四边形的性质与判定框架图

合集下载

四边形的性质与判定

四边形的性质与判定

四边形的性质与判定四边形是我们在数学学习中经常接触到的几何图形。

它具有丰富多样的性质和独特的判定方法,这些性质和判定方法在解决几何问题、建筑设计、物理学等领域都有着广泛的应用。

四边形的定义很简单,就是由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形。

常见的四边形有平行四边形、矩形、菱形、正方形和梯形等。

先来说说平行四边形的性质。

平行四边形的对边是平行且相等的。

这意味着,如果我们有一个平行四边形 ABCD,那么 AB 平行且等于CD,AD 平行且等于 BC 。

它的对角也是相等的,比如∠A 等于∠C,∠B 等于∠D 。

另外,平行四边形的两条对角线互相平分,也就是 AO = OC,BO = OD 。

平行四边形的判定方法也有多种。

如果两组对边分别平行,那么这个四边形就是平行四边形。

两组对边分别相等也能判定为平行四边形。

一组对边平行且相等同样可以。

还有就是对角线互相平分的四边形是平行四边形。

矩形是一种特殊的平行四边形,它除了具有平行四边形的所有性质外,还有自己独特的性质。

矩形的四个角都是直角,对角线相等。

判定一个四边形是矩形,可以先判定它是平行四边形,然后再看是否有一个角是直角或者对角线是否相等。

菱形也是特殊的平行四边形。

菱形的四条边都相等,对角线互相垂直且平分每组对角。

要判定一个四边形是菱形,可以先判定它是平行四边形,然后看它的邻边是否相等或者对角线是否互相垂直。

正方形则更加特殊,它既是矩形又是菱形,所以具备矩形和菱形的所有性质。

判定一个四边形是正方形,可以先判定它是矩形,然后看邻边是否相等;或者先判定它是菱形,然后看有一个角是否为直角。

梯形是另一类常见的四边形。

梯形分为等腰梯形和直角梯形。

等腰梯形的两腰相等,同一底上的两个角相等,对角线相等。

直角梯形则有一个角是直角。

在实际应用中,四边形的性质和判定方法有着重要的作用。

比如在建筑设计中,设计师需要根据不同的需求和条件来设计房屋的结构,这就可能涉及到各种四边形的运用。

平行四边形的判定与性质

平行四边形的判定与性质

平行四边形的判定与性质判定方式平行四边形的判定可以根据其定义和性质进行确认。

下面是一些常用的判定方式:1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。

1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。

1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。

2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。

2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。

2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。

3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。

3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。

3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。

性质平行四边形具有以下性质:1.对边相等性质:平行四边形的对边长度相等。

1.对边相等性质:平行四边形的对边长度相等。

1.对边相等性质:平行四边形的对边长度相等。

2.同位角相等性质:平行四边形的同位角相等。

2.同位角相等性质:平行四边形的同位角相等。

2.同位角相等性质:平行四边形的同位角相等。

3.内角和性质:平行四边形的内角和为180度。

3.内角和性质:平行四边形的内角和为180度。

3.内角和性质:平行四边形的内角和为180度。

4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。

4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。

4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。

示例以下是一个平行四边形的示例图:A ----------- BD ----------- C在这个示例中,ABCD是一个平行四边形,因为AB和CD平行,AD和BC平行,并且同位角A和C相等,B和D相等。

18.1.2_平行四边形的判定(1---3)

18.1.2_平行四边形的判定(1---3)
通过平行四边形判定方法的灵活运用,培养主动探 索的精神及创新意识; 通过一题多变与一题多解,引发求异创新的欲望.
教学重难点
重点:
平行四边形的判定方法及应用.
难点:
平行四边形的判定定理与性质定理的灵 活应用.
探究
张师傅手中有一些木条,他想通过适当的测量、 割剪,钉制一个平行四边形框架,你能帮他想出 一些办法来吗?并说明理由. A● AB=CD AD=BC

两组对角分别相等
对角线: 对角线互相平分
• 1、下列条件中,不能判定四边形ABCD 是平行四边形的是( D ) • A、∠A=∠C,∠B=∠D • ∠A=∠B=∠C=90 • ∠A+∠B=180 ,∠B+∠C=180 • ∠A+∠B=180 ,∠C+∠D=180
A D
B
C
• 下列条件中能判定一个四边形是平行四边形的条件 是(D ) • ①一组对边相等,且一组对角相等,②一组对边相 等且一条对角线平分另一条对角线,③一组对角相 等,且这一组对角的顶点所连结的对角线被另一条 对角线平分,④一组对角相等,且这一组对角的顶 点所连结的对角线平分这组对角。 • A、①和② B、②和③ • C、②和④ D、只有④ D A
新课导入
回顾旧知
下面图片中,哪些是平行四边形?你是 怎样判断的?
平行四边形的主要特征
1.边: a.平行四边形两组对边分别平行. b.平行四边形两组对边分别相等. 2.角:平行四边形两组对角分别相等. 3.对角线: 平行四边形对角线互相平分 .
怎样证明对边相等或对角 线相等或对角线互相平分的四 边形是不是平行四边形?
证明:作对角线BD,交AC于点O.
A
E O F B C

1.3平行四边形,矩形,菱形,正方形的性质和判定

1.3平行四边形,矩形,菱形,正方形的性质和判定

第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。

记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。

∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。

例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。

求证:∠ADF=∠CBE。

例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。

例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。

例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。

第十八章四边形章节复习辅导讲义

第十八章四边形章节复习辅导讲义

第十八章、四边形章节复习辅导讲义一、四边形知识框架: 1.四边形的知识结构 2.平行四边形的知识结构 二、四边形1. 定义:有不在同一直线上的四条首尾依次连接的线段构成的封闭图形。

2. 四边形的表示:四边形一般由依次的四个大写的字母表示,如四边形ABCD 等。

3. 四边形的分类:(1) 按照四边形的凹凸性将四边形分为凸四边形和凹四边形。

注意:中学阶段学习的四边形都是凸四边形。

(2) 按照四边形对边的平行性将四边形分为: ① 一般四边形:任何对边都不平行的四边形。

② 梯形:只有一组对边平行的四边形; A. 梯形分类: a .一般的梯形b .等腰梯形:一组对边平行,另一组对边相等的四边形。

c. 直角梯形:有一个内角为直角的梯形。

(3) 平行四边形:两组对边分别平行的四边形。

① 平行四边形的分类: A. 一般的平行四边形 B. 矩形(长方形):有一个较为直角的平行四边形。

C. 菱形:邻边相等的平行四边形。

D. 正方形:四条边都相等,四个内角也相等的四边形。

4. 四边形的内角和与外角和: (1) 四边形的内角和为360度 (2) 四边形的外角和为360度。

5. 四边形的性质:依次连接四边形各边中点所得的四边形称为中点四边形。

不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形【基础练习】1. 顺次连接一个任意四边形四边的中点,得到一个_______四边形. 2.顺次连接对角线相等的四边形的各边中点,所得四边形是_________.3. 如图1,已知:在ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD•于点E ,交CD 的延长线于点F ,则DF=______cm .4. 如图,四边形ABCD 为正方形,△ADE 为等边三角形,AC 为正方形ABCD 的对角线,则∠EAC =___度.5. 四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示)1250°1 2A BC DB F C6.在如图所示的四边形中,若去掉一个50的角得到一个五边形,则12+=∠∠ 度.7.如图,已知AC 平分BAD ∠,12∠=∠,3AB DC ==, 则BC = . 8.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.三、平行四边形(一) 平行四边形:1. 定义:两组对边分别平行的四边形。

超好平行四边形、矩形、菱形、正方形的性质与判定对比表

超好平行四边形、矩形、菱形、正方形的性质与判定对比表


菱形的四条边都相等∵四边形ABCD 是菱形∴AB=BC=CD=DA
有一组邻边相等的平行四边形是菱形
在口ABCD 中,
∵AB=BC ,∴口ABCD 是菱形四条边都相等的四边形是菱形
∵AB=BC=CD=DA ,
∴四边形ABCD 是菱形对角线菱形的对角线互相垂直,并且每一条对角线平分一组对角
∵四边形ABCD 是菱形∴A C⊥BD,∠ADB=∠CDB=∠ABD=∠CBD ,∠BAC=∠DAC=∠BCA=∠DCA
对角线互相垂直的平行四边形是菱形
在口ABCD 中,∵A C⊥BD,∴口ABCD 是菱形
边对边平行,四条边都相等1、从平行四边形出发:有一组邻边相等并且有一个角是直角的平行四边形是正方形.
2、从矩形出发:有一组邻边相等的矩形是正方形。

3、从菱形出发:有一个角是直角的菱形是正方形。

角四个角都是直角
对角线
两条对角线互相垂直平分且相等,每条对角线平分一组对角。

初中数学《平行四边形的的性质和判定》单元教学设计以及思维导图

初中数学《平行四边形的的性质和判定》单元教学设计以及思维导图

平行四边形的的性质和判定适用年八年级级所需时六课时间主题单元学习概述《初中数学八年级下》第五章平行四边形是人们日常生活和生产实践中应用广泛的一种图形,本单元是在学生已经学习了三角形相关知识、平行四边形的定义的基础上进行学习的,在教学内容中起着承上启下的作用,“承上”:定理的证明是三角形全等知识、平行线知识的再应用;“启下”:平行四边形的性质和判定定理以及探究的模式为进一步学习特殊四边形奠定了基础。

本单元包括两个专题:专题一:平行四边形的性质;专题二:平行四边形的判定。

平行四边形的性质定理和判定定理是两个互逆的定理,定理的证明方法都用到了三角形全等的知识。

通过合作探究,测量、计算、对折剪开、旋转、平移、推理等探索定理证明的不同思路和方法,运用定理解决较简单的问题;归纳、总结解决四边形问题的常用数学方法;进行适当的比较和讨论,渗透化归思想和数学建模思想,从而形成知识体系。

主题单元规划思维导图主题单元学习目标知识与技能:知识与技能:1.通过合作探究,认识平行四边形的性质定理和判定定理。

2.理解平行四边形的性质定理和判定定理,并学会简单运用。

过程与方法:过程与方法:1.通过类比、观察、实验、猜想、验证、推理、交流等学习活动,进一步增强动手能力、合情推理能力。

2.在运用平行四边形的性质和判定方法解决问题的过程中,培养和发展逻辑思维能力和推理论证的表达能力。

情感态度与价值观:情感态度与价值观:通过对平行四边形性质和判定方法的探究和运用,感受数学思考过程中的合理性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辨证的观点分析事物。

对应课标《初中数学新课程标准》1.有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

2. 教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

《四边形中考复习》课件

《四边形中考复习》课件
四边形在雕塑设计中提供丰富的 形态变化,增强立体感和层次感

图案设计
四边形作为基础图案元素,用于 纺织品、平面设计等领域。
科技中的应用
机械零件
四边形形状的机械零件用于各种机械设备中,确 保稳定性和功能性。
电路板设计
电子设备中的印刷电路板常采用四边形形状,以 提高空间利用率和信号传输效率。
交通标志
交通标志中的四边形元素用于指示方向、警告或 禁令,提高道路安全性。
02
四边形的判定
平行四边形的判定
定义法
定理法
定理法
对角线性质
两组对边分别平行的四 边形是平行四边形。
一组对边平行且相等的 四边形是平行四边形。
两组对边分别相等的四 边形是平行四边形。
对角线互相平分的四边 形是平行四边形。
矩形的判定
01
02
03
04
定义法
所有角都是直角的四边形是矩 形。
定理法
一组邻边相等的平行四边形是 矩形。
面积与形状关系
四边形的面积与其形状有 关,形状相同但大小不同 的四边形可能有不同的面 积。
四边形的周长计算
周长公式
四边形的周长是其所有边 的长度之和。
周长计算方法
对于不规则四边形,可以 通过测量每一边的长度然 后相加得到周长。
周长与形状关系
四边形的周长与其形状有 关,形状相同但大小不同 的四边形可能有不同的周 长。
定理法
对角线垂直且相等的平行四边形是正方形。
定理法
一组邻边相等的矩形是正方形。
定理法
有一个角是直角的菱形是正方形。
03
四边形的面积与周长
四边形的面积计算
01
02

四边形的性质及判定定理

四边形的性质及判定定理

1. 有 一 组 临 边 相 等 的矩形。 2. 对 角 线 互 相 垂 直 的矩形。 3. 有 一 个 角 是 直 角 的菱形。 4. 对 角 线 相 等 的 菱 形。
1.两腰相等的梯形。 2. 同 一 底 上 的 两 个 角相等的梯形。
1. 三角形的中位线平行于三角形的第三边 三角形中的几个重 且等于第三边的一半。 要定理: 2. 直角三角形的斜边中线等于斜边的一 半。 3. 直角三角形中 300 的角所对的直角边等 于斜边的一半。 4. 等腰三角形底边上的高、中线、顶角平 分线三线合一。 5. 有一个角为 600 的等腰三角形是等边三 角形。
矩形
菱形
1. 两组对边平行且 相等. 2. 四个角都是直角。 3. 对角线互相平分 且相等。 4. 既是轴对称图形, 又是中心对称 图 形。 5. S=ab ( a 是长 b 是宽) 1. 两组对边平行且 1. 有一组临边相等 四条边都相等。 的平行四边形。 2. 两组对角相等。 2. 对角线互相垂直 3. 对角线互相垂直 的平行四边形。 平分且每一条对 3. 四条边相等的四 角线平分一组对 边形。 角。 4. 既是轴对称图形, 又是中心对称 图 形。 5. S= ab(a、b 是 对角线长) .

等腰梯形
1.两组对边平行且四 条边相等。 2.四个角都是直角。 1. 对角线相等且互 相垂直平分, 每一 条对角线平分一 组对角 (既对角线 和边的夹角是 450) 4. 既是轴对称图形, 又是中心对称图形。 5.S= a2(a 是边长) 1. 两腰相等。 2. 同一底上的两个 角相等。 3. 对角线相等。 4. 是轴对称图形。
对角线相等且互相垂直平分每一条对角线平分一组对角既对角线和边的夹角是4504
万 成 教 育

四边形的性质与判定方法

四边形的性质与判定方法

判定方法及典型例题解析
例题2
已知四边形ABCD中,AB=BC=CD=DA,且AC⊥BD,求证:四边形ABCD是 正方形。
解析
根据已知条件,可以判定四边形ABCD是菱形。又因为AC⊥BD且AC、BD互相 平分,所以四边形ABCD是正方形。
04
梯形性质与判定方法
梯形定义及分类
梯形定义
梯形是一组对边平行而另一组对边不平行的四边形。
典型例题解析
例如,已知四边形ABCD中,AB//CD,AD=BC,求证:四边形ABCD是等腰梯形。证明过程可以通过测量角的 大小和边的长度来验证AB和CD是否平行以及AD和BC是否相等,从而证明四边形ABCD是等腰梯形。
05
多边形内角和与外角和公式应用
多边形内角和公式推导过程
划分成三角形
从多边形的一个顶点出发,可以将其划分成(n-2)个三角形 ,每个三角形的内角和为180°,所以多边形的内角和为(n2)×180°。
补形法
将多边形补成一个规则的几何图形(如矩形、平行四边形等 ),然后根据补形的性质求出多边形的内角和。
外角和公式推导过程
外角定义
多边形的一个外角等于与它相邻的两个 内角的和,且任意多边形的外角和等于 360°。
VS
推导过程
由于多边形可以被划分成n个三角形,每 个三角形的外角和为360°,所以多边形 的外角和也为360°。
谢谢您的聆听
THANKS
判定方法及典型例题解析
• 有一个角是直角且有一组邻边相等的平行四边形是正方形 。
判定方法及典型例题解析
典型例题解析
例题1:已知四边形ABCD中,AB=CD,AD=BC,且∠A=90°,求证:四边形ABCD是矩形 。

人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件

人教版八年级数学下册《平行四边形的判定》平行四边形PPT精品课件

新知探究
于是我们又得到平行四边形的一个判断定理: 一组对边平行且相等的四边形是平行四边形.
数学表达式:如图,∵AB =∥ CD, ∴四边形ABCD是平行四边形.
例题精析
例1 如图,在▱ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
证明:∵四边形ABCD是平行四边形,
人教版八年级数学下册
第十八章 平行四边形
平行四边形的判定
第1课时
新课导入
前面我们学习了平行四边形的定义和性质,它们的内容是什么? 平行四边形的定义:
两组对边分别平行的四边形叫平行四边形; 平行四边形的性质:
对边相等,对角相等,对角线互相平分.
新课导入 一、复习反思,引出课题
学习完定义和性质后,由以前经验接下来我们应该研究什么?
定义
性质
判?定
平行四边形的判定
新课探究
根据以往学习一些图形判定定理的经验,如何寻找平行四边形 的判定方法?
性质定理 两直线平行,同位角相等
角平分线上的点到角两边的距离相等
线段垂直平分线上的点到线段两端点的距 离相等
全等三角形的对应边相等 ……
判定定理 同位角相等,两直线平行
角的内部,到角两边距离相等的 点在这个角的角平分线上
∴ △AOD≌△COB.
∴ ∠OAD=∠OCB.
∴ AD∥BC. 同理 AB∥DC.
判定3: 对角线互相平分的四边形是平行四边形.
∴ 四边形ABCD是平行四边形.
新课探究
两组对边分别平行 两组对边分别相等 两组对角分别相等 对角线互相平分
的四边形是平行四边形
例题精析
例1 如图,AB=DC=EF,AD=BC,DE=CF.求证:AB∥EF.

初中数学《平行四边形的性质和判定》单元教学设计以及思维导图

初中数学《平行四边形的性质和判定》单元教学设计以及思维导图
abcd的两条对角线acbd相交于点o1图中有哪些三角形是全等的有哪些线段是相等的2能设法验证你的猜想吗教师活动教师将前后四名同学分成一组学生拿出事先准备好的平行四边形及实验工具刻度尺剪刀图钉尝试在交流合作中动手探究平行四边形的对角线有何性质
平行四边形的性质和判定
适用年级
八年级
所需时间
5课时
主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要学习方式和预期的学习成果,字数300-500。)
多媒体课件图片网络视频
学习活动设计(说明:为达到本专题的学习目标,从学生的角度设计学生应参与的学习活动。如本专题由几个课时组成,则应分课时描述每个课时的学习活动设计。请以活动1、活动2、活动3等的形式,提纲挈领地描述每个课时包含哪些学习活动以及每个活动的主要步骤。注意,在这些学习活动中应通过对所设计的本专题的问题的探究完成学习任务)
专题二平行四边形的判定、专题三平行四边形的判定、。重点:是平行四边形的定义,平行四边形的性质,平行四边形的判定和应用。难点:平行四边形性质探究,平行四边形的性质定理和判定定理的灵活应用。
上为研究特殊的平行四边形奠定了基础。分三个专题:专题一平行四边形定义、性质;
专题二平行四边形的判定;专题三应用;
主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。)
多媒体课件图片网络视频
学习活动设计(说明:为达到本专题的学习目标,从学生的角度设计学生应参与的学习活动。如本专题由几个课时组成,则应分课时描述每个课时的学习活动设计。请以活动1、活动2、活动3等的形式,提纲挈领地描述每个课时包含哪些学习活动以及每个活动的主要步骤。注意,在这些学习活动中应通过对所设计的本专题的问题的探究完成学习任务)

平行四边形的判定(课件)

平行四边形的判定(课件)
数学(苏科版)
八年级 下册
第九章 中心对称与中心对称图形
9.3.2 平行四边形的判定
平行四边形性质知识点回顾
概念: 两组对边分别平行的四边形叫做平行四边形。
A

几何描述: ∵AB∥CD,AD∥BC
∴四边形ABCD是平行四边形
性质: 平行四边形对边相等
平行四边形对角相等
平行四边形对角线互相平分
B

学习目标
∴ △ABC≌△CDA(SAS).

∠2=∠4.

AB∥DC 而AD∥BC

四边形ABCD是平行四边形.

B
4

与平行四边形判定有关的证明题
四边形ABCD中,AD=BC, AB∥CD,小王同学认为四边形ABCD是平行四
边形?小王给出了他的答案,你觉得他的答案是否正确?
A
连接AC
∵AB∥DC
∴∠2=∠4
课后回顾
课后回顾
01
02
03
谢谢~
②AD=BC;③∠ABC=∠ADC;④OA=OC,任取其中两个,以下组合能够判定四
边形ABCD是平行四边形的是(

A.①② B.②③ C.②④ D.①④
【详解】
解:以①④作为条件,能够判定四边形ABCD是平行四边形.
理由:∵AB∥CD,∴∠OAB=∠OCD,
∠=∠
在△AOB和△COD中,
1
1
AB,FD= CD
2
2
∴EB=FD
∴四边形DEBF是平行四边形.
与平行四边形判定有关的证明题
如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,

特殊的四边形(归纳)

特殊的四边形(归纳)

特殊的平行四边形知识点一:矩形的定义要点诠释:有一个角是直角的平行四边形叫做矩形。

(嘿嘿嘿)知识点二:矩形的性质要点诠释:矩形具有平行四边形所有的性质。

此外,它还具有如下特殊性质:1.矩形的四个角都是直角;2.矩形的对角线相等;推论:直角三角形斜边上的中线等于斜边的一半。

3.矩形是轴对称图形也是中心对称图形。

知识点三:矩形的判定方法要点诠释:1. 用矩形的定义:一个角是直角的平行四边形是矩形;2.有三个角是直角的四边形是矩形;3.对角线相等的平行四边形是矩形;4.对角线互相平分且相等的四边形是矩形。

知识点四:菱形的定义要点诠释:有一组邻边相等的平行四边形叫做菱形.知识点五:菱形的性质要点诠释:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。

2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。

3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。

知识点六:菱形的判定办法要点诠释:1.用菱形的定义:有一组邻边相等的平行四边形是菱形;2.四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;4.对角线互相垂直平分的四边形是菱形。

知识点七:正方形的定义要点诠释:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

知识点八:正方形的性质要点诠释:1.正方形的四个角都是直角,四条边都相等;2.正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角;3.正方形既是轴对称图形也是中心对称图形。

知识点九:正方形的判定方法要点诠释:1.正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2.有一组邻边相等的矩形是正方形;3.有一个角是直角的菱形是正方形.归纳整理,形成认知体系1.复习概念,理清关系2.集合表示,突出关系3.性质判定,列表归纳平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定·两组对边分别平行;·两组对边分别相等;·一组对边平行且相等;·两组对角分别相等;·两条对角线互相平分.·有三个角是直角;·是平行四边形且有一个角是直角;·是平行四边形且两条对角线相等.·四边相等的四边形;·是平行四边形且有一组邻边相等;·是平行四边形且两条对角线互相垂直。

(完整版)平行四边形的性质和判定

(完整版)平行四边形的性质和判定

平行四边形的性质和判定基础知识点知识点1平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

记作“口 ABCD 。

边:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

角:两组对角分别相等的四边形是平行四边形。

对角线:对角线互相平分的四边形是平行四边形。

知识点4 两条平行线的距离。

知识点5 三角形的中位线定义:连接三角形两边中点的线段是三角形的中位线。

性质:三角形的中位线平行于第三边且等于第三边的一半。

典型例题例1、如图,E , F 是平行四边形 ABCD 的对角线 AC 上的点,CE AF •猜想:BE 与DF 有怎样的位置.关 系和数量 关系?并对你的猜想加以证明。

知识点2平行四边形的性质:知识点3 边:对边平行且相等。

角:对角相等,邻角互补。

对角线:对角线互相平分。

平行四边形的判定:【变式练习】已知,在口ABCD中,点E、F分别在AD、CB的延长线上,且/ 仁/2, DF交AB于G, BE交CD 于H。

求证:EH=FG。

例2、已知如图,0为平行四边形ABCD的对角线AC的中点,EF经过点0,且与AB交于E,与CD交于F。

求证: 四边形AECF是平行四边形。

例3、?ABCD中,/ BAD的平分线交直线BC于点E,线DC于点F(1) 求证:CE=CF ;(2) 若/ ABC=120 ° FG// CE, FG=CE,求/ BDG .【变式练习】1、如图,在二ABCD中,AE=CF, M、N分别ED、FB的中点.求证:四边形ENFM是平行四边形.2、在?ABCD中,/ ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC .(1)如图1,若/ ADC=90 ° G是EF的中点,连接AG、CG .①求证:BE=BF .②请判断△ AGC的形状,并说明理由;(2)如图2,若/ ADC=60 °将线段FB绕点F顺时针旋转60°至FG ,连接AG、CG .那么△ AGC又是怎样的形状.【变式练习】1.在平行四边形ABCD中, AB=3cm BC=5cm对角线AC, BD相交于点0,贝U 0A的取值范围是()A. 2cm v 0A< 5cm B . 2cm< 0A< 8cm C . 1cm v 0A< 4cm D . 3cm v 0A< 8cm例4、如图,点E、F、G H分别是四边形ABCD的四边中点,求证四边形EFGH是平行四边形。

四边形的认识ppt课件

四边形的认识ppt课件

总结词
对于特殊类型的四边形,如平行四边形、矩形等,有特定 的面积计算方法。
详细描述
对于平行四边形,如果知道其底和高,可以直接使用公式 A=底×高计算面积;对于矩形,可以使用公式A=长×宽 计算面积。
总结词
特殊四边形面积的求解方法需要依据具体的形状和条件来 确定。
详细描述
对于其他特殊类型的四边形,如梯形、菱形等,需要依据 其特定的性质和条件来求解面积,可能需要使用到一些复 杂的几何定理和公式。
四边形的周长和面积计算公式 与三角形的周长和面积计算公 式不同。
THANKS
感谢观看
详细描述
在建筑领域,四边形被广泛应用。矩形作为四边形的一种,因其稳定性和易于实 现的功能性,常被用于构建房屋、桥梁等建筑的基本框架。此外,斜交四边形、 平行四边形等也常用于建筑设计中,以实现特定的视觉效果和功能需求。
艺术中的四边形
总结词
四边形在艺术领域中常被用作构图的基础,以创造平衡和美感。
详细描述
在绘画、摄影和设计等领域,艺术家们经常使用四边形作为构图的基础。四边形的特性,如平衡、对称和稳定性 ,使得它们成为创造艺术作品时的理想选择。通过使用四边形,艺术家们可以创造出具有平衡感和美感的作品。
科技中的四边形
总结词
在科技领域,四边形常被用于计算机图形学、机器人技术等 领域。
详细描述
在计算机图形学中,四边形是构建二维图像的基本单元。例 如,矩形四边形被用于屏幕上的窗口和图标。此外,在机器 人技术中,四边形结构被用于构建机器人的移动部分和机械 臂,以实现精确的运动和稳定性。
详细描述
根据边的长度和角度的不同,四边形可以分为多种类型。其中,平行四边形是一组相对 边平行,其他两边相等的四边形;矩形是所有角都是直角的平行四边形;菱形是所有边 相等的平行四边形;正方形是所有角都是直角且所有边相等的四边形。这些不同类型的

平行四边形的判定课件(第一课时)

平行四边形的判定课件(第一课时)

1、能判定四边形是平行四边形的题设是四边形的( B).
(A) 对角线相等.
(B)对角线互相平分.
(C) 对角线互相垂直. (D)对角线互相垂直且相等.
2、下列命题错误的是 ( D ).
(A)两组对边分别平行的四边形是平行四边形.
(B) 平行四边形的两组对边分别相等.
(C) 对角线互相平分的四边形是平行四边形.
4.对角线互相平分的四边形
4.平行四边形的对角线
是平行四边形
互相平分.
第十页,共19页。
已知:四边形ABCD, AB=CD,AD=BC
求证:四边形ABCD是平行四边形
证明:
A
D
∵ AB=CD,AD=BC (已知)
∴四边形ABCD是平行四边形 B
C
第十一页,共19页。
已知: 在四边形ABCD中,∠A=∠C,∠B=∠D.
第二页,共19页。
两组对边分别平行

从边考虑


两组对边分别相等




从角考虑
两组对角相等 四


从对角线考虑
两角线互相平分
第三页,共19页。
1.两组对边分别相等的四边形是平行
四边形
第四页,共19页。
已知:四边形ABCD, AB=CD,AD=BC 求证:四边形ABCD是平行四边形
证明:连结AC,
由此你得到的结论是:
对角线互相平分的四边形是平行四边形.
第九页,共19页。
性质:
判定:
1.平行四边形的对边
互 平行; 为 逆 2.平行四边形的对边
1.两组对边分别平行的 四边形是平行四边形;
2.两组对边分别相等的 四边形是平行四边形;

平行四边形性质及判定

平行四边形性质及判定

解:
∵四边形ABCD是平行四边形
10 B
∴BC=AD=8,CD=AB=10
又∵AC⊥BC

A 8 O
D
C
∴△ABC是直角三角形 2 2 2 2 ∴ AC AB BC 10 8 6 1 又∵OA=OC ∴ OA 2 AC 3 ∴S ABCD = BC×AC=8×6=48
说一说,练一练
如图,在
A D O B
ABCD中,
BC=10cm, AC=8cm, BD=14cm,
(1)△ AOD的周长是多少?为什么? (2)△ ABC与△ DBC的周长哪个长?长多少?
探究
ABCD的对角线AC与BD相交于O,直线EF过 点 O与 AB 、CD分别相交于E 、F,试探究 OE与OF的大小关系?并说明理由。 A E
读作:平行四边形ABCD ∵四边形ABCD是平行四边形 ∴ AB∥CD

AB∥CD
AD∥BC ∴四边形ABCD是平行四边形
AD∥BC
A
D
B
C
如图
① ②
AB
AD
CD BC
ABCD AB AD
ABCD CD BC
练习一
如图是某区部分街道示意图,其中BC∥AD∥EG, AB//FH∥DC.图中的平行四边形共有_9__个.
又OB=OD, 所以四边形BFDE是平行四边形。
你还有其他 的证明方法 吗?
解:图中互相平行的线段有: AB//DC//EF, AD//BC, DE//CF B 理由如下:
AB=DC AD=BC
如图,AB=DC=EF,AD=BC,DE=CF,图中 有哪些互相平行的线段? D A
E F
C

初中数学《平行四边形》单元教学设计以及思维导图

初中数学《平行四边形》单元教学设计以及思维导图

平行四边形主题单元设计与思维导图适用年八年级级所需时课内共用5课时间主题单元学习概述“平行四边形”主题单元结构包括“相关概念”、“探究性质”、“探究判定”三部分,这与课本的内容安排有所不同。

教材的编写顺序是“平行四边形及其性质、判定”、“矩形定义、性质、判定”、“菱形的定义、性质、判定”顺次展开,是先学特殊的四边形---平行四边形的定义、性质、判定,再学特殊的平行四边形的定义性质和判定.而新的结构是一种专题式设计,更多考虑到知识之间的关联,打破教材的原有安排,平行四边形、矩形、菱形、正方形等有关的概念放在一起作为专题一集中处理,把具有探究性的平行四边形、矩形、菱形、正方形的性质定理作为专题二集中处理,把平行四边形、矩形、菱形、正方形的判定定理作为专题三集中处理,这是考虑到平行四边形与特殊平行四边形等概念与概念之间、性质与性质之间、判定与判定之间都有紧密的联系,符合学生的“最近发展区”认识规律。

比如学完平行四边形的边、角、对角线的性质后,学生自然会想到特殊平行四边形矩形、菱形、正方形的边、角、对角线有哪些特殊的性质?因此,将这些内容紧密联系,层层递进,易于激发学生的学习兴趣也有利于帮助学生理解知识之间的联系,从而更好的展示数学知识的整体性。

主题单元规划思维导图主题单元目标知识与技能:1.理解平行四边形、矩形、菱形、正方形的概念.2.理解平行四边形与矩形、菱形、正方形之间的关系.过程与方法:1.探索并证明平行四边形的性质定理和判定定理.2.探索并证明矩形、菱形、正方形的性质定理和判定定理.3.体会并掌握转化、类比等数学思想方法.情感态度与价值观:1.通过平行四边形等概念的学习过程,体会数学知识来源于生活.2.通过平行四边形及特殊平行四边形的性质、判定的推导过程,培养学生思维的严谨性和逻辑性.3.通过研究平行四边形及特殊平行四边形的对称性,让学生体会数学和生活中的“对称美”.对应课标1.理解平行四边形、矩形、菱形、正方形的概念以及它们之间的关系2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分3.探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角、对角线相等;菱形的四条边相等、对角线互相垂直;正方形具备矩形和菱形的一切性质4.探索并证明矩形、菱形、正方形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形等主题单元问题设计1.理解平行四边形、矩形、菱形、正方形的概念以及它们之间的关系2.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分3.探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角、对角线相等;菱形的四条边相等、对角线互相垂直;正方形具备矩形和菱形的一切性质4.探索并证明矩形、菱形、正方形的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形等专题划分专题一:平行四边形、矩形、菱形、正方形的概念(1课时)专题二:探究平行四边形、矩形、菱形、正方形的性质(2课时)专题三:探究平行四边形、矩形、菱形、正方形的判定(2课时).......其中,专题(或专题二中的活动1 作为研究性学习)专题一平行四边形、矩形、菱形、正方形的概念所需课时课内1课时专题学习目标1.理解平行四边形、矩形、菱形、正方形的概念2.理解平行四边形与矩形、菱形、正方形之间的关系专题问题设计1.什么叫平行四边形、矩形、菱形、正方形?2.平行四边形、矩形、菱形、正方形之间的关系?所需教学环境和教学资源1.多媒体教室2.几何画板3.画图工具及一些细木条学习活动设计第一课时平行四边形、矩形、菱形、正方形的概念活动1.说说生活中的平行四边形生活中有哪些平行四边形的例子?由于学生对生活中的平行四边形的例子比较熟悉,小学里对平行四边形也有了初步的认识,本活动主要在于唤起学生的好奇心和学习的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形主要内容
1.四边形的性质
2.四边形的判定
对角线:
1、顺次连接任意四边形四边中点得到的四边形一定是.
2、顺次连接对角线长度相等的四边形四边中点得到的四边形一定是.
3、顺次连接等腰梯形四边中点得到的四边形一定是.
4、顺次连接对角线相互垂直的四边形的四边中点得到的四边形一定是.
5、顺次连接对角线相等且垂直的四边形四边中点的连线得到的四边形一定是.
6、顺次连接平行四边形四边中点得到的四边形一定是.
7、顺次连接菱形四边中点得到的四边形一定是.
8、顺次连接矩形四边中点得到的四边形一定是.
9、顺次连接正方形四边中点得到的四边形一定是.
四边形 平行四边形
菱形
矩形
正方形。

相关文档
最新文档