转速、电流双闭环可逆直流PWM调速系统设计
转速电流双闭环可逆直流调速系统的仿真与设计(专业课程设计报告格式)
专业课程设计报告(级本科)题目:转速电流双闭环可逆直流调速系统的仿真与设计学院:学院专业:班级:姓名:学号:同组同学:设计时间:评定成绩:指导教师:年月大学专业课程设计任务书含给定滤波与反馈滤波的PI 型电流调节器(3)选择电流调节器参数要求%5%≤i σ时,应取5.0=∑i I T K ,因此s K i l I T T 11.1350037.05.0-==∑=于是,013.14005.05.003.01.135=⨯⨯⨯==Ks R K K i Ii βτ。
(4)校验近似条件 要求sci T 31<ω,现ci s s s T ω>=⨯=--111.1960017.03131。
要求l m ci T T 13≥ω,现ci l m s s T T ω<=⨯=--11243.45.011313。
要求oi s ci T T 131≤ω,现ci oi s s s T T ω>=⨯=--118.180002.00017.0131131(5)计算电流调节器电阻和电容 取Ω=k R 400,则Ω=Ω⨯==k k R K R n n 52.4040013.10 取Ω=k R n 40F F R C iii μτ75.0104003.03=⨯==取F μ75.0 F F R T C oi oi μμ2.0101040002.044630=⨯⨯⨯== 取F μ2.0 按照上述参数,电流环可以达到的动态指标为%5%3.4%<=i σ,故满足设计要求。
2.2转速环的设计 (1)确定时间常数电流环等效时间常数为s T i 0074.02=∑。
根据所用发电机纹波情况,取转速滤波时间常数s T on 01.0=。
转速小时间常数近似处理,取s T T T on i n 0174.02=+∑=∑。
(2)选择转速调节器结构按照设计要求,选用PI 调节器,其传递函数为()ss K s W n n nASR ττ1+=含给定滤波与反馈滤波的PI 型转速调节器(3)计算转速调节器参数按跟随和抗扰性能都较好的原则,取5=h ,则s s hT n n 087.00174.05=⨯=∑=τ222224.3960174.0252621--=⨯⨯=∑+=s s T h h K nN 则 ()7.11174.05.0007.01018.0132.005.0621=⨯⨯⨯⨯⨯⨯=∑+=nme n RT h T C h K αβ(4)检验近似条件115.34087.04.396--=⨯==s s K n N cn τω。
直流电机的PWM电流速度双闭环调速系统课程设计
直流电机的PWM电流速度双闭环调速系统课程设计LT一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi ≤5%;转速超调量:σi≤10%;运算放大器:R=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。
PWM变换器的放大系数:K S=20。
二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。
这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。
如图2-1所示。
图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。
在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。
直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。
其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。
双闭环可逆直流脉宽PWM调速系统设计及MATLAB仿真验证
双闭环可逆直流脉宽PWM调速系统设计及MATLAB仿真验证双闭环可逆直流脉宽调制(PWM)调速系统是一种常见的电机调速控制方案。
该系统通过两个闭环来实现电机的速度控制和电流控制,从而实现精准的调速效果。
本文将介绍双闭环可逆直流脉宽PWM调速系统的设计原理,并使用MATLAB进行仿真验证。
设计原理:该系统由以下几个主要部分组成:1.输入信号:输入信号一般是一个速度设定值,表示期望电机的转速。
该信号可以通过人机界面或其他控制系统输入。
2.速度控制环:速度控制环根据输入信号和反馈信号之间的差异来控制电机的转速。
常见的速度控制算法有比例控制、积分控制和微分控制。
3.脉宽调制器:脉宽调制器根据速度控制环输出的控制信号来生成PWM信号,控制电机的转速。
通常使用的脉宽调制算法有定时器计数法和比较器法。
4.电流控制环:电流控制环根据PWM信号和反馈信号之间的差异来控制电机的电流。
常见的电流控制算法有比例控制、积分控制和微分控制。
5.电机驱动器:电机驱动器将电流控制环输出的控制信号转换为电机驱动信号,驱动电机正常运转。
MATLAB仿真验证:为了验证双闭环可逆直流脉宽PWM调速系统的性能,可以使用MATLAB进行仿真。
以下是一种基本的MATLAB仿真流程:1.定义电机模型:根据电机的参数和特性,定义一个数学模型来表示电机的动态响应,例如通过电机的转矩-转速曲线或电机的方程。
2.设计速度控制器:根据系统要求和电机模型,设计一个适当的速度控制器。
可以使用PID控制器或其他控制算法。
3.设计PWM调制器:根据速度控制器输出的控制信号,设计一个PWM调制器来生成PWM信号。
根据电机模型和控制要求,选择合适的PWM调制算法。
4.设计电流控制器:根据PWM信号和电机模型,设计一个电流控制器。
可以使用PID控制器或其他控制算法。
5. 仿真验证:将以上设计参数输入到MATLAB仿真模型中,并进行仿真验证。
可以使用Simulink工具箱来搭建仿真模型,并通过逐步增加负载或改变速度设定值等方式来验证系统的性能。
实验三 PWM转速,电流双闭环调速系统
实验三 PWM 转速、电流双闭环调速系统一、实验目的1.了解转速、电流双闭环可逆直流PWM 调速系统的组成、原理及各单元的工作原理。
2.掌握双闭环可逆直流PWM 调速系统的调试步骤、方法及参数的整定。
3.测定双闭环直流调速系统的静态和动态性能指标。
二、实验系统组成及工作原理在中小容量的直流传动系统中,采用功率开关器件的脉宽调制(PWM )调速系统比相控系统具有更多的优越性,因而得到日益广泛的应用。
双闭环可逆直流PWM 调速系统的组成如实验图3-1所示。
图中,可逆PWM 变换器主电路采用MOSFET 构成H 型结构,UPW 为脉宽调制器,DLD 为逻辑延迟环节,GD 为MOS 管的栅极驱动电路,FA 为瞬时动作的过流保护,GM 为调制波发生器。
速度给定信号*n U 与速度反馈信号n U 经速度调节器ASR 调节后输出为电流给定信号*i U ,它与电流反馈信号i U 经电流调节器ACR 调节后输出为控制信号c U ,送入UPW 控制PWM波形的产生,最终控制电动机两端的电压。
DLD 的作用是把PWM 波分成二组相差180°的PWM 波,并留有一定死区时间,用于控制两组桥臂VT ;GD 的作用是形成四组隔离的PWM 驱动脉冲;PWM 为功率放大电路,直接给电动机M 供电;FA 可限制主电路瞬时电流;GM 的功能是产生调制三角波;AR 为反相器,构成电流负反馈。
实验图3-1 双闭环可逆直流PWM 调速系统的组成三、实验设备及仪器 1.主控制屏NMCL-322.直流电动机-负载直流发电机-测速发电机组3. NMCL-22 、NMCL -18挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.各控制单元调试2.测定开环机械特性)(d I f n =:min /1500r n =,min /1000r n =,和min /500r n =。
3.测定闭环静特性)(d I f n =:min /1500r n =,min /1000r n =,和min /500r n =。
最新版PWM直流调速系统设计
运动控制系统期中作业——转速电流双闭环直流调速系统专业:自动化班级:1102班姓名:鱼*学号:**********日期:2014年05月27日设计题目:转速电流双闭环直流调速系统1.已知参数:某转速电流双闭环直流调速系统采用桥式可逆pwm变换电路供电。
(1)直流电动机:U nom = 220V, I nom = 136A, n nom = 1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ= 1.5;(2)电枢回路总电阻:R= 0.5Ω;(3)电枢回路总电感:L= 10mH;(4)电动机轴上的总飞轮力矩:GD2= 22.5N·m2;设计要求:电流超调量σi≤5%,转速无静差;空载起动到额定转速的转速超调量σn≤10%.目录一、引言 (4)二、整体设计思路 (4)三、系统构成和原理 (4)四、各电路设计模块 (5)1.PWM主电路设计--桥式可逆直流脉宽调速系统 (5)2.控制电路--基于SG3525为核心构成的控制电路的设计 (7)3.电流环的设计 (9)4.转速环的设计 (12)5.给定的设计 (15)6.直流稳压电源的设计 (15)7.电动机电源设计 (16)8.转速检测电路设计 (16)9.电流检测电路设计 (16)10.驱动电路设计 (17)11.保护电路设计 (17)五、仿真结果截屏显示 (18)六、参考文献 (21)七.电气原理图 (21)八.设计心得总结 (22)一、引言在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。
直流电机是最常见的一种电机,在各领域中得到广泛应用。
研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。
电机调速问题一直是自动化领域比较重要的问题之一。
不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。
通过对于理论知识的学习,我们已经深刻的体会到闭环控制系统要优于开环控制系统,然而更深入的学习我们又了解到电流-转速反馈控制的直流调速系统是静、动态特性优良、应用最广的直流调速系统,其性能受到各个领域的关注。
双闭环可逆直流脉宽PWM调速系统设计
双闭环可逆直流脉宽PWM调速系统设计一、系统概述二、系统设计原理1.速度内环设计原理速度内环的目标是实现对电机转速的闭环控制。
通过测量电机输出轴速度和设定速度值之间的差异,根据PID控制算法计算出控制信号,通过控制器输出的脉宽PWM信号调节电机的输出转矩,从而实现对电机速度的控制。
2.电流外环设计原理电流外环的目标是实现对电机电流的闭环控制。
通过测量电机的电流和设定电流值之间的差异,根据PID控制算法计算出电流控制信号,通过控制器输出的脉宽PWM信号调节电机的电流,从而实现对电机电流的控制。
三、系统构建要素1.电机驱动模块:用于控制电机的转矩和速度,并提供脉宽PWM信号输出接口。
通常使用MOSFET或IGBT作为功率开关元件。
2.速度测量模块:用于测量电机输出轴的转速,通常采用霍尔元件或编码器。
3.电流测量模块:用于测量电机的电流。
通常通过电流传感器或全桥电流检测器实现。
4.控制器:对测量的速度和电流数据进行处理,根据PID控制算法计算出合适的脉宽PWM信号,控制电机的转速和电流。
5.信号调理模块:用于对控制信号进行滤波和放大,以保证信号的稳定性和合理性。
6.反馈回路:将测量得到的电机速度和电流数据反馈给控制器,以实现闭环控制。
7.电源模块:为整个系统提供稳定的电源。
四、系统工作流程1.控制器通过速度测量模块获取电机的实际速度,并与设定速度进行比较计算出速度误差。
2.控制器通过电流测量模块获取电机的实际电流,并与设定电流进行比较计算出电流误差。
3.将速度误差和电流误差作为输入,经过PID控制算法计算出合适的脉宽PWM信号。
4.控制器将计算得到的脉宽PWM信号通过信号调理模块进行滤波和放大,然后输出到电机驱动模块。
5.电机驱动模块根据脉宽PWM信号的占空比调节电机的输出转矩和电流。
6.通过反馈回路将电机的实际速度和电流信息返回给控制器。
7.根据反馈信息对速度误差和电流误差进行修正,进一步优化脉宽PWM信号的计算。
双闭环可逆直流脉宽PWM调速系统设计
双闭环可逆直流脉宽PWM调速系统设计一、系统结构设计:系统结构包括输入电源、PWM逆变器、直流电机、电流环和速度环。
输入电源提供电压给PWM逆变器,PWM逆变器将直流电压转换为交流电压,并通过变换器将其提供给直流电机。
同时,电流环用于控制PWM逆变器输出的电流,速度环用于控制直流电机的转速。
二、电流环控制器设计:电流环控制器根据直流电机当前的速度误差,计算所需的电流控制量。
该控制量将通过PWM逆变器的调制信号控制输出电流的大小。
电流环控制器可以采用PI控制器或者其他控制算法,根据系统要求进行选择。
三、速度环控制器设计:速度环控制器根据输入的期望转速和直流电机当前的转速误差,计算所需的电流控制量。
该控制量将通过电流环控制器的反馈信号,控制电流环控制器的输出。
速度环控制器可以采用PI控制器或者其他控制算法,根据系统的要求进行选择。
四、参数调节与优化:在系统设计完成后,需要进行参数调节和优化来使系统达到更好的性能。
参数调节可以通过试验来进行,根据试验的结果来逐步调整控制器的参数,以达到期望的控制效果。
参数优化可以通过优化算法来进行,根据系统的动态特性和性能指标进行参数优化,以提高系统的控制性能。
双闭环可逆直流脉宽PWM调速系统的设计需要考虑系统的控制精度、动态响应速度和稳定性等因素。
在实际的设计过程中,还需要考虑系统的成本和可行性等因素。
在设计完成后,还需要进行系统的实验验证,以确定系统是否满足设计要求,并进行必要的修改和改进。
总之,双闭环可逆直流脉宽PWM调速系统的设计是一个复杂的过程,需要综合考虑系统的各个方面因素,并进行系统的参数调节和优化。
只有设计合理、参数优化的系统才能提高直流电机的控制性能和精度。
转速电流双闭环的数字式可逆直流调速系统的仿真与设计
转速电流双闭环的数字式可逆直流调速系统的仿真与设计一、设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、 For personal use only in study and research; not forcommercial use三、四、设计参数1、直流电动机(1):输出功率为:80W 电枢额定电压220V电枢额定电流 6.12A 额定励磁电流1A额定励磁电压110V 功率因数0.85电枢电阻0.4欧姆电枢回路电感0.954mH电机机电时间常数0.39s 电枢允许过载系数1.5额定转速 3000rpm2、环境条件:电网额定电压:380/220V,电网电压波动:10%环境温度:-40~+40摄氏度,环境湿度:10~90%3、控制系统性能指标:电流超调量小于等于5%空载起动到额定转速时的转速超调量小于等于30%调速范围D=20,静差率小于等于0.03.三系统方案选择(1)可控电源选择速,在需要高性能可控电力拖动的领域中得到了广泛的应用。
从生产机械要求控制的物理量来看,各种系统往往都通过控制转速来实现的。
因而直流调速系统是最基本的拖动控制系统。
直流变电压调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:①旋转电流机组大、费用高、效率低。
②静止可控整流器③PWM(脉宽调制变换器)或称直流斩波器利用直流斩波器或脉宽调制变换器产生可变平均电压,与V—M系统相比,PWM系统在很多方面有较大的优越性:主电路线路简单,需要的功率器件少,开关频率高;电流容易连续,谐波少,电机损耗及发热都调速范围宽;若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;功率开关器件工作在开关状态,道通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率高;直流电源采用不控整流时,电网功率因数比相控整流高。
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告转速电流双闭环PWM-M可逆直流脉宽调速系统实验报告一、引言直流调速系统是现代工业中常用的电机调速方式之一,在实际应用中具有广泛的使用。
其中,转速电流双闭环PWM-M可逆直流脉宽调速系统是其中一种典型的调速控制方式。
本实验旨在通过搭建转速电流双闭环PWM-M可逆直流脉宽调速系统,研究其调速性能以及运行特点。
二、实验目的1. 理解转速电流双闭环PWM-M可逆直流脉宽调速系统的原理和结构;2. 掌握控制脉宽调制技术在直流电机调速系统中的应用;3. 通过实验验证该调速系统的性能和运行特点。
三、实验原理转速电流双闭环PWM-M可逆直流脉宽调速系统是将转速和电流两个回路分别采用闭环控制的直流调速系统。
其中,转速回路通过传感器对电机转速进行采集,与期望转速进行比较后,经过PID控制器得到转速控制信号,再经过比较器进行与PWM脉宽控制信号进行比较产生控制脉宽;电流回路通过采集直流电机的电流信号,经过PID控制器得到电流控制信号,再与PWM控制脉宽信号进行比较生成最终的输出脉宽。
四、实验步骤1. 搭建转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置;2. 设置期望转速和电流参考值;3. 分别采集电机转速和电流信号;4. 利用PID控制器对转速和电流进行闭环控制;5. 通过比较器生成脉宽控制信号,控制电机转矩;6. 记录实验数据并进行分析。
五、实验结果与分析通过实验,我们可以得到实验数据并进行分析。
其中,我们可以通过比较实际转速与期望转速的差距,来评价转速闭环控制的性能。
同时,通过比较实际电流值与期望电流值之间的差距,来评价电流闭环控制的性能。
根据实验数据,我们可以得到转速与电流控制的准确性、稳定性以及响应速度等指标,评估整个调速系统的性能。
六、结论通过实验,我们成功搭建了转速电流双闭环PWM-M可逆直流脉宽调速系统实验装置,并完成了相关实验。
根据实验结果分析,我们可以评估该调速系统的性能和运行特点。
双闭环可逆直流脉宽PWM调速系统设计
交直流调速课程设计任务书1、题目:双闭环可逆直流脉宽PWM调速系统设计2、设计目的1对先修课程(电力电子学、自动控制原理等)的进一步理解与运用2运用《电力拖动控制系统》的理论知识设计出可行的直流调速系统,通过建模、仿真验证理论分析的正确性。
也可以制作硬件电路。
3同时能够加强同学们对一些常用单元电路的设计、常用集成芯片的使用以及对电阻、电容等元件的选择等的工程训练。
达到综合提高学生工程设计与动手能力的目的。
3、系统方案的确定自动控制系统的设计一般要经历从“机械负载的调速性能(动、静)→电机参数→主电路→控制方案”(系统方案的确定)→“系统设计→仿真研究→参数整定→直到理论实现要求→硬件设计→制版、焊接、调试”等过程,其中系统方案的确定至关重要。
为了发挥同学们的主管能动作用,且避免方案及结果雷同,在选定系统方案时,规定外的其他参数有同学自己选定。
1主电路采用二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器;2速度调节器和电流调节器采用PI调节器;3机械负载为反抗性恒转矩负载,调速范围D=2;系统飞轮矩(含电机及传动机构)4主电源:可以选择单相交流220V供电;变压器二次电压为67V;1他励直流电动机的参数:略4、设计任务1总体方案的确定;2主电路原理及波形分析、元件选择、参数计算;3系统原理图、稳态结构图、动态结构图、主要硬件结构图;4控制电路设计、原理分析、主要元件、参数的选择;5调节器、PWM信号产生电路的设计;6检测及反馈电路的设计与计算;5、课程设计报告的要求:1不准相互抄袭或代做,一经查出,按不及格处理;2报告字数:不少于8000字(含图、公式、计算式等)。
3形式要求:以《福建农林大学本科生课程设计》(工科)的规范化要求撰写。
要求文字通顺、字迹工整、公式书写规范、报告书上的图表允许徒手画,但必须清晰、正确且要有图题。
4必须画出系统总图,总图不准徒手画,电路图应清洁、正确、规范。
(完整word版)转速、电流双闭环直流调速系统设计
在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果.通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。
一、设计要求设一个转速、电流双闭环直流调速系统,采用双极式H桥PWM方式驱动,已知电动机参数为:二、电流环、转速环设计仿真过程双闭环直流调速系统的设计及其他多环控制系统的设计原则一样:先设计内环(即电流环),在将内环看成外环的一个环节,进而设计外环(即转速环)。
1. 稳态参数计算电流反馈系数:*im 10= 1.25/24nom U V A I βλ==⨯转速反馈系数:*nm 10=0.02min/500nom U V r I αλ==2. 电流环设计1) 确定时间常数s 110.110T ms f kHz ===由电流滤波时间常数0.0002oi T s =,按电流环小时间常数环节的近似处理方法,取i 0.00010.00020.0003s oi T T T s =+=+=∑2) 选择电流调节器结构电流环可按典型Ⅰ型系统进行设计。
电流调节器选用PI 调节器,其传递函数为1(s)i ACR ii s G K sττ+= 3) 选择调节器参数超前时间常数: i 0.008l T s τ== 由于i 5%σ≤,故l 0.5i K T =∑故1l 0.50.51666.66670.0003i K s T -==≈∑电流调节器比例系数为:i 0.00881666.717.781.25 4.8i lS R K K K τβ⨯==⨯≈⨯ 4) 检验近似条件电流环的截止频率:11666.6667ci l w K s -==i.近似条件一:113333.3333330.0001ci s w T =≈>⨯(满足近似条件) ii.近似条件二:3ci w =(满足近似条件) iii.近似条件三:13ci =(满足近似条件)3. 转速环设计1) 确定时间常数电流环等效时间常数:20.0006i T s =∑小时间常数近似处理:0.00060.0010.0016on i T T s +=+=∑2) 选择转速调节器结构由于转速稳态无静差要求,转速调节器中必须包含积分环节,又根据动态要求,应按典型Ⅱ型系统校正转速环,因此转速调节器应选择PI 调节器,其传递函数为:1()n ASR nn s G s K sττ+= 3) 选择调节器参数按跟随型和抗扰性能均比较好的原则,取h=5,则转速调节器的超前时间常数为:50.00160.008n nhTs τ==⨯=∑转速环开环增益:22222151468752250.0016N n h K s h T -++==≈⨯⨯∑于是,转速调节器比例系数为:(1)6 1.250.040.558.592250.0280.0016e m n n h C T K h RT βα+⨯⨯⨯==≈⨯⨯⨯⨯∑4) 校验近似条件转速环开环截止频率:11468750.008375Ncn N n K K s ωτω-===⨯≈i. 近似条件一:15cn iT ω>∑11666.67550.0003cn i T ω=≈>⨯∑(满足近似条件) ii. 近似条件二:1132cn oni T T ω>∑1111430.333230.00060.001cn on i T T ω==>⨯∑(满足近似条件)三、 MATLAB 仿真1. 电流环仿真 1) 频域分析在matlab/simulink 中建立电流环动态结构图及校正成典型Ⅰ型系统的电流环开环动态结构图(如图1—1、1-2、所示),建模结果如下:2) 图1-1 经过小参数环节合并近似后的电流开环动态结构图3)图1-2 未经过小参数环节合并近似处理的电流开环动态结构图命令窗口分别输入以下命令分别得到Bode图%MATLAB PRGRAM L584。
双闭环可逆直流脉宽PWM调速系统设计
双闭环可逆直流脉宽PWM调速系统设计本文设计的是一种具有双闭环可逆直流脉宽调制(PWM)调速系统,
该系统由可控硅恒流源、调节电阻、调速电机、反馈传感器以及控制器等
组成。
这种设计可以在变频调速时,由于机械无源滤波器的原因,输出电
压可能抖动,因此采用双闭环系统来抑制调速器的输出抖动,从而实现高
精度的调速控制。
具体而言,设计的系统由可控硅恒流源、调节电阻、调速电机、反馈
传感器以及控制器等组成。
可控硅恒流源通过改变晶闸管的势垒值来控制
调速电机的负载电流,调节电阻的作用是控制恒流源的过载,调速电机负
责驱动负载,反馈传感器用来捕捉负载转速信号,通过比较控制器设定的
参考值和实际转速值来实现双闭环控制。
此外,在控制器中还设置了系统节拍、增量式比较器、PID控制算法等,系统节拍的作用是帮助控制器对转速信号进行采样,以便有效地调节
调速电机的转速,增量式比较器用来比较参考值和实际转速,得出调节量,最后PID控制算法将比较器的调节量与恒流源的控制电流相乘,得出控制
调速电机的PWM信号,从而实现对调速电机的调速控制。
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告
转速电流双闭环pwm—m可逆直流脉宽调速系统实验报告1、学习电机调速控制中的双闭环控制模式;2、熟悉可逆直流电动机的控制方法;3、掌握基于PWM技术的直流电机调速系统的实现方法;4、加深对电路原理的理解。
实验原理:1、PWM技术PWM即脉冲宽度调制(Pulse Width Modulation),通过调节脉冲宽度的大小来改变电平的占空比,从而实现对电路的控制。
2、电机调速控制中的双闭环控制模式双闭环控制模式包含了一个速度环和一个电流环。
速度环用于测量实际电机的速度,根据速度误差来调节电机的输出功率。
电流环则用于控制电机的负载,使电机能够稳定输出所需的电流。
3、可逆直流电动机的控制方法可逆直流电动机包括了正转和反转两种运动方向,根据不同的控制信号,通过调节电机旋转方向的极性和电流大小来实现电机的正反转。
实验内容:1、组装实验电路将电路原理图和电路连接示意图提供给学生,并要求学生自行组装电路,并检查电路连接是否正确。
2、验证电路工作情况使用示波器检测电路输出的PWM波形,并观察电机的正反转情况,确保PWM 输出准确可靠,电机能够正确运转。
3、对电路进行调整通过调整电路参数,如电压、频率、占空比等,观察电机运转情况的变化,确保电路调整正确。
4、记录实验数据和分析记录电路参数、电机运转情况等数据,并进行数据分析和对比,以验证实验结果的正确性。
实验结果:通过本次实验,学生熟悉了电机调速控制的基本原理和实现方法,掌握了双闭环控制模式和可逆直流电动机的控制方法,加深了对电路原理的理解。
同时,结合实验数据的分析,学生也深入了解了实验现象的机理和控制特性,对电机调速控制领域有了更加深入的认识。
【原创】转速电流双闭环控制PWM可逆直流调速系统设计_毕业论文设计
【原创】转速电流双闭环控制PWM可逆直流调速系统设计_毕业论文设计运动控制系统课程设计说明书题目:PWM可逆直流调速系统设计专业班级:电气工程及其自动化02班2013年6月21日至7月2日转速电流双闭环控制PWM可逆直流调速系统的设计Current double closed loopspeed control PWMreversible dc speed controlsystem design学生姓名: 丁俊成指导教师: 文小玲王振课程设计量化评分标准答辩记录摘要直流调速系统是自动调速系统的主要形式,它具有良好的起、制动性能,可以在较宽的调速范围内实现平滑调速,较快的零动态响应过程,并且低速运转时力矩大这些极好的运行性能和控制特性,长期以来,直流调速系统一直占据着重要地位。
从市场的角度来看,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
所以在直流调速系统电气传动中获得了广泛应用。
本文从直流电动机的工作原理入手,建立了PWM双闭环可逆直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。
在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、锯齿波产生电路、基准电源、转速调节电路、电流调节器电路、PWM波生成电路、桥式可逆直流脉宽系列电路及转速检测电路的具体实现。
然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用MATLAB 中的Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。
关键词:双闭环可逆直流调速系统;H桥驱动电路;PWM控制;模拟调节器;MATLABAbstractDC speed control system is the main form of the automatic speed regulation syst em,it be in a wider range of speed regulation of smooth realized in speed,fast dynami c response process,and low speed running torque these excellent performance and con trol characteristic,but for a long time,DC speed control system occupies an important position. From a market perspective,DC speed control system in theory and practice a re more mature, from the point of view of the control technology,it is the foundation o f ac speed adjustment system. So in dc speed control system in electric transmission won the widely used. This article from the working principle of dc machines,a PWM double closed loop reversible dc speed control system,and the mathematical model of detailed analysis of system principle and the static and dynamic performance. In the t heory analysis and simulation research,and on the basis of design a set of experiments with double closed loop dc speed control system,detailed introduces system main circ uit,sawtooth wave produces circuit,benchmark power supply, rotate speedadjustment circuit,current regulator circuit,PWM waves generated circuit,bridge type reversible d c speed pulse width series circuit and the realization of a detection circuit. Then accor ding to automatic control theory,double closed loop speed regulation system,the desig n parameters of analysis and calculation,the use of MATLAB of Simulink of the syste m parameters to the set of the simulation,through the simulation won the parameters s etting the basis.Keywords: Double closed-loop irreversible dc speed regulating system; H bridge driver circuit; PWM control;Simulation regulator; MATLAB;目录1 绪论 (1)1.1 选题背景与意义 (1)1.2 课题研究意义 (2)1.3 设计任务和要求 (3)2系统组成及基本原理 (5)2.1直流调速系统的调速原理 (5)2.2 双闭环调速的过程和工作原理 (6)2.3 双闭环直流调速系统的组成 (7)2.4 主电路图 (7)2.5 H桥可逆PWM变换器 (9)2.6 保护电路 (11)3设计内容 (12)3.1设计目的 (12)3.2系统过流过压产生的主要原因 (12)3.3方案的论证 (12)3.4过电流保护电路及工作原理 (13)3.5电路结构元器件的选择 (13)3.6参数的计算及电阻的选取 (17)3.7元器件清单 (18)3.8电路特点 (18)4总结 (19)5参考文献 (20)1绪论直流调速系统具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
pwm直流双闭环调速系统设计
PWM直流双闭环调速系统设计引言PWM(Pulse Width Modulation)直流双闭环调速系统是一种常用于电动机调速的控制系统。
在许多应用中,需要对电动机的速度进行精确控制,以满足不同的工作需求。
PWM直流双闭环调速系统通过不断调整电动机输入电压的占空比,使电动机保持稳定的转速,具有快速响应、良好的稳定性和较大的负载适应能力等优点。
本文将介绍PWM直流双闭环调速系统的设计原理、硬件电路和控制算法,并提供代码示例和性能分析。
设计原理闭环控制系统PWM直流双闭环调速系统由两个闭环控制回路组成:速度闭环和电流闭环。
速度闭环通过反馈电动机的实际转速来调整电动机输入电压,以使其达到期望转速。
电流闭环通过反馈电动机的实际电流来调整PWM信号的占空比,以使电动机输出的扭矩与负载要求相匹配。
速度闭环控制速度闭环控制由速度传感器、比例积分控制器和电动机驱动器组成。
速度传感器通常采用编码器或霍尔传感器来测量电动机转速,并将其转换为电压信号。
比例积分控制器根据速度误差和积分误差来计算控制器输出,并将其输入给电动机驱动器。
电流闭环控制电流闭环控制由电流传感器、比例积分控制器和PWM模块组成。
电流传感器用于测量电动机的电流,并将其转换为电压信号。
比例积分控制器计算电流误差和积分误差,并生成控制器输出,将其输入给PWM模块。
硬件电路设计PWM直流双闭环调速系统的硬件电路设计包括电源模块、电流传感器、速度传感器、比例积分控制器、PWM模块和电动机驱动器等。
电源模块电源模块用于提供系统所需的直流电压。
它可以采用稳压稳流电路来稳定输出电压和电流。
电流传感器电流传感器用于测量电动机的电流。
常用的电流传感器包括霍尔传感器和电阻传感器。
它将电动机的电流转换为电压信号,并输入给比例积分控制器。
速度传感器速度传感器用于测量电动机的转速。
常用的速度传感器有编码器、霍尔传感器和光电传感器等。
比例积分控制器比例积分控制器是PWM直流双闭环调速系统的核心控制模块。
转速﹑电流双闭环直流调速系统
—转速反馈系数;—电流反馈系数
实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和
这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此
由第一个关系式可得
(2-1)
从而得到图2-5所示静特性的CA段。与此同时,由于ASR不饱和, ,从上述第二个关系式可知 。这就是说,CA段特性从理想空载状态的 一直延续到 ,而 一般都是大于额定电流 的。这就是静特性的运行段,它是一条水平的特性。
由图2—1可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。
图2—1
事实上,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。一个调速系统的调速范围,是指在最低速时还能满足所提静差率要求的转速可调范围。脱离了对静差率的要求。任何调速系统都可以得到极高的调速范围;反过来,脱离了调速范围,要满足给定的静差率也就容易得多了。
1)上升时间
在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值 所经过的时间称为上升时间,它表示动态响应的快速性,见图2—2。
图2—2
2)超调量
在典型的阶跃响应跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量:
(2—4)
超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。
对于不同的负载电阻L R,测速发电机输出特性的斜率也不同,它将随负载电阻的增大而增大,如图3-4中实线所示。
双闭环调速系统的静特性在负载电流小于 时表现为转速无静差,这时,转速负反馈起主要调节作用。当负载电流达到 时,对应于转速调节器的饱和输出 ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护。这就是采用了两个PI调节器分别形成内﹑外两个闭环的效果。这样的静特性显然比带电流截止负反馈的单闭环系统静特性好。然而,实际上运算放大器的开环放大系数并不是无穷大。静特性的两段实际上都略有很小的静差,见图2-5中的虚线。总之,双闭环系统在突加给定信号的过渡过程中表现为恒值电流调节系统,在稳定和接近稳定运行中表现为无静差调速系统,发挥了转速和电流两个调节器的作用,获得了良好的静、动态品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:转速、电流双闭环可逆直流PWM调速系统设计学生姓名:学号:班级:专业:指导教师:起始时间: 2016年6月6日--6月17日摘要直流脉宽变换器,或称为直流PWM变换器,是在全控型电力电子器件问世以后出现的能取代相控整流器的直流电源。
根据PWM变换器主电路的形式可分为可逆和不可逆两大类。
电流截至负反馈环节只能限制电动机的动态电流不超过某一数值,而不能控制电流保持为某一所需值。
根据反馈控制原理,以某物理量作为负反馈控制,就能实现对该物理量的无差控制。
用一个调节器难以兼顾对转速的控制和对电流的控制。
如果在系统中另设一个电流调节器,就可以构成电流闭环。
电流调节器串联在转速调节器之后,形成以电流反馈作为内环、转速作为外环的双闭环调速系统。
利用单片机实现对直流电动机的双闭环调速,此系统使直流电机具有优良的调速特性,调速方便,调速范围广,过载能力大,能承受频繁的冲击负载,制动和反转,能满足生产过程自动化系统的各种特殊运行要求。
关键词:双闭环,PWM,直流电动机,单片机目录摘要 (1)一、设计的目的及意义 (3)二、设计要求 (3)三、双闭环直流调速系统 (4)3.1、双闭环直流调速系统的原理 (4)3.2、双闭环直流调速系统的静特性分析 (6)3.3双闭环直流调速系统的数学模型 (8)四、转速环、电流环的设计 (10)4.1、转速调节器、电流调节器在直流双闭环系统中的作用 (10)4.2、调节器的具体设计 (10)4.3、电流环的设计 (11)4.4、速度环的设计 (12)五、PWM可逆直流调速系统 (14)5.1、PWM变换器 (14)5.2、整流电路 (15)5.3、泵升电路 (16)六、控制电路的设计 (16)6.1、单片机 (16)6.2、测速电路 (17)6.3、键盘电路 (17)七、双闭环可逆直流PWM调速系统的仿真 (18)八、结论 (20)附录 (21)附录A (21)附录B (22)参考文献 (23)一、设计的目的及意义1、训练学生正确的应用运动控制系统,培养解决工业控制、工业检测等领域具体问题的能力。
2、学生通过课程设计,熟悉运动控制系统应用开发、研制的过程,软、硬件设计的工作方法、工作内容、工作步骤。
3、对学生进行基本技能训练,例如组成系统、编程、调试、绘图等,使学生理论联系实际,提高动手能力和分析问题、解决问题的能力。
二、设计要求:设计一个转速、电流双闭环控制PWM可逆直流调速系统,电动机控制电源采用H型PWM功率放大器,其占空变化为0~0.5~1时,对应输出电压为-264~264v, 为电机提供的最大电流为25A,速度检测采用光电编码器,且其输出的A、B两相脉冲经光电隔离后获得每转1024个脉冲角度分辨率和方向信号;电流传感器采用霍尔传感器,其原、副边电流比为1000:1,额定电流50A,已知直流电动机:电动势系数e C=0.135 V·min/r , 主回路总电阻R=2.5Ω,。
电流反馈滤波时间T0=0.015s。
额定转速时的给定电压常数i T0=0.0025s,转速反馈滤波时间常数n(Un*)N =10V,调节器ASR,ACR饱和输出电压Uim*=8V,Ucm =6.5V。
H型PWM功率放大器、工作频率为2KHZ,采用单极性、双极性工作方式;直流电源电压264V。
直流电动机(一):(1)输出功率为:7.5Kw电枢额定电压220V(2)电枢额定电流36A额定励磁电流2A(3)额定励磁电压110V功率因数0.85(4)电枢电阻0.2欧姆电枢回路电感100mH(5)电机机电时间常数2S电枢允许过载系数1.5(6)额定转速1430rpm环境条件:(1)电网额定电压: 380/220V;(2)电网电压波动: 10%;(3)环境温度: -40~+40摄氏度;(4)环境湿度: 10~90%;控制系统性能指标:(1)电流超调量小于等于5%;(2)空载起动到额定转速时的转速超调量小于等于10%;(3)调速范围:D=10;(4)静差率小于等于0.1。
三、双闭环直流调速系统3.1、双闭环直流调速系统的原理对于经常正、反转运行的调速系统,应尽量缩短启、制动过程的时间,达到图1所示的理想过度过程曲线,完成时间最优控制。
即在过渡过程中始终保持转矩为允许的最大值,使直流电动机以最大的加速度加、减速。
到达给定转速时,立即让电磁转矩与负载转矩相平衡,从而转入稳态运行。
对于恒磁通的他励直流电动机而言,转矩控制就成为了电流控制。
实际上,由于主电路电感的作用,电流不可能突变,图1所示的理想过度过I的恒流启=制动程只能得到近似的逼近,其关键是要获得使电流保持为最大值dm过程。
图1 时间最优的理想过渡过程电流截止负反馈环节只能限制电动机的动态电流不超过某一数值,而不能控制电流保持为某一所需值。
根据反馈控制原理,以某物理量作为负反馈控制,就能实现对该物理量的无差控制。
用一个调节器难以兼顾对转速的控制和对电流的控制。
如果在系统中另设一个电流调节器,就可以构成电流闭环。
电流调节器串联在转速调节器之后,形成以电流反馈作为内环,转速作为外环的双闭环调速系统。
在启、制动过程中,电流闭环起作用,保持电流恒定,缩小系统的过度过程时间。
一旦到达给定转速,系统自动进入转速控制方式,转速闭环起主导作用,而电流内环则起跟随作用,使实际电流快速跟随给定值(转速调节器的输出),以保持转速恒定。
转速、电流双闭环调速系统的原理图见图2,为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器。
转速闭环环节的原理和转速单闭环系统基本一致,只不过它的输出不再作为电力电子变换器的控制电压U,而是用来和电流反馈量作比较,故被称为电流c给定*U。
ASR调节器和ACR调节器的输出都是带限幅作用的,ASR调节器的iU限制了电力输出限幅电压决定了电流给定的最大值,ACR调节器的输出电压cmU。
电子变换器的最大输出电压dm图2 转速、电流双闭环直流调速系统ASR----转速调节器 ACR----电流调节器 TG----测速发电动机TA----电流互感器 UPE----电力电子变换器 *n U ----转速给定电压n U ---转速反馈电压 *i U ----电流给定电压 i U ----电流反馈电压3.2、双闭环直流调速系统的静特性分析根据图2可以很方便地绘出双闭环调速系统的稳态结构图,如图3所示,在图中是用带限幅的输出特性表示了PI 调节器。
图3 双闭环直流调速系统的稳态结构框图α----转速反馈系数 β----电流反馈系数PI 调节器的稳态特性一般存在两种状况:饱和——输出达到限幅值,不饱和——输出未达到限幅值。
当调节器饱和时当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和,也就是说饱和的调节器暂时隔断了输入和输出的联系,相当于使该调节环开环。
当调节器不饱和时,PI 的作用使输入偏差电压U ∆在稳态时总为零。
实际上,在正常运行时,电流调节器是不会达到饱和状态的。
因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。
1.转速调节器不饱和这时,两个调节器都不饱和,稳态时,PI 调节器的作用使得输入偏差电压U ∆都是零,因此,0n *n n n αα===U U (1)d i *i I U U β== (2) 由式(1)可得 0*n n n ==αU (3)图4 绘制了双闭环调速系统的静特性,图中CA 段就是描述了两个调节器都不饱和时的静特性,电流的大小是从理想空载状态0d =I 一直延续到dm d I I =,表现为一条水平的特性。
2.转速调节器饱和系统在稳态运行时,对应负载的电枢电流的最大值为dm I ,如图4中的A 点。
在此工作点上,ASR 的输出已达到饱和值*im U ,若电动机负载继续增大,dm d I I L >,造成0n n <,在此0n >∆的情况下,ASR 的输出维持在限幅值*im U 不变,转速外环呈开环状态。
双闭环系统变成一个电流无静差的单闭环调速系统。
稳态时dm *im d I U I ==β (4)图4 双闭环直流调速系统的静特性其中,最大电流dm I 取决于电动机的容许过载能力和拖动系统允许的最大加速度,由上式可得静特性的AB 段,它是一条垂直的特性。
这样是下垂特性只适合于0n n <的情况,因为如果0n n >,则*n n U U >,ASR 将退出饱和状态.双闭环调速系统的静特性在负载电流小于dm I 时表现为转速无静差,这时,转速负反馈起主要的调节作用,但负载电流达到dm I 时,对应于转速调节器的饱和输出*im U ,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护.这就是采用了两个PI 调节器分别形成内、外两个闭环的效果。
然而,实际上运算放大器的开环放大系数并不是无穷大,因此,静特性的两段实际上都略有很小的静差,见图4中虚线。
3.3双闭环直流调速系统的数学模型1. 双闭环直流调速系统的动态结构框图图5是转速、电流双闭环直流调速系统的动态结构框图,)s (ASR W 和)s (ACR W 分别表示了转速调节器和电流调节器的传递函数。
图5 双闭环直流调速系统的动态结构框图2.双闭环系统的启动过程调速系统的被控对象是转速,而设置双闭环控制的一个重要目标是实现所期望的恒加速过程,最终以最优的形式达到所要求的性能指标。
图6是双闭环调速系统在带有负载dL I 条件下启动过程的电流波形和转速波形。
图6 双闭环直流调速系统启动过程的转速和电流波形双闭环直流调速系统的启动过程有以下3各特点:(1)饱和非线形控制:随着ASR的饱和与不饱和,整个系统处于完全不同的两种状态,在不同情况下表现为不同结构的线形系统,只能采用分段线形化的方法来分析,不能简单的用线形控制理论来笼统的设计这样的控制系统。
(2)转速超调:当转速调节器ASR采用PI调节器时,转速必然有超调。
转速略有超调一般是容许的,对于完全不允许超调的情况,应采用其他控制方法来抑制超调。
(3)准时间最优控制:在设备允许条件下实现最短时间的控制称作“时间最优控制”,对于电力拖动系统,在电动机允许过载能力限制下的恒流起动,就是时间最优控制。
但由于在起动过程Ⅰ、Ⅱ两个阶段中电流不能突变,实际起动过程与理想启动过程相比还有一些差距,不过这两段时间只占全部起动时间中很小的成分,无伤大局,可称作“准时间最优控制”。
采用饱和非线性控制的方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制中得到普遍应用。
双闭环调速系统,在启动过程的大部分时间内,ASR处于饱和限幅状态,转速环相当于开路,系统表现为恒电流调节,从而可基本上实现理想过程。