导数各类题型方法总结(绝对经典)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 导数及其应用

一, 导数的概念 1..已知x

f x f x

x f x ∆-∆+=→∆)

2()2(lim

,1

)(0

则的值是( )

A. 4

1- B. 2 C. 41

D. -2

变式1:()()()为则设h

f h f f h 233lim ,430--='→( )

A .-1

B.-2

C .-3

D .1 变式2:()()()

0000

3,lim x f x x f x x f x x x

∆→+∆--∆∆设在可导则等于

( )

A .()02x f '

B .()0x f '

C .()03x f '

D .()04x f '

导数各种题型方法总结

请同学们高度重视:

首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('

=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;

其中不等式恒成立问题的实质是函数的最值问题,

2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

(请同学们参看2010省统测2)

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0

g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432

3()1262

x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;

(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.

解:由函数4323()1262x mx x f x =-- 得32

()332x mx f x x '=-- 2()3g x x mx ∴=--

(1) ()y f x =Q 在区间[]0,3上为“凸函数”,

则 2

()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

(0)030

2(3)09330g m g m <-<⎧⎧⇒⇒>⎨

⎨<--<⎩⎩

解法二:分离变量法:

∵ 当0x =时, 2

()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立

等价于233

x m x x x

->=-的最大值(03x <≤)恒成立, 而3

()h x x x

=-

(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴>

(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2

()30g x x mx =--< 恒成立

变更主元法

再等价于2

()30F m mx x =-+>在2m ≤恒成立(视为关于

m 的一次函数最值问题)

2

2

(2)

0230

11(2)0230F x x x F x

x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩

2b a ∴-= 例2),10(32

R b a b x a ∈<<+-

(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

(二次函数区间最值的例子)

解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---

01a <

令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )

令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)

∴当x=a 时,)(x f 极小值=;4

33

b a +-

当x=3a 时,)(x f 极大值=b.

(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2

2

43a x ax a a -≤-+≤恒成立①

则等价于()g x 这个二次函数max min ()()g x a g x a

≤⎧⎨

≥-⎩ 22

()43g x x ax a =-+的对称轴2x a = 01,a <

12a a a a +>+=(放缩法)

即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.

max min ()(2)2 1.

()(1)4 4.

g x g a a g x g a a =+=-+=+=-+

2x a =

[]1,

2a a ++

相关文档
最新文档