y x y ++-+-=+-++=+-【答案】2(225)x y +-【例20】 分解因式:()()222248416x x x x ++++【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】(24x +)相当于公式中的a ,4x 相当于公式中的b .()()222248416x x x x ++++=()()()()2242222424416442x x x x x x x ++⋅+⋅+=++=+ 【答案】()42x +【巩固】 已知2244241a ab b a b ++--+=2m ,试用含a 、b 的代数式表示m .【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】由原题可得()2221a b m +-=,进而可求解.∵22244241a ab b a b m ++--+=,∴()2221a b m +-=,∴21m a b =--+或21m a b =+-【答案】21m a b =--+或21m a b =+-【例21】 化简:22()()()()()()a b b c a c a b a b a b c a b c ++-+-+-+++-【考点】因式分解【难度】4星【题型】解答【关键词】公式法【解析】解题指导:化简就是要去掉式子中的括号,结果表示成一个多项式.22()()()()()()a b b c a c a b a b a b c a b c ++-+-+-+++-22()[()][()]()[()][()]a b c a b c a b a b a b c a b c =+--+-+-+++-22222222()()()()()()a b c a b a b a b a b a b c =+⋅-+-+-+--⋅2()()c a b a b a b a b =⋅++-+-+222c a b =⋅⋅24abc = 【答案】24abc【例22】 在实数范围内分解因式:224x -;【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式()(2222222x x x x ⎡⎤=-=-=⎢⎥⎣⎦【答案】(2x x【巩固】 在实数范围内分解因式:264m m -+【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式()(222695333m m m m m =-+-=--=-+--【答案】(33m m -+-【巩固】 在26a -+【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式)223a a -+=-2a【例23】 在实数范围内分解因式:42514a a --【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式()()(()222722a a a a a =-+=+-+【答案】(()22a a a +【例24】 分解因式:66a b +【考点】因式分解【难度】4星【题型】解答【关键词】公式法【解析】66a b +2323()()a b =+22222222()[()()]a b a a b b =+-+224224()()a b a a b b =+-+【答案】224224()()a b a a b b +-+【例25】 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零 D .小于或等于零【考点】因式分解【难度】3星【题型】选择【关键词】江苏镇江中考,公式法【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<【答案】B【例26】 分解因式()()()3232332125x y x y x y -+---【考点】因式分解【难度】4星【题型】解答【关键词】第14届,“五羊杯”竞赛试题,公式法【解析】原式()()()()()()()33323322332152332x y x y x y x y x y x y x y =-+---+-=----⎡⎤⎣⎦【答案】()()()152332x y x y x y ----【巩固】 分解因式:22(23)9(1)x x +--【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】[][]22(23)9(1)(23)3(1)(23)3(1)5(6)x x x x x x x x +--=+--++-=-【答案】5(6)x x -【例27】 分解因式:22222223(2)273(2)(3)a a b a b a a b b ⎡⎤+-=+-⎣⎦【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】2222222223(2)273(2)(3)3(24)(22)12(2)()a a b a b a a b b a a b a b a a b a b ⎡⎤+-=+-=+-=+-⎣⎦【答案】212(2)()a a b a b +-【巩固】 分解因式:222222(35)(53)a b a b --+-【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式22222222222222(53)(35)(53)(35)(53)(35)a b a b a b a b a b a b ⎡⎤⎡⎤=---=----+-⎣⎦⎣⎦222222(88)(22)16()()()a b a b a b a b a b =-+=+-+【答案】2216()()()a b a b a b +-+【例28】 分解因式:2222x y z yz ---【考点】因式分解【难度】3星【题型】解答【关键词】岳阳市中考,公式法【解析】2222x y z yz ---22222(2)()()()x y z yz x y z x y z x y z =-++=-+=++--【答案】()()x y z x y z ++--【巩固】 已知()222410a b a b +--+=,求()20062a b +的值.【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式因式分解可得()2210a b +-=,进而可得,210a b +-=,即21a b +=.∵()222410a b a b +--+=,∴()2210a b +-= ∴210a b +-=,∴()20062006211a b +==【答案】1【例29】 分解因式:22222(91)36a b a b +--【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】原式2222(91)(6)a b ab =+--2222(916)(916)a b ab a b ab =+-++--22(3)1(3)1a b a b ⎡⎤⎡⎤=+---⎣⎦⎣⎦(31)(31)(31)(31)a b a b a b a b =+++--+--【答案】(31)(31)(31)(31)a b a b a b a b +++--+--【例30】 若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?【考点】因式分解【难度】4星【题型】解答【关键词】公式法【解析】由 444222222a b c a b b c c a ++=++,得 4442222222()2()a b c a b b c c a ++=++故 422442244224(2)(2)(2)0a a b b b b c c c c a a -++-++-+=即 222222222()()()0a b b c c a -+-+-=得 2222220,0,0a b b c c a -=-=-=,即 222a b c ==又由a ,b ,c 为正数,即得a b c ==【答案】a b c ==【例31】a ,b ,c 是三角形ABC 的三条边,且2220,a b c ab bc ac ++---=则三角形ABC 是怎样的三角形? 【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】2220a b c ab bc ac ++---=,所以2222222220a b c ab bc ac ++---=所以222222(2)(2)(2)0a b ab b bc c c ac a +-+-++-+=,即222()()()0a b b c c a -+-+-= 0a b -=,0b c -=,0c a -=;a b =,b c =,c a =;三角形ABC 是等边三角形【答案】ABC 是等边三角形1. 分解因式:()()22114m n mn --+ 【考点】因式分解【难度】5星【题型】解答【关键词】应用公式法【解析】()()22222222221141421(2)m n mn m n m n mn m n mn m n mn --+=--++=++-+-22(1)()(1)(1)mn m n mn m n mn m n =+--=+-+++- 【答案】(1)(1)mn m n mn m n +-+++-2. 分解因式:()()4(1)x y x y y +-+-【考点】因式分解【难度】3星【题型】解答 课后练习【关键词】应用公式法【解析】22222244(44)(2)(2)(2)x y y x y y x y x y x y =-+-=--+=--=-++-【答案】(2)(2)x y x y -++-3. 分解因式:34xy xy -;【考点】因式分解【难度】2星【题型】解答【关键词】2007年,十堰中考,公式法【解析】324(4)(2)(2)xy xy xy y xy y y -=-=-+【答案】(2)(2)xy y y -+4. 分解因式:22()()a x y b y x -+-【考点】因式分解【难度】2星【题型】解答【关键词】公式法,提取公因式法【解析】2222()()()()()()()a x y b x y x y a b x y a b a b ---=--=--+【答案】()()()x y a b a b --+5. 因式分解:22()a b c +-【考点】因式分解【难度】2星【题型】解答【关键词】公式法【解析】22()()()a b c a b c a b c +-=+-++【答案】()()a b c a b c +-++6. 证明:两个连续奇数的平方差能被8整除【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】设两个连续奇数是21n -和21n +(n 是整数),则()()2221218n n n +--=,所以原命题成立【答案】见解析7. 分解因式:2242x x -+= ;【考点】因式分解【难度】2星【题型】填空【关键词】深圳市中考,公式法【解析】2222422(21)2(1)x x x x x -+=-+=-【答案】22(1)x -8. 分解因式:244ax ax a -+= ;【考点】因式分解【难度】2星【题型】填空【关键词】泸州市中考,公式法【解析】22244(44)(2)ax ax a a x x a x -+=-+=-【答案】2(2)a x -9. 分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】22222222(3)2(3)(3)(3)(6)(2)(3)x x x x x x x x -+--+-=+-=-+;【答案】22(2)(3)x x -+10. 分解因式:22229()6()()a b a b a b ++-+-.【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】[]22222229()6()()3()()(42)4(2)a b a b a b a b a b a b a b ++-+-=++-=+=+.【答案】24(2)a b +11. 分解因式:66a b -【考点】因式分解【难度】4星【题型】解答【关键词】公式法【解析】66a b -3232()()a b =-3333()()a b a b =+-2222()()()()a b a ab b a b a ab b =+-+-++或66a b -2323()()a b =-224224()()a b a a b b =-++4224()()()a b a b a a b b =+-++2222()()()()a b a ab b a b a ab b =+-+-++ 【答案】2222()()()()a b a ab b a b a ab b +-+-++12. 分解因式:523972x x y -【考点】因式分解【难度】3星【题型】解答【关键词】公式法【解析】523972x x y -2339(8)x x y =-2339[(2)]x x y =-2229(2)(24)x x y x xy y =-++【答案】2229(2)(24)x x y x xy y -++。
因式分解-提公因式与公式法(知识解读+真题演练+课后巩固)(原卷版)
第04讲因式分解综合1.使学生了解因式分解的概念,以及因式分解与整式乘法之间的联系.2.了解公因式和提公因式的方法,会用提公因式法分解因式.7.能说出平方差公式,完全平方公式的特点.3.能熟练地掌握应用平方差公式和完全平方公式分解因式.4.理解因式分解的最后结果是每个因式都不能分解.5.在探索提供公式法分解因式的过程中学会逆向思维,渗透划归的思想方法.6.在运用平方差公式进行因式分解的同时培养学生的观察,比较和判断能力以及运算能力,用不同的方法分解因式,可以提高学生的综合运用知识的能力,进一步体验“整体”思想和“换元”思想知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.知识点2:公因式像多项式pa+ pb+pc,它的各项都有一个公共的因式p,我们把这个公共因式p叫做这个多项式各项的公因式注意:公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.知识点4:公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2知识点5:提公因式与公式法综合(1)提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)知识点5:十字相乘法1.x²+ (p+q)x+pq=(x+p)(x+q)2.在二次三项式ax2+bx+c(a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a1⨯a2,常数项c可以分解成两个因数之积,即c=c1⨯c2,把a1,a2,c1,c2排列如下:按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即ax2+bx+c=(a1x+c1)(a2x+c2).【题型1因式分解的定义】【典例1】(2023秋•海门市校级月考)下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】(2023春•玄武区期中)下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【题型2公因式】【典例2-1】(2023春•榆阳区期末)多项式6a2b﹣3ab2的公因式是.【典例2-2】(2023春•大竹县校级期末)4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】(2023春•礼泉县期中)多项式.4ab2+8a2b的公因式是.【变式2-2】(2023春•巴州区月考)多项式3x+3y与x2﹣y2的公因式是.【变式2-3】(2023春•开江县校级期末)多项式4x(m﹣n)+2y(m﹣n)2的公因式是.【题型3提公因式】【典例3】(2022秋•白云区期末)分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】(2023春•常德期中)因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】(2022秋•番禺区校级期末)因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】(2022春•源城区校级期中)分解因式:x(m+n)﹣y(n+m)+(m+n).【题型4因式分解-平方差】【典例4】(2023•云南)分解因式:x2﹣4=.【变式4-1】(2023•武威一模)因式分解:a2﹣169=.【变式4-2】(2022秋•洞口县期末)因式分解:4a2﹣b2=.【变式4-3】(2023春•东源县期末)把多项式a2﹣9b2分解因式结果是.【题型5因式分解-完全平方】【典例5】(2023•通榆县三模)分解因式:a2+8a+16=.【变式5-1】(2023春•亳州期末)因式分解x2﹣6ax+9a2=.【变式5-2】(2023•前郭县四模)分解因式:a2﹣6a+9=.【题型6提公因式与公式法综合】【典例6】(2023春•海曙区期中)分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】(2023春•娄星区校级期中)因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】(2022秋•武汉期末)因式分解:(1)2x3y﹣2xy3;(2)﹣a3+2a2﹣a.【变式6-3】(2023•肃州区校级开学)分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】(2022秋•兴城市期末)因式分解:9a2(x﹣y)+4b2(y﹣x)【题型7十字相乘法】【典例7】(2023春•银海区期中)阅读理解:用“十字相乘法”因式分解:ax2+bx+c=(a1x+c1)(a2x+c2).a1c2+a2c1=b.例如:2x2﹣x﹣3=(x+1)(2x﹣3).求:(1)x2﹣x﹣6;(2)3x2+5x﹣12.【变式7-1】(2023春•岳阳期末)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法(如图).第一步:二次项2x2=x•2x;第二步:常数项﹣3=﹣1×3=1×(﹣3),画“十字图”验算“交叉相乘之和”;第三步:发现第③个“交叉相乘之和”的结果等于一次项﹣x.即2x2﹣x﹣3=(x+1)(2x﹣3);像这样,通过画“十字图”,把二次三项式分解因式的方法,叫做“十字相乘法”.运用结论:(1)将多项式x2﹣x﹣2进行因式分解,可以表示为x2﹣x﹣2=;(2)若3x2+px+5可分解为两个一次因式的积,请画好“十字图”,并求整数p的所有可能值.【变式7-2】(2023春•子洲县期末)阅读下列材料:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).例如:①x2+4x+3=(x+1)(x+3);②x2﹣4x﹣12=(x﹣6)(x+2).根据材料,把下列式子进行因式分解.(1)x2﹣6x+8;(2)x2﹣2x﹣15;(3)(x﹣4)(x+7)+18.【变式7-3】(2022秋•沙洋县校级期末)阅读与思考:利用多项式的乘法法则可推导得出:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.因式分解与整式乘法是方向相反的变形,利用这种关系可得:x2+(p+q)x+pq=(x+p)(x+q).利用这个式子可以将某些二次项系数为1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2.这是一个x2+(p+q)x+pq型的式子,∴x2+3x+2=x2+(1+2)x+1×2,∴x2+3x+2=(x+1)(x+2).(1)填空:式子x2+7x+10的常数项10=×,一次项系数7=+,分解因式x2+7x+10=.(2)若x2+px+8可分解为两个一次因式的积,则整数p的所有可能值是.1.(2023•攀枝花)以下因式分解正确的是()A.ax2﹣a=a(x2﹣1)B.m3+m=m(m2+1)C.x2+2x﹣3=x(x+2)﹣3D.x2+2x﹣3=(x﹣3)(x+1)2.(2023•杭州)分解因式:4a2﹣1=()A.(2a﹣1)(2a+1)B.(a﹣2)(a+2)C.(a﹣4)(a+1)D.(4a﹣1)(a+1)3.(2023•台湾)下列何者为多项式x2﹣36的因式()A.x﹣3B.x﹣4C.x﹣6D.x﹣9 4.(2023•内蒙古)分解因式:x3﹣4x=.5.(2023•广东)因式分解:x2﹣1=.6.(2023•眉山)分解因式:x3﹣4x2+4x=.7.(2023•浙江)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:..8.(2023•哈尔滨)把多项式xy2﹣16x分解因式的结果是.9.(2023•株洲)因式分解:x2﹣2x+1=.10.(2023•金昌)因式分解:ax2﹣2ax+a=.11.(2023•赤峰)分解因式:x3﹣9x=.1.(2023春•渭滨区期末)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x﹣2y)2D.x2+2x+1=(x+1)2 2.(2023春•尤溪县期末)下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.a2+a+D.﹣a2+b2﹣2ab 3.(2022秋•江夏区期末)把多项式8a3b2+12ab3c因式分解时,应提取的公因式是()A.4ab B.4ab2c C.4ab2D.8ab2 4.(2023•衡山县二模)已知ab=﹣3,a+b=2,则a2b+ab2的值是()A.6B.﹣6C.1D.﹣1 5.(2023春•富川县期末)多项式3a2b2﹣15a3b3﹣12a2b2c的公因式是()A.3a2b2B.﹣15a3b3C.3a2b2c D.﹣12a2b2c 6.(2023春•宣汉县校级期末)把多项式x2+5x+m因式分解得(x+n)(x﹣2),则常数m,n的值分别为()A.m=﹣14,n=7B.m=14,n=﹣7C.m=14,n=7D.m=﹣14,n=﹣77.(2023春•新昌县期末)已知x2+kx+9可以用完全平方公式进行因式分解,则k的值为()A.﹣6B.3C.6D.±6 8.(2023春•安乡县期末)若二次三项式x2+mx﹣8可分解为(x﹣4)(x+2),则m的值为()A.1B.﹣1C.﹣2D.2 9.(2023•沈河区模拟)因式分解:﹣4y2+4y=.10.(2023春•临漳县期末)仔细观察下图,各块图形面积之和为a2+3ab+2b2,则因式分解a2+3ab+2b2=.11.(2023春•中宁县期末)分解因式:2a(x﹣y)﹣(x﹣y)=.12.(2022秋•荔湾区期末)分解因式:(1)3a2﹣6ab+3b2;(2)x2(m﹣2)+y2(2﹣m).13.(2023春•渠县校级期末)分解因式:x2(m﹣2)+9y2(2﹣m)14.(2023春•单县期末)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)15.(2022秋•嘉峪关期末)整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.16.(2023春•长春期末)如图,在半径为R的圆形钢板上,冲去半径为r的四个小圆,利用因式分解计算当R=7.8cm,r=1.1cm时剩余部分的面积(π取3.14).17.(2023春•台儿庄区期末)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,则x2﹣4x+m=(x+3)(x+n),即x2﹣4x+m=x2+(n+3)x+3n,∴,解得.故另一个因式为x﹣7,m的值为﹣21.仿照上面的方法解答下面问题:已知二次三项式x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.。
因式分解的拓展(精讲)(解析版)--2023届初升高数学衔接专题讲义
2023年初高中衔接素养提升专题讲义第一讲因式分解的拓展(精讲)(解析版)【知识点透析】因式分解定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【方法精讲】一.提公因式法提取公因式法:把一个多项式各项都有的公因式提到括号外边来.符号语言:)(c b a m mc mb ma ++=++【例1】因式分解3(2)(2)x x x ---.【解析】提取公因式,原式=)13)(2(+-x x .【变式】因式分解324(1)2(1)q p p -+-.【解析】提取公因式,原式=)424()1(]2)1(4[)1(22pq q p p q p -+-=+--.【例2】计算9879879879871232684565211368136813681368⨯+⨯+⨯+⨯.【解析】原式=987)521456268123(1368987=+++⨯.【变式1】(2022·广东汕头·一模)已知4m n +=,5mn =-,则22m n mn +=________.【答案】20-【解析】∵m +n =4,mn =-5,∴m 2n +mn 2=mn (m +n )=-5×4=-20.故答案为:-20.【变式2】(2022·湖南娄底·七年级期中)因式分解:2229612abc a b abc -+;【答案】()23324ab c ab c -+【解析】:()222296123324abc a b abc ab c ab c -+=-+;二.公式法公式法:利用乘法公式的逆变换对多项式进行因式分解.常见的公式如下:(1)a 2-b 2=_))((b a b a -+_;(平方差公式)(2)a 2±2ab +b 2=_2)(b a ±_;(完全平方公式(两个数))(3)a 3±b 3=_))((22b ab a b a +± _;(立方和差公式)(4)a 3±3a 2b +3ab 2±b 3=_3)(b a ±_;(完全立方公式)(5)a 2+b 2+c 2+2ab +2bc +2ac =_2)(c b a ++_;(完全平方公式(三个数))【例3】因式分解22(2)(31)a a +--.【解析】法一:原式=)14)(23()132)(132(+-=+-+-++a a a a a a 法二:原式=)14)(23(310816944222+-=++-=-+-++a a a a a a a a .【变式】(2022·福建省泉州实验中学八年级期中)因式分解:(1)42−16+16;(2)2−+16−.【答案】(1)4−22;(2)−+4−4【解析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为2−−16−,再提取公因式,最后用平方差公式分解即可(1)解:42−16+16=42−4+4=4−22;(2)解:2−+16−=2−−16−=−2−16=−+4−4;【例4】.(2022·上海外国语大学尚阳外国语学校七年级阶段检测)多项式的乘法公式中,除了平方差公式,完全平方公式之外,还有立方和公式与立方差公式如下:立方和公式:()()2233a b a ab b a b+++=+立方差公式:()()2233a b a ab b a b -++=-如果把公式逆运用,则成为因式分解中的立方和与立方差公式.根据以上材料,请完成下列问题:(1)因式分解:99a b +(2)因式分解:66a b -(3)已知:6631a b ab a b +==+,,的值【答案】(1)(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)(a −b)(a+b)(a 4+a 2b 2+b 4).(3)322【详解】(1)因式分解:a 9+b 9=(a 3)3+(b 3)3=(a 3+b 3)(a 6−a 3b 3+b 6)=(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)因式分解:a 6−b6=(a 2)3−(b 2)3=(a 2−b 2)(a 4+a 2b 2+b 4)=(a −b)(a+b)(a 4+a 2b 2+b 4);(3)∵a+b=3,ab=1,∴a 2+b 2=(a+b)2−2ab=7,∴a 6+b 6=(a 2+b 2)(a 4−a 2b 2+b 4)=[(a+b)2−2ab][(a 2+b 2)2−2a 2b 2−a 2b 2]=7×(49−3×1)=322.【变式1】因式分解52(2)(2)x x y x y x -+-.【答案】原式=)1)(1)(2(22++--x x x y x x .【解析】原式=)1)(1)(2()1)(2())(2(223225++--=--=--x x x y x x x y x x x x y x 【变式2】分解下列因式(1)38x +(2)34381a b b -【解析】:(1)333282(2)(42)x x x x x +=+=+-+(1)3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++【变式3】分解因式:(1)30.12527b -(2)76a ab -【解析】:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.(1)333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++(2)76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+三.十字相乘法十字相乘法:对于二次三项式或可看作二次三项式的多项式分解因式.【例5】(2022·上海闵行·七年级期中)在因式分解的学习中我们知道对二次三项式2+++B 可用十字相乘法方法得出2+++B =++,用上述方法将下列各式因式分解:(1)2+5B −62=__________.(2)2−4+2+32+6=__________.(3)2−5−−6−2=__________.(4)20182−2017×2019−1=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成−3−+2,然后根据例题分解即可;(3)先化简,将B +62−2改写−3+−2−,然后根据例题分解即可;(4)将2017×2019改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=2+(−+6p +−⋅6=(x -y )(x +6y );(2)解:原式=2+−3−+2+−3−+2=(x -3a )(x -a -2);(3)解:原式=2−5B +B +62−2=2−5B +3−2+=2+−3++−2−+−3+−2−=(x +a -3b )(x -a -2b );(4)解:原式=20182−2018-12018+1−1=201822−20182-1−1=201822+1−20182−1=(20182x +1)(x -1).【例6】.(2023·山东济宁·八年级期末)【知识背景】八年级上册第121页“阅读与思考”中,我们利于因式分解是与整式乘法方向相反的变形这种关系得到:()()()2x p q x pq x p x q +++=++.【方法探究】对于多项式()2x p q x pq +++我们也可这样分析:它的二次项系数1分解成1与1的积;它的常数项pq 分解成p 与q 的积,按图1所示方式排列,然后交叉相乘的和正好等于一次项系数()p q ++.所以()()()2x p q x pq x p x q +++=++例如,分解因式:256x x ++它的二次项系数1分解成1与1的积;它的常数项6分解成2与3的积,按图2所示方式排列,然后交叉相乘的和正好等于一次项系数5.所以()2562(3x x x x ++=++).类比探究:当二次项系数不是1时,我们也可仿照上述方式进行因式分解.例如,分解因式:226x x --.分析:二次项系数2分解成2与1的积;常数项-6分解成-1与6(或-6与1,-2与3,-3与2)的积,但只有当-2与时按如图3所示方式排列,然后交叉相乘的和正好等于一次项系数-1.所以()22623(2)x x x x --=+-.【方法归纳】一般地,在分解形如关于x 的二次三项式2ax bx c ++时,二次项系数a 分解成1a 与2a 的积,分别写在十字交叉线的左上角和左下角;常数项c 分解成1c 与2c 的积,分别写在十字交叉线的右上角和右下角,把1a ,2a ,1c ,2c 按如图4所示方式排列,当且仅当1221a c a c b +=(一次项系数)时,2ax bx c ++可分解因式.即21122()()ax bx c a x c a x c ++=++.我们把这种分解因式的方法叫做十字相乘法.【方法应用】利用上面的方法将下列各式分解因式:(1)256x x -+;(2)21021x x +-;(3)()()22247412x x x x -+-+【答案】(1)(x -2)(x -3)(2)(2x +3)(5x -7)(3)2(2)x -(x -1)(x -3)【解析】(1)256x x -+=(x -2)(x -3).(2)21021x x +-=(2x +3)(5x -7).(3)()()22247412x x x x -+-+=22(44)(43)x x x x -+-+=2(2)x -(x -1)(x -3).【变式1】将下列各式分解因式(1)2615x x --;(2)231310x x -+.【解析】(1)原式=)53)(32(-+x x ;(2)原式=)5)(23(---x x .【变式2】(1)42222459x y x y y --;(2)223129x xy y ++.【答案】(1)原式=)94)(1(222-+x x y ;(2)原式=)33)(3(y x y x ++.【变式3】把下列各式因式分解:(1)226x xy y+-(2)222()8()12x x x x +-++【解析】:(1)222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2)22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-【例7】(提高型):分解因式613622-++-+y x y xy x .【解析】设613622-++-+y x y xy x =)2)(3(n y x m y x +-++,∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x--+++-+)23()(622,∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m .∴原式=)32)(23(+--+y x y x .【变式】(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .解:原式=)12)(25(-++-y x y x 原式=)2)(32(++++y x y x 四.分组分解法根据多项式各项的特点,适当分组,分别变形,再对各组之间进行整体分解(先部分后整体的分解方法)【例8】.(2022·甘肃省兰州市教育局八年级期中)【阅读学习】课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++;(2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.【学以致用】请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-.【拓展应用】已知:7x y +=,5x y -=.求:2222x y y x --+的值.【答案】(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy y x y x y x y -+-=--+=--=-++-【拓展应用】()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.将下列各式分解因式(1)3232()()x x y y +-+;(2)32x x +-.【答案】(1)原式=))((22y x y xy x y x ++++-(2)原式=)2)(1(2++-x x x 【解析】(1)原式=))(())(()()(222233y x y x y xy x y x y x y x -++++-=-+-))((22y x y xy x y x ++++-=;(2)原式=)2)(1()1()1)(1(11223++-=-+++-=-+-x x x x x x x x x .【例9】分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.【变式】(1)323x x +-;(2)222(1)41m n mn n -+-+.【答案】(1)原式=)3)(1(2++-x x x (2)原式=)1)(1(+-+++-n m mn n m mn .【解析】(1)原式=)3)(1(22123++-=-+-x x x x x (2)原式=2222222221214n mn m mn n m n mn m n m -+-++=+-+-)1)(1()()1(22+-+++-=--+=n m mn n m mn n m mn .五.换元法换元法分解因式:是将多项式中的某一部分用新的变量替换,从而使较复杂的数学问题得到简化【例10】.(2022·福建漳州·八年级期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++-()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数.【答案】(1)(1)()42x -(2)()()2211x y --(3)见解析【解析】(1)解:解法一:设2x x y -=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =-+()42x =-;方法二:设214x m x n +=-=,,则原式()()=69m n m n ++++()()269m n m n =++++()23m n =++()22143x x =+-+()2244x x =-+()42x =-;(2)解:设x y m xy n +==,,则原式()()()2221m n m n =--+-2222421m mn m n n n =--++-+()22221m mn m n =--+-()()22211m m n n =-+++()21m n =--()21x y xy =+--()()2211x y =--;(3)解:()()()()21236x x x x x +++++()()2227656x x x x x =+++++,设26x m x n +==,,则原式()()2=75m n m n n +++221236m mn n =++()26m n =+()2266x x =++,∵()22660x x ++≥,∴()()()()212360x x x x x ++++≥+,∴多项式()()()()21236x x x x x +++++的值一定是非负数.【变式1】将下列各式分解因式(1)221639a b ab ++;【答案】原式=)13)(3(++ab ab (2)22(1)(2)12x x x x ++++-【解析】原式=)5)(2(12)1()1(22222++-+=-+++++x x x x x x x x .)5)(1)(2(2++-+=x x x x .【变式2】(1)x 6-7x 3-8(2)(x +1)(x +2)(x +3)(x +4)+1【解析】(1)原式=)1)(42)(1)(2()1)(8(2233+-+++-=+-x x x x x x x x ;(2)原式=1)65)(45(1)3)(2)(4)(1(22+++++=+++++x x x x x x x x 2222)55(11)55(++=+-++=x x x x .六.配方法【例题11】.(2022·上海·七年级期末)阅读理解:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2223x ax a +-=222223x ax a a a ++--=22()4x a a +-=22()(2)x a a +-=(3)()x a x a +-,像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”进行因式分解:(1)2815x x -+;(2)4224a a b b ++.【答案】(1)(3)(5)x x --(2)2222()()a b ab a b ab +++-【解析】(1)原式=28161615x x a -+-+=2(4)1x --=(41)(41)x x -+--=(3)(5)x x --;(2)42244224222a a b b a a b b a b ++=++-=22222()a b a b +-=2222()()a b ab a b ab +++-.七.因式分解的应用【例题12】.(2022·江苏扬州·七年级期中)阅读下列材料:若一个正整数x 能表示成22a b -(a ,b 是正整数,a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解,例如22532=-,所以5是“明礼崇德数”3与2是5的平方差分解;再如:()22222222M x xy x xy y y x y y =+=++-=+-(,x y 为正整数),所以M 也是“明礼崇德数”,(x y +)与y 是M 的一个平方差分解.(1)判断9“明礼崇德数”(填“是”或“不是”);(2)已知()2x y +与2x 是P 的一个平方差分解,求代数式P ;(3)已知2223818N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的k 值,并说明理由.【答案】(1)是(2)222x y y +(3)k =-19【解析】(1)解∶∵22954=-,∴9是“明礼崇德数”;故答案为:是(2)解:()()2222P x y x =+-42242x x y y x =++-222x y y =+;(3)解:2223818N x y x y k =-+-+()()2224436919x x y y k=++-++++()()22223319x y k=+-+++2219k=+-+++∵N 是“明礼崇德数”,∴19+k =0,∴k =-19.【例题13】.已知a b =22a b ab -的值.【答案】【解析】【分析】先利用提公因式法把22a b ab -进行因式分解,再代入计算即可.【详解】解:∵()22a b ab ab a b -=-,又a =b∴a b =-=1ab +=-=,∴()221a b ab ab a b -=-=⨯=【变式1】.(1)因式分解:()()211x x x +-+.(2)先化简,再求值:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭,其中3x =.【答案】(1)1x +;(2)23x x -+,16【解析】【分析】(1)直接提公因式即可;(2)先算括号内的部分,将除法变乘法,最后约分化简后代入求值即可.【详解】(1)原式=()()11x x x ++-=x +1;(2)原式=212(3)22(2)(2)x x x x x x ++⎛⎫+÷ +++-⎝⎭23(2)(2)2(3)x x x x x ++-=⋅++23x x -=+,当3x =时,原式=3233-+16=.【变式2】.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n ,依题意得x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x﹣7,m的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣1,求另一个因式及k的值;(2)已知2x2﹣13x+p有一个因式x﹣4,则p=.【答案】(1)另一个因式为x+2,k的值为2(2)20(1)解:(1)设另一个因式为x+m,则2x2+3x—k=(2x—1)(x+m),即2x2+3x—k=2x2+(2m—1)x—m,比较系数得:213 mk m-=⎧⎨-=-⎩,解得22 mk=⎧⎨=⎩,∴另一个因式为x+2,k的值为2;(2)解:设另一个因式为(2x+m),由题意,得:2x2﹣13x+p=(x﹣4)(2x+m),则2x2﹣13x+p=2x2+(m﹣8)x﹣4m,∴8134mp m-=-⎧⎨=-⎩,解得520 mp=-⎧⎨=⎩,故答案为:20.。
4.2-提取公因式法公开课(1)
第六章第2节《提取公因式法》【教学背景】“提取公因式法”是“浙江版七年级数学(下)”第六章第二节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链结开拓作用。
提取公因式法是因式分解的基础,也为学习因式分解的其他方法及利用因式分解解整式方程(如一元二次方程)打下结实的基础,从而也为学生的运算能力拓展了道路。
(老教材本小节是分两个课时上的)【教学内容分析】“提取公因式法”是因式分解的最基本、最常用的方法。
它的理论依据是逆用分配律,因此,学生接受起来并不难,但因题目各有其特点,形式变化多,所以需要学生具有观察、分析能力和应变能力,这就需要在教学中加以指导、训练。
例题讲授及练习题的匹配都要由浅入深,形式多样化。
利用这个方法,首先对要分解的多项式进行考察,发现特点及多项式各项之间的内在联系,适当变形。
(可利用计算机辅助教学手段,增大教学的容量和教学质量,改变传统的言传身教的方式。
)能力目标:⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。
⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。
情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重点、难点】1.教学重点∶掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。
⒉.教学难点∶正确地找出公因式【教学方法】理论与实例相结合(采用设问式、启发式)【教学工具】应用投影仪(计算机)【教学过程】㈠创设情境,提出问题如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?列式:3.7×3.8+3.7×6.2 (学生思考后列式)3.7 有简便算法吗?=3.7×(3.8+6.2)3.7 =3.7×10=37(m2)在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归.)【以问题引入能引起学生的学习兴趣,符合学生的认知规律。
北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)
强化训练
2. 证明:任意两奇数的平方差能被8整除. 证明:设任何奇数为2m+1,2n+1(m,n是整数) 则(2m+1) ²-(2n+1) ² =(2m+1+2n+1)(2m-2n) =4(m-n)(m+n+1) 可见只要证明(m-n)(m+n-1)是偶数即可, 若m,n都是奇数或偶数,则m-n为偶数, 4(m-n)(m+n+1)能被8整除, 若m,n都为一奇一偶,则m+n+1为偶数, 4(m-n)(m+n+1)也能被8整除, 所以,任意的两个奇数的平方差能被8整除.
解:∵b²+2ab=c²+2ac, ∴b²-c²+2ab-2ac=0, ∴(b+c)(b-c)+2a(b-c)=0, (b-c)(b+c+2a)=0. ∵a,b,c为三角形三边,所以b+c+2a>0, ∴b-c=0,即b=c.所以△ABC为等腰三角形.
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形式 2.公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
强化训练
1.已知a、b、c是∆ABC的三边,且满足a²c²-b²c²=a4-b4,是判断∆ABC的形状. 解:a²c²-b²c²=a4-b4, a²c²-b²c²-a4+b4=0, c²(a²-b²)-(a²+b²)(a²-b²)=0 (a²-b²)(c²-a²-b²)=0 (a+b) (a-b)(c²-a²-b²)=0 其中a+b≠0, ∴a-b=0或c²-a²-b²=0 ∴a²+b²=c²或a=b. ∆ABC是直角三角形,或∆ABC是等腰直角三角形.
第四章因式分解基础讲义(基础)
因式分解重点学习1.因式分解的定义2.提公因式法及公式法分解因式3.因式分解法综合运用(因式分解判断三角形、换元法常规、换元法平均数法)知识精讲1.因式分解的概念定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-32x +x=-x(3x-1))2.提取公因式法公因式的定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。
3.公式法平方差公式:完全平方公式: 一个多项式化成几个整式的积的形式8x 2y 3=2x 2·4y 3一个多项式化成几个整式积的形式x-1=x(1―1x )一个多项式化成整式积的形式X 2-x-2=x(x-1)-2 (x+1)(x-1)=x 2-1考点1:因式分解的概念例题1:下列各式从左到右的变式中,属于因式分解的是() A. a (x +y )=ax +ay B. x 2−2x +1=x (x −2)+1C . 6ab=2a ·3b D. x 2−1=(x +1)(x −1) 定义易错点提取经典例题考点2:提公因式法例题2:因式分解(1)a2x2―ax (2)-6abc-14a2b3+12a3b(3)8ab(x-y)2―4a(y-x)4(4)m(m-n)3+n(n-m)5考点3 整体思想例题3:(x-y)2-(y-x)因式分解的结果是()A.(y-x)(x-y)B.(x-y)(x-y-1)C.(y-x)(y-x-1)D.(x-y)(y-x-1)超长材料阅读题阅读下列因式分解的过程,再回答所提出的问题1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是(),共应用了()次。
因式分解之提取公因式法和运用公式法(学生版)
课题:因式分解之提取公因式法和公式法知识精要:一、因式分解的概念1、定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.2、因式分解和整式乘法正好是互逆变换,可通过如下图示加以理解因式分解多项式(和差形式) 整式的积(积的形式)整式乘法二、提取公因式法1、定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.即()ma mb mc m a b c ++=++(1)公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取最低次数.2、步骤:(1)观察;(2)确定公因式;(3)将公因式提到括号外;(4)将多项式写成因式乘积的形式.3、提公因式法的关键是如何正确地寻找公因式.让学生观察公因式的特点,找出确定公因式的方法:(1)公因式应是各项系数的最大公因数与各项都含有的相同字母的最低次幂的积.(2)公因式不仅可以是单项式,也可以是多项式.4、提取公因式法应注意的事项:(1)提取的公因式应为最大公因式;(2)当某一项被完全提取,该项要用“1”来代替;(3)要使得括号内第一项的系数为正数;(4)要使得括号内每一项的系数为整数;(5)注意符号变换问题.二、公式法1、平方差公式: 22()()a b a b a b -=+-2、完全平方公式:2222()a ab b a b ±+=±3、注意事项:(1)注意公式的结构特点;(2)注意符号;(3)首先想到提取公因式法;(4)注意分解一定要彻底. 精解名题:例1、下列从左到右的变形哪个是分解因式( )A .223(2)3x x x x +-=+-;B .()()ma mb na nb m a b n a b +++=+++;C .221236(6)x x x -+=-;D .22()22m m n m mn -+=--.例2、多项式3222315520x y x y x y +-的最大公因式是( )A .5xy ;B .225x y ;C .25x y ;D .235x y .例3、把多项式2(2)(2)m a m a -+-分解因式正确的是( )A .2(2)()a m m -+;B .(2)(1)m a m -+;C .(2)(1)m a m --;D .2(2)()a m m -+. 例4、下列各式中,能用平方差公式分解因式的是( )A .22a b -+;B .22a b --;C .22a b +;D .33a b -.例5、若2(3)4x m x +-+是完全平方式,则实数m 的值是( )A .5-;B .3;C .7 ;D .7或1-.例6、若二项式24x +加上一个单项式后成为一个完全平方式,则这样的单项式共有( )A .1个;B .2个;C .3个;D .4个.例7、无论x 、y 为任何实数,多项式22428x y x y +--+的值一定是( )A .正数;B .负数;C .零;D .不确定.例8、下列多项式能用完全平方公式分解因式的是( )A .22m mn n -+;B .2()4a b ab +-;C .2124x x -+; D .221x x +-. 例9、若3a b +=,则222426a ab b ++-的值为( )A .12;B .6;C .3;D .0. 例10、已知221x y -=-,12x y +=,则x y -= . 例11、已知3x y +=,则221122x xy y ++=__________. 例12、已知2226100x y x y +-++=,则x y +=________.例13、因式分解:(第(1)-(6)用提取公因式法;第(7)-(22)用公式法)(1); (2) 3423424281535a b a b a b -+;(3); (4);(5)3122+++--+-m m m m ax acx abx xa ;(6)3225(2)(2)3(2)(2)n n x y x y -----(7)2249x y -; (8)3282(1)a a a -+;(9)44116a b -; (10)224()25()x y x y --+;(11)42241128a b a b -; (12)2233(27)4x x --;(13)31()7()7x y x y ---; (14)222(4)16x x +-;(15)29124a a ++; (16)229312554a ab b -+;(17)2244ab a b --; (18)2318248a a a -+;(19)42816x x -+; (20)(6)9a a ++;(21)2()10()25m n m n ++++;(22)2222()6()9()a b a b a b ++-+-;例14、已知1128a b ab -==,,求22332a b ab a b -++的值.例15、应用简便方法计算。
学生版一元二次方程的解法(三)--公式法,因式分解法—知识讲解(基础)
一元二次方程的解法(三)--公式法,因式分解法—知识讲解(基础)【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 能应用根的判别式判断一元二次方程求根的情况,通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 3.一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0; (2)方程有两个相等的实数根⇒ac b 42-=0; (3)方程没有实数根⇒ac b 42-﹤0.要点诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 4.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b acx a a-+=. ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a-±-=.② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-. ③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x 2+3x+1=0; (2)2241x x =-; (3) 2x 2+3x-1=0.举一反三:【变式】用公式法解方程: x 2﹣3x ﹣2=0.2.用公式法解下列方程: (1) 2x 2+x=2; (2) 3x 2﹣6x ﹣2=0; (3)(黄陂区校级模拟)x 2﹣3x ﹣7=0.举一反三:【变式】用公式法解下列方程: 2221x x +=;类型二、因式分解法解一元二次方程3.(凉山州模拟)解方程:(1)2x 2﹣3x ﹣2=0 (2)x (2x+3)﹣2x ﹣3=0.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.举一反三:【变式】(泗洪县校级模拟)解方程:(1)2x 2﹣x ﹣1=0 (2)(x ﹣2)2=6﹣3x .5.探究下表中的奥秘,并完成填空: 一元二次方程 两个根二次三项式因式分解 x2﹣2x+1=0 x1=1,x2=1 x2﹣2x+1=(x ﹣1)(x ﹣1) x2﹣3x+2=0 x1=1,x2=2 x2﹣3x+2=(x ﹣1)(x ﹣2) 3x2+x ﹣2=0x1=,x2=﹣1 3x2+x ﹣2=3(x ﹣)(x+1)2x2+5x+2=0x1=﹣,x2=﹣2 2x2+5x+2=2(x+)(x+2)4x2+13x+3=0 x1= ,x2= 4x2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.一元二次方程的解法(三)--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题1.下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=70 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =- 3.一元二次方程2340x x +-=的解是( )A .11x =;24x =-B .11x =-;24x =C .11x =-;24x =-D .11x =;24x = 4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =76.(河北模拟)已知等腰△ABC 的两条边的长度是一元二次方程x 2﹣6x+8=0的两根,则△ABC 的周长是( )A .10B .8C .6D .8或10二、填空题7.(厦门)方程x 2+x =0的解是___ _____.8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________. 12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题13.(曲靖一模)解下列方程:(1)2x 2﹣5x+1=0 (2)(x+4)2=2(x+4)14. 用因式分解法解方程(1)x 2-6x-16=0. (2) (2x+1)2+3(2x+1)+2=0.15.(1)利用求根公式完成下表:(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.。
学生版提公因式法(基础)知识讲解
提公因式法(基础)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式的积的形式,叫做因式分解,也叫做分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、公因式一个多项式中每一项都含有相同的因式,叫做这个多项式各项的公因式.多项式各项的公因式应是各项系数的最大因数(当系数是整数时)与各项都含有相同字母的最低次幂的积. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法如果一个多项式各项含有公因式,那么可把该公因式提取出来进行因式分解.这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.要点四、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号.【典型例题】类型一、因式分解的概念1、观察下列从左到右的变形:⑴()()3322623a b a bab -=-; ⑵()ma mb c m a b c -+=-+ ⑶()22261266x xy y x y ++=+; ⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填序号)举一反三:【变式】下列式子中,从左到右的变形是因式分解的是( )A .()()21232x x x x --=-+B .()()23212x x x x -+=-- C .()24444x x x x ++=++ D .()()22x y x y x y +=+- 类型二、提公因式法分解因式2、(1)多项式2363x xy -+的公因式是________;(2)多项式324168mn m m --的公因式是________;(3)多项式()()()x b c a y b c a a b c +--+----的公因式是________;(4)多项式2(3)(3)x x x -+-的公因式是________.【变式】下列多项式中,能用提公因式法分解因式的是( )A .2x y -B .22x x +C .2x y 2+D .2x xy y 2-+ 3、若()()()232p q q p q pE ---=-,则E 是( )A .1q p --B .q p -C .1p q +-D .1q p +-举一反三:【变式】把多项式()()()111m m m +-+-提取公因式()1m -后,余下的部分是( )A .1m +B .2mC .2D .2m +4、分解因式:(1)224a a -; (2)2323664a b ab c ab +-; (3)322262a b a b ab -+-;举一反三:【变式】用提公因式法分解因式正确的是( )A .()222129343abc a b c abc ab -=-B .()2233632x y xy y y x x y -+=-+ C .()2a ab ac a a b c -+-=--+ D .()2255x y xy y y x x +-=+ 类型三、提公因式法分解因式的应用5、若0232=-+x x ,求x x x 46223-+的值.【巩固练习】一.选择题1. 下列各式变形中,是因式分解的是( )A.()222211a ab b a b -+-=--B.2212221x x x x ⎛⎫+=+ ⎪⎝⎭C.()()2224x x x +-=-D.()()()421111x x x x -=++-2. 将多项式3222236312x y x y x y -+-分解因式时,应提取的公因式是( )A.3xy -B. 23x y -C. 223x y -D. 333x y - 3. 多项式32n n n a a a +-+分解因式的结果是( )A.()321n a a a -+B. ()22n n a a a -+C. ()221n n a a a -+D. ()31n n a a a -+4. 分解因式()()2552x y x -+-的结果是( )A. ()()251x y -+B. ()()251x y --C. ()()521x y -+D. ()()521x y --5. 下列因式分解正确的是( )A.()()()m a b n a b a b mn -+-=-B.()()()()m x y n y x x y m n ---=--C. ()()1mn x y mn x y mn ++=++D.()()()()232232y x x y x y x y -+-=---6. 把3223288x y x y xy ++提公因式得( )A .2232(44)x x xy y ++B .32232(44)x y x y xy ++C .222(44)xy x xy y ++D .22(4)xy x xy +二.填空题7. 因式分解是把一个______________化为______________的形式.8. ,,ax ay ax -的公因式是___________;236,2,4mn m n mn -的公因式是__________.9. 因式分解32a a b -=_________________.10. 多项式33222339a b a b a b --的公因式是______________.11. 因式分解:323361218a b c ab c abc +-=_________________.12. 因式分解243210515m n m n m n -+-=_____________________.三.解答题13. 应用简便方法计算:(1)1098222--; (2)16 3.148 3.1426 3.14⨯+⨯+⨯14. 已知1,3a b ab +==-,求22a b ab +和3322a b ab +的值.15.小明在计算34.3×17.1+82.5×17.1-26.8×17.1+10×17.1的时候,一脸惆怅,满腹牢骚,不停地自言自语:太繁了!你能帮他解决这个问题吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块一:因式分解的基本概念
因式分解:把一个多项式化成几个整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式
分解因式.
因式分解与整式乘法互为逆变形:
()m a b c ma mb mc ++++整式的乘积
因式分解
式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式
因式分解的常用方法:
提取公因式法、运用公式法、分组分解法、十字相乘法.
分解因式的一般步骤:
如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式
十字相乘法分解,如还不能,就试用分组分解法或其它方法.
注意事项:①若不特别说明,分解因式的结果必须是每个因式在有理数范围内不能再分解为止;
②结果一定是乘积的形式;
③每一个因式都是整式;
④相同的因式的积要写成幂的形式.
在分解因式时,结果的形式要求:
①没有大括号和中括号;
②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;
③单项式因式写在多项式因式的前面;
④每个因式第一项系数一般不为负数;
⑤形式相同的因式写成幂的形式.
【例1】 判断下列各式从左到右的变形是否是分解因式,并说明理由.
⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+
⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++
【例2】 观察下列从左到右的变形:
⑴()()
3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+ 例题精讲
提公因式法、公式法
⑶()2
2261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-
其中是因式分解的有 (填括号)
板块二:提公因式法
提取公因式:如果多项式的各项有公因式,一般要将公因式提到括号外面. 确定公因式的方法:
系数——取多项式各项系数的最大公约数;
字母(或多项式因式)——取各项都含有的字母(或多项式因式)的最低次幂.
【例3】 分解因式:ad bd d -+;
【例4】 分解因式:2244a a b -+-
【例5】 分解因式:23361412abc a b a b --+
【例6】 分解因式:32461512a a a -+-
【例7】 分解因式:22224()x a x a x +--
【例8】 分解因式:3222524261352xy z xy z x y z -++
【例9】 不解方程组2631
x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.
【例10】 分解因式:2121()()m m p q q p +--+-
【例11】 分解因式:212312n n x y xy z +-(n 为大于1的自然数).
【例12】 把下列各式进行因式分解:3223224612x y x y x y -+-
【例13】 分解因式:()()23262x a b xy a b +-+
【例14】 分解因式23423232545224()20()8()x y z a b x y z a b x y z a b ---+-
【例15】 分解因式:346()12()m n n m -+-
【例16】 分解因式:55()()m m n n n m -+-
【例17】 分解因式:()()()2a a b a b a a b +--+
【例18】 分解因式:(23)(2)(32)(2)a b a b a b b a +--+-
【例19】 化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++
++
【例20】 分解因式:()
()2121510n n
a a
b ab b a +---(n 为正整数)
【例21】 分解因式: 2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.
【例22】 先化简再求值,()()()2y x y x y x y x +++--,其中2x =-,12
y =.
【例23】 求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23
x =-.
【例24】 已知:2b c a +-=-,求22221()()(222)33333
a a
b
c b c a b c b c a --+-+++-的值.
【例25】 分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.
【例26】 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,
应是什么三角形?
1.
分解因式:4325286x y z x y -
2.
分解因式:322618m m m -+-
3. 分解因式:23229632x y x y xy ++
4.
分解因式:2222224x y x z y z z --+
5.
分解因式:232232a b abc d ab cd c d -+-
6.
分解因式:22(1)1a b b b b -+-+-
课后练习
7. 分解因式:22()()()x x y y y x --+-
8. 分解因式:212146n m n m a b a b ++--(m 、n 为大于1的自然数)
9. 分解因式:2316()56()m m n n m -+-。