:基于MATLAB的IIR滤波器的语音信号去噪要点
基于matlab的iir滤波器的语音信号去噪要点
滤波器设计在数字信号处理中占有极其重要的地位,本次课程设计主要是录制一段语音信号对其进行加噪处理,然后利用IIR低通滤波器对加有随机噪声的语音信号进行滤波处理及时频谱分析,画出滤波之后的频谱图与时域波形,并对信号滤波处理前后进行分析比较,分析信号的变化。
通过对对所设计滤波器的仿真和频率特性分析,由仿真结果可以看出,所设计的滤波器能够实现对语音信号的语音有效去噪,并对滤波前后的语音信号进行对比。
关键词:去噪;滤波器;MATLAB一语音信号去噪的设计任务................................................................................................ 错误!未定义书签。
二语音信号去噪的基本原理. (3)2.1 数字滤波器的基本设计方法 (3)2.2 双线性变换法 (4)2.3数字滤波器设计基本思想 (5)2.4 数字滤波器的设计步骤 (6)2.5采样定理 (7)三基于MATLAB的仿真结果及结果分析 (10)3.1 IIR高通滤波器的仿真 (10)3.2 原始语音信号的录制 (10)3.3 语音信号的时频域分析 (11)3.4 加随机噪声后的时频域分析 (12)3.5 滤波前后的时频域比较 (15)总结 (17)参考文献 (18)致谢 (19)附录 (20)一基本原理1.1 数字滤波器的基本设计方法IIR 数字滤波器的设计一般有两种方法:一个是借助模拟滤波器的设计方法进行。
其设计步骤是,先设计模拟滤波器,再按照某种方法转换成数字滤波器。
这种方法比较容易一些,因为模拟滤波器的设计方法已经非常成熟,不仅有完整的设计公式,还有完善的图表供查阅;另外一种直接在频率或者时域内进行,由于需要解联立方程,设计时需要计算机做辅助设计。
其设计步骤是:先设计过渡模拟滤波器得到系统函数)(s H a ,然后将)(s H a 按某种方法转换成数字滤波器的系统函数)(z H [1]。
基于语音信号去噪处理的IIR滤波器设计
摘要语音信号是我们日常生活中最常见的一种信号,本课程设计主要使用Matlab软件进行一个数字带通IIR滤波器的设计,使之可以对加噪的语音信号进行滤波去噪处理。
文中主要介绍了利用双线性变换法设计切比雪夫Ⅰ型带通数字滤波器的实现方法,并对所设计IIR带通滤波器滤波结果进行信号谱对比和分析,并与预计的仿真结果进行比较说明。
关键词:Matlab ;IIR滤波器;切比雪夫Ⅰ;双线性变换目录前言 (1)第1章滤波器原理综述 (2)1.1滤波器的定义 (2)1.2滤波器的分类 (2)1.3滤波器的原理与设计 (3)第2章 IIR数字滤波器设计原理 (5)2.1 IIR数字滤波器简介 (5)2.2 IIR数字滤波器的主要技术指标 (5)2.3 IIR数字滤波器的设计过程 (6)2.4 双线性变换法设计IIR数字滤波器 (7)第3章IIR数字带通滤波器设计与仿真结果分析 (11)3.1滤波器参数设置 (11)3.2程序设计流程框图 (12)3.3仿真与结果分析 (13)总结 (16)参考文献 (17)附录 (18)致谢 (21)前言滤波技术是信号分析、处理技术的重要分支。
无论是信号的获取、传输,还是信号的处理和交换都离不开滤波技术,它对信号安全可靠和有效灵活地传输是至关重要的。
随着信息时代和数字世界的到来, 数字信号处理已成为当今一门极其重要的学科和技术领域。
目前数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用,在所有的电子系统和各类控制系统中,数字滤波器的优劣直接决定产品的优劣。
数字滤波器(DF,Digital Filter), 根据其单位冲激响应函数的时域特性可分为两类: 无限冲激响应 IIR(Infinite Impulse Response)滤波器和有限冲激响应 FIR(Finite Impulse Response)滤波器。
与 FIR 滤波器相比,IIR 的实现采用的是递归结构, 极点须在单位圆内, 在相同设计指标下, 实现 IIR滤波器的阶次较低, 即所用的存储单元少, 从而经济效率高,在不要求严格线性相位的情况下,IIR滤波器的应用相当广泛。
IIR带通滤波器语音去噪要点
基于Matlab的语音信号去噪及仿真
数字信号处理综合实验报告基于Matlab的语音信号去噪及仿真实验题目:专业名称: 学号: 姓名: 日期:报告内容:一、实验原理1、去噪的原理1.1采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5〜10倍;采样定理又称奈奎斯特定理。
1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式:理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理,最小采样频率为语音信号最高频率的 2 倍频带为F的连续信号f(t)可用一系列离散的采样值f(t1), f(t1±A t),f (t 1±2 A t),...来表示,只要这些采样点的时间间隔△t < 1/2 F,便可根据各采样值完全恢复原来的信号f(t) o这是时域采样定理的一种表述方式。
时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2 fM的采样值来确定,即采样点的重复频率f》2fM。
图为模拟信号和采样样本的示意图。
时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。
对于时间上受限制的连续信号f(t)(即当丨t | >T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为 F (①),则可在频域上用一系列离散的采样值(1-1 )采样值来表示,只要这些采样点的频率间隔(1-2 )1.2采样频率采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。
采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。
基于MATLAB的有噪声的语音信号处理的课程设计要点
基于MATLAB的有噪声的语音信号处理的课程设计要点一、设计背景随着科技的不断发展,语音信号处理愈发成为热门话题。
在语音数据中,常常会被噪声干扰,从而使得信号质量下降,影响了数据分析和处理的效果。
本课程设计旨在通过MATLAB来设计一套有噪声的语音信号处理方法,以提高对语音信号信噪比的分析和处理能力,为后续的语音处理研究奠定基础。
二、课程设计要点1. 语音信号的获取和预处理在本课程中,需要使用MATLAB语音处理工具箱中的audioread()函数获取.wav格式的语音信号,然后进行预处理操作,包括:•极化和采样:将语音信号从时间域转换到频域,并进行重采样处理,以适应后续处理操作的需求。
•去噪:根据信噪比的情况,选择合适的去噪算法对语音信号进行滤波,以减低信号的噪声干扰。
2. 基本的信号处理方法•频谱分析和频率域滤波:可以通过MATLAB处理语音信号的频域,进行谱分析、谱修复以及滤波的操作。
•时域滤波:应用IIR和FIR滤波器来消除噪声,提高信号质量。
•自适应滤波:通过模型建立和自适应滤波器设计,从语音信号中分离出噪声信号。
3. 压缩和解压缩•信号压缩:对语音信号进行压缩处理,以实现数据的高效管理和传输。
•信号解压缩:对压缩后的语音信号进行解压缩处理,还原原始的语音信号,以进行后续处理。
4. 语音识别•特征提取:通过分段处理,并进行特征提取,将信号的语音特征转换为相应的数字特征向量,为后续的语音识别做准备。
•语音识别:基于数字特征向量,采用各种识别算法,进行语音识别。
三、设计思路1.读入语音信号和噪声,可以通过audioread()函数和一些MATLAB工具箱实现。
同时,对输出语音信号进行噪声除去处理。
2.对语音信号进行频谱分析,并基于不同的SNR条件下,应用FIR和IIR滤波器对语音信号进行滤波处理。
进而利用多种去噪算法对含噪语音信号进行去噪处理。
3.对经过滤波处理的语音信号进行特征提取,并采用隐马尔可夫模型(HMM)对数字特征向量进行处理,进行不同说话人的识别。
基于MATLAB的IIR滤波器语音信号去噪
(1) 确定所需类型数字滤波器的技术指标。
(2) 将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/T tan(0.5ω)
数字滤波器有多种,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,一种是无限长冲激响应(IIR)滤波器,另外一种则是有限长冲激响应(FIR)滤波器。从性能上说,IIR滤波器传输函数的极点可位于单位圆内的任何地方,因此可用于较低的阶数,以获得高的选择性,所用的存贮单元少,所以经济且效率较高。但是这个高效率是以牺牲相位的非线性为代价的。若选择性越好,则相位非线性失真会越严重。相反,FIR滤波器却可以得到严格的线性相位输出,但由于FIR滤波器传输函数的极点固定在原点,因而只能用较高的阶数以达到高的选择性;对于同样的滤波器设计指标,FIR滤波器所要求的阶数可以比IIR滤波器高5~10倍,但是成本较高,信号延时也较大;所以如若按相同的选择性和相同的线性要求来说的话,则IIR滤波器就必须加全通网络以进行相位较正,同时要增加滤波器的节数和复杂性。
摘要
本课程设计主要运用麦克风采集一段语音信号,绘制波形并观察其频谱,对其进行时域分析,频谱分析及其语音信号的特性分析。然后利用Matlab对其加噪处理,接着用脉冲响应不变法设计的一个满足指标的切比雪夫IIR滤波器,对该语音信号进行滤波去噪处理,比较滤波前后的波形和频谱并进行分析。
关键词:滤波器根据不同的分类标准可以将滤波器分成不同的类别。
(1)根据单位冲激响应h(n)的时间特性分类
无限冲激响应(IIR)数字滤波器
基于MATLAB语音信号处理去噪毕业设计(含源文件)
在Matlab平台上实现对语音信号的去噪研究和仿真摘要语音信号在数字信号处理中占有极其重要的地位,因此选择通过对语音信号的研究来巩固和掌握数字信号处理的基本能力十分具有代表性。
对数字信号处理离不开滤波器,因此滤波器的设计在信号处理中占有极其重要的地位。
而MATLAB软件工具箱提供了对各种数字滤波器的设计。
本论文“在MATLAB平台上实现对语音信号的去噪研究与仿真”综合运用了数字信号处理的各种基本知识,进而对不带噪语音信号进行谱分析以及带噪语音信号进行谱分析和滤波处理。
通过理论推导得出相应的结论,再通过利用MATLAB作为编程工具来进行计算机实现比价已验证推导出来的结论。
在设计过程中,通过设计FIR数字滤波器和IIR数字滤波器来完成滤波处理。
在设计过程中,运用了MATLAB对整个设计中的图形的绘制和一些数据的计算以及仿真。
关键字滤波器;MATLAB;仿真;滤波Speech signle denoising and simulation inMATLAB platformABSTRACTDigital signal processing can not be separated from the filter, the filter design occupies an extremely important role in signal processing. The MATLAB software toolbox provides a variety of digital filter design. The subject of the use of basic knowledge of digital signal processing, speech signal and the noisy speech signal specctral snalysis and filtering,By the theoretical derivation of the corresponding conclusions, then to the computer through the use of MATLAB as a programming tool To achieve parity to verify the conclusions derived. In the design process, using the windoow function design FIR digital filter,IIR digital filter using cut design than Chebyshev, Butterworth and bilinear variation method. In the design process,the use of computer and simulation of MATLAB the entire design, graphics rendering,and some date.Key words filter;MATLAB;simulation;filtering目录摘要 (I)ABSTRACT (II)第1章前言 (1)1.1 研究的意义 (1)1.2 国内外研究现状 (1)1.3 研究的内容 (2)第2章语音信号去噪方法的研究 (4)2.2 去噪的原理 (4)2.2.1 采样定理 (4)2.2.2 采样频率 (5)2.2 去噪的方法 (5)FIR滤波器基本结构: (7)IIR数字滤波器的设计 (8)第3章滤波器的设计及实现 (10)3.1数字滤波器设计的基本原理 (10)3.3 IIR数字滤波器的设计及实现 (13)第四章去噪及仿真的研究 (16)4.1 语音文件在MATLAB平台上的录入与打开 (16)4.2 原始语音信号频谱分析及仿真 (16)4.3 加噪语音信号频谱分析及仿真 (20)(1)正弦波信号加入原始语音信号 (20)4.4 去噪及仿真 (23)4.5 结合去噪后的频谱图对比两种方式滤波的优缺点 (25)总结 (26)致谢 ................................................................................................................... 错误!未定义书签。
MATLAB对语音信号加随机噪声及去噪程序
subplot(2,2,3);plot(y_z);
title('滤波前信号的波形')
subplot(2,2,4);plot(x);
title('滤波后信号的波形')
%sound(x,fs,bits)%回放滤波后的音频
设计滤波器:
器常用的方法有:脉冲响应不变法和双线性变换法。
xlabel('时间轴')
ylabel('幅值A')
subplot(2,1,2);
plot(f,abs(y_zp(1:n/2)));%加噪语音信号的频谱图
title('加噪语音信号频谱图');
xlabel('频率Hz');
ylabel('频率幅值');
对加噪的语音信号进行去噪程序如下:
fp=1500;fc=1700;As=100;Ap=1;
%sound(y_z,fs)
%对加噪后的语音信号进行分析
n=length(y);%选取变换的点数
y_zp=fft(y_z,n);%对n点进行傅里叶变换到频域
f=fs*(0:n/2-1)/n;%对应点的频率
figure(2)
subplot(2,1,1);
plot(y_z);%加噪语音信号的时域波形图
title('加噪语音信号时域波形');
figure(3);
freqz(b,1);
(此前为低通滤波器设计阶段)——接下来为去除噪声信号的程序——
x=fftfilt(b,y_z);
X=fft(x,n);
figure(4);
基于MATLAB的IIR滤波器语音信号去噪
(1) 确定所需类型数字滤波器的技术指标。
(2) 将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/T tan(0.5ω)
(3) 将相应类型的模拟滤波器技术指标转换成模拟低通滤波器技术指标。
(4) 设计模拟低通滤波器。
(5) 通过频率变换将模拟低通转换成相应类型的过渡模拟滤波器。
(6) 采用双线性变换法将相应类型的过渡模拟滤波器转换成所需类型的数字滤波器。
我们知道,脉冲响应不变法的主要缺点是会产生频谱混叠现象,使数字滤波器的频响偏离模拟滤波器的频响特性。为了克服之一缺点,可以采用双线性变换法。
一、滤波器介绍及基本原理
1.
1、学会MATLAB的使用,掌握MATLAB的程序设计方法;
2、掌握windows环境下语音信号采集方法;
3、掌握数字信号处理的基本概念、基本理论和方法;
4、掌握MATLAB设计FIR数字滤波器的方法;
5、学会用MATLAB对信号进行分析和处理。
1.2
课程设计的主要设计平台式MATLAB 7.0。如下图1-1所示:MATLAB的名称源自Matrix Laboratory,它是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型软件,是一个可以完成各种精确计算和数据处理的、可视化的、强大的计算工具。它集图示和精确计算于一身,在应用数学、物理、化工、机电工程、医药、金融和其他需要进行复杂数值计算的领域得到广泛应用。它不仅是一个在各类工程设计中便于使用的计算工具,而且也是一个在数学、数值分析和工程计算等课程教学中的优秀的教学工具,在世界各地的高等院校中十分流行,在各类工业应用中更有不俗的表现。MATLAB可以在几乎所有的PC机和大型计算机上运行,适用于Windows、UNIX等各种系统平台。
【精品】基于Matlab的语音滤波处理
【精品】基于Matlab的语音滤波处理一、前言在语音信号的处理中,滤波处理是一个非常重要的环节。
语音信号在传输过程中,常常会受到各种各样的干扰,如噪声干扰、语音失真等,这些干扰会严重影响到语音信号的质量和可靠性。
因此,在语音信号的处理中,采取适当的滤波处理,能够有效地提高语音信号的质量和可靠性。
本文主要介绍了基于Matlab的语音滤波处理,在Matlab中采用了多种常用的滤波算法,并给出了相关的实验结果。
二、基本概念1. 信号的概念信号是一种表达信息的方式,包括语音信号、图像信号等。
在数字信号处理中,常把信号表示为序列,即时间序列或空间序列。
滤波是一种对信号进行处理的方法,主要是为了消除信号中的噪声和干扰,并且可以突出信号中某些频率成分。
滤波可以分为低通滤波、高通滤波、带通滤波和带阻滤波等。
三、常用的滤波算法1. IIR滤波器IIR滤波器是指具有无限冲激响应的滤波器。
在数字信号处理中,IIR滤波器的数字实现主要采用了差分方程的形式,其中,a和b是滤波器的参数。
在Matlab中使用IIR滤波器进行语音信号滤波的代码如下:% 定义一个IIR滤波器[b, a] = butter(6, 1000/8000, 'low');% 对语音信号进行滤波处理s_out = filter(b, a, s_in);3. 中值滤波中值滤波是一种基于排序的滤波方法,主要通过对信号进行排序,然后选取中间值作为结果。
中值滤波对于消除脉冲噪声等干扰有很好的效果。
% 对语音信号进行中值滤波处理s_out = medfilt1(s_in, 5);四、实验结果下面通过实验来验证所述的滤波算法的效果。
实验中选取了一个3秒钟的女性英语读数字的录音,采样率为8kHz,位深为16bit。
对所采集的语音信号进行了多种滤波处理,然后通过听音比较的方法,判断不同滤波算法的效果。
下图是经过IIR低通滤波器处理后的音频波形图:经过听音比较,可以发现经过IIR滤波后的语音信号在音质方面有所提升,噪声和杂音等干扰被有效消除,使得语音信号更加清晰。
IIR带通滤波器语音去噪要点
摘要语音信号滤波处理时研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴学科,是目前发展最为迅速的信息科学研究领域的核心技术之一,通过语音传递信息是人类交流信息最自然、最有效、最方便的手段。
本次主要通过录制一段语音,对其进行时域、频谱分析,并利用matlab 的信号处理工具箱对语音进行加噪然后再用IIR 数字带通滤波器滤除噪声,最后对比滤波前后的语音信号的时域、频域特性。
关键字:IIR ;双线性变换;模拟低通滤波器;切比雪夫I; MATLAB目录目录 (2)前言 (1)一.设计原理 (2)1. 数字滤波器简介 (2)2.IIR 数字滤波器的设计原理 (3)3.IIR 滤波器的特点 (3)二.IIR 数字滤波器的设计方法 (4)1. 模拟滤波器 (4)2. 双线性变换法 (6)三.IIR 数字滤波器设计过程 (9)1. 设计步骤 (9)2. 音频信号部分程序 (10)3. 程序流程图 (10)4 .仿真结果 (11)总结 (13)致谢 (14)参考文献 (15)附录: (16)、八、-前言通过语音传递信息室人类最重要、最有效、最常用和最方便的交换信息的形式。
语音是人类特有的功能,声音是人类最常用的工具,是相传递信息的最重要的手段。
因此,语音信号是人类构成思想疏通和感情交流的最重要的途径之一。
并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。
现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能够更加有效地产生、传输、存储、获取和应用信息,这对于促进社会的发展具有十分重要的意义。
让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。
随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人类越来越迫切要求拜托键盘的束缚而带至以语音输入这样便于使用的、自然的、人性化的输入方法。
作为高科技应用领域的热点,语音信号的采集和分析从理论的研究到产品的开发已走过了几十个春秋并且取得了长足的进步。
基于MATLAB的语音信号去噪处理(修改版)(word文档良心出品)
摘要语音信号在数字信号处理中占有极其重要的地位,因此选择通过对语音信号的研究来巩固和掌握数字信号处理的基本能力十分具有代表性。
对数字信号处理离不开滤波器,因此滤波器的设计在信号处理中占有极其重要的地位。
FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。
利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。
功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。
通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现对加噪声语音信号进行时域、频域分析和滤波。
在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制及仿真。
关键词滤波器;MATLAB;窗函数法;双线性变换AbstractVoice signal occupies an extremely important position in digital signal processing, so the selection based on the research of the speech signal to consolidate and master the basic ability of digital signal processing is very representative. For digital signal processing (DSP) is dependent on the filter, so filter design occupies an extremely important role in signal processing. FIR digital filter and IIR filter is an important part of the filter design. MATLAB signal processing toolbox can be used to quickly and efficiently design all kinds of digital filter. Powerful and easy to learn, programming, high efficiency, is popular among the masses of scientific and technical workers. We can tear down the corresponding conclusion through theoretical derivation, using MATLAB as a programming tool for computer to add noise speech signal in time domain, frequency domain analysis and filtering. In the process of design implementation, we use window function method to design FIR digital filter, butterworth, chebyshev and bilinear reform IIR digital filter design, and the MATLAB as an auxiliary tool to complete the design of computing and graphics drawing and simulation.Keyword filter MATLAB Window function method Double linear transformation摘要 (1)Abstract (2)目录 (3)1.绪论 (3)1.1研究的目的和意义 (6)1.2本课题的研究内容 (6)1.3 其大概流程框图可如下表示 (7)2.原始语音信号采集与处理 (8)2.1 Matlab简单介绍 (8)2.2 语音信号的采样理论依据 (9)2.2.1采样的基本概念 (9)2.3语音信号的采集 (10)2.4语音信号的时频分析 (11)2.5语音信号加噪与频谱分析 (14)2.5.1 正弦波信号加入原始语音信号 (14)2.5.2 随机噪音信号加入原始语音信号 (14)2.6本章小结 (18)3设计数字滤波器 (19)3.1 滤波器概述 (19)3.1.1 模拟滤波器概述 (19)3.1.2 数字滤波器概述 (19)3.2 IIR数字滤波器概述 (20)3.3 FIR数字滤波器概述 (21)3.4 设计FIR数字滤波器和IIR数字滤波器比较 (21)3.5 数字滤波器设计的基本思路 (21)3.6 设计FIR滤波器 (22)3.6.1 窗函数法及设计步骤 (22)3.6.2源程序与仿真图像 (23)3.7 设计IIR滤波器 (24)3.7.1双线性变换法与设计步骤 (24)3.7.2源程序与仿真图像 (25)3.8 本章小结 (27)4 滤波并绘制滤波前后语音信号的波形及频谱 (29)4.1滤波及仿真 (29)4.1.1 FIR滤波器法去噪 (29)4.1.2 IIR滤波器法去噪 (30)4.2 结合去噪后的频谱图对比两种方式滤波的优缺点 (31)4.3本章小结 (32)总结 (33)致谢 (34)参考文献 (35)附录 (36)附录(I)设计FIR和IIR数字滤波器 (36)附录(II)比较滤波前后语音信号的波形及频谱 (40)1.绪论数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科。
基于matlab的语音信号滤波去噪
2013届本科生毕业设计题目:基于matlab声音信号的滤波去噪处理作者姓名:柯运生学号: **********院(系):机械与电子工程学院专业:电子信息工程指导教师:邵毅蒋明曦指导教师职称:讲师工程师2013年4月8日SuZhou CollegeYear 2013 Bachelor Graduation DesignTitle:Based on Matlab Voice Signal Filtering Denoising ProcessingAuthor: Ke YunshengStudent ID: 2009080313Department: Collage of Mechanical and Electronic Engineering Major: Electronic and Information Engineering Instructor: Shao Yi Jiang MingxiProfessional Title: Lecture EngineerApril 8th, 2013摘要在数字信号处理中,滤波器的设计占有极其重要的地位。
而其中,FIR数字滤波器和IIR数字滤波器是重要组成部分。
Matlab具有功能强大、简单易学、编程效率高等特点,深受广大科技工作者的喜爱。
特别是Matlab中还具有信号分析工具箱,所以对于使用者,不需要具备很强的编程能力,就可以方便地进行信号分析、处理和设计。
利用Matlab中的信号处理工具箱,可以快速有效的设计各种数字滤波器。
本论文基于Matlab语音信号处理的设计与实现,综合运用数字信号处理的相关理论知识,对加噪声语音信号进行时域、频域分析并滤波。
而后通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机实现工作。
在设计实现的过程之中,使用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,使用窗函数法来设计FIR数字滤波器,并利用Matlab作为辅助工具,完成设计中的计算与图形的绘制。
基于MATLAB的IIR滤波器的设计和应用(信号去噪)
数字信号处理课程设计报告书课题名称基于MATLAB 的IIR 滤波器的设计及应用(信号去噪)姓 名 学 号院、系、部 电气工程系 专 业 电子信息工程 指导教师2013年 6 月28日※※※※※※※※※ ※※※※ ※※ ※※※※※※※※※2010级数字信号处理 课程设计基于MATLAB 的IIR 滤波器的设计及应用(信号去噪)一、实验目的1.学会MATLAB 的使用,掌握MATLAB 的程序设计方法。
2.掌握数字信号处理的基本概念、基本理论和基本方法。
3. 在MATLAB 环境下产生噪声信号。
4.掌握MATLAB 设计IIR 数字滤波器的方法。
5.学会用MATLAB 对信号进行分析和处理。
二、实验原理数字滤波器的设计:巴特沃斯(Butterworth)滤波器的幅度平方函数用下式表示: ()Nc j H 2211⎪⎪⎭⎫ ⎝⎛ΩΩ+=Ω∂ (2.1)式中,N 为滤波器的阶数,幅度下降的速度与N 有关,N 越大,通带越平坦,过渡带越窄,总的频响特性与理想低通滤波器的误差越小。
切比雪夫(Chebyshev)滤波器的幅频特性在通带或者阻带有等波纹特性,可以提高选择性,其幅度平方函数用下式表示:()⎪⎪⎭⎫ ⎝⎛ΩΩ+=Ω∂PN C j H 22211ε (2.2) 式中,ε为小于1的正数,表示通带幅度波动的程度,ε越大,波动幅度也越大,Ωp 称为通带截止频率。
椭圆(Ellipse)滤波器的通带和阻带呈现等波纹幅频特性时,通带和阻带波纹幅度越小,过渡带就越宽。
所以椭圆滤波器的阶数由通带边界频率、阻带边界频率、通带边界衰减、阻带边界衰减共同决定。
三、主要实验仪器及材料微型计算机、MATLAB6.5教学版四、实验内容1.噪声信号的频谱分析。
2.设计数字滤波器和画出频率响应:低通滤波器性能指标,fp=1000Hz ,fs=1800 Hz , As=100dB ,Ap=1dB ; 在MATLAB 中,可以利用函数butte 、cheby1和ellip 设计IIR 滤波器;最后,利用MATLAB 中的函数freqz 画出各滤波器的频率响应。
基于matlab声音信号的滤波去噪处理毕业论文
基于matlab声音信号的滤波去噪处理毕业论文基于matlab声音信号的滤波去噪处理摘要滤波器设计在数字信号处理中占有极其重要的地位。
FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。
Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。
特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。
利用MATLAB 信号处理工具箱可以快速有效地设计各种数字滤波器。
课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。
通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。
在设计实现的过程中,使用窗函数法来设计FIR 数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。
通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。
ABSTRACTThe Design of Analysis and Processing Voice Signal Abstract Speech signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processing of the emerging discipline is the fastest growing areas of information scienceone of the core technology. Transmission of information through the voice of humanity's most important, most effective, most popular and most convenient form of exchange of information.. Matlab language is a data analysis and processing functions are very powerful computer application software, sound files which can be transformed into discrete data files, then use its powerful ability to process the data matrix operations, such as digital filtering, Fourier transform, when domain and frequency domain analysis, sound playback and a variety of map rendering, and so on. Its signal processing and analysis toolkit for voice signal analysis provides a very rich feature function, use of these functions can be quick and convenient features complete voice signal processing and analysis and visualization of signals, makes computer interaction more convenient . Matlab Signal Processing is one of the important areas of application. The design of voice-processing software for most of the content are numerous, easy to maneuver and so on, using MATLAB7.0 comprehensive use GUI interface design, various function calls to voice signals such as frequency, amplitude, Fourier transform and filtering, the program interface concise, simple, has some significance in practice. Finally, the speech signal processing further development put forward their own views.目录摘要ABSTRACT绪论1.1研究的目的和意义1.2国内外同行的研究状况1.3本课题的研究内容和方法语音信号去噪方法的研究2.1去噪的原理2.2去噪的方法去噪和仿真的研究3.1语音文件在MATLAB平台上的录入与打开3.2 原始语音信号频谱分析及仿真3.3 加噪语音信号频谱分析及仿真3.4 去噪及仿真3.5 结合去噪后的频谱图对比两种方式滤波的优缺点总结致谢参考文献1.绪论1.1研究的目的和意义语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系,语音是人类获取信息的重要来源和利用信息的重要手段。
基于MATLAB的语音信号去噪处理(修改版)
摘要语音信号在数字信号处理中占有极其重要的地位,因此选择通过对语音信号的研究来巩固和掌握数字信号处理的基本能力十分具有代表性。
对数字信号处理离不开滤波器,因此滤波器的设计在信号处理中占有极其重要的地位。
FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。
利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。
功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。
通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现对加噪声语音信号进行时域、频域分析和滤波。
在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制及仿真。
关键词滤波器;MATLAB;窗函数法;双线性变换AbstractVoice signal occupies an extremely important position in digital signal processing, so the selection based on the research of the speech signal to consolidate and master the basic ability of digital signal processing is very representative. For digital signal processing (DSP) is dependent on the filter, so filter design occupies an extremely important role in signal processing. FIR digital filter and IIR filter is an important part of the filter design. MATLAB signal processing toolbox can be used to quickly and efficiently design all kinds of digital filter. Powerful and easy to learn, programming, high efficiency, is popular among the masses of scientific and technical workers. We can tear down the corresponding conclusion through theoretical derivation, using MATLAB as a programming tool for computer to add noise speech signal in time domain, frequency domain analysis and filtering. In the process of design implementation, we use window function method to design FIR digital filter, butterworth, chebyshev and bilinear reform IIR digital filter design, and the MATLAB as an auxiliary tool to complete the design of computing and graphics drawing and simulation.Keyword filter MATLAB Window function method Double linear transformation目录摘要 (1)Abstract (2)目录 (3)1.绪论 (3)1.1研究的目的和意义 (6)1.2本课题的研究内容 (6)1.3 其大概流程框图可如下表示 (7)2.原始语音信号采集与处理 (8)2.1 Matlab简单介绍 (8)2.2 语音信号的采样理论依据 (9)2.2.1采样的基本概念 (9)2.3语音信号的采集 (10)2.4语音信号的时频分析 (11)2.5语音信号加噪与频谱分析 (14)2.5.1 正弦波信号加入原始语音信号 (14)2.5.2 随机噪音信号加入原始语音信号 (14)2.6本章小结 (18)3设计数字滤波器 (19)3.1 滤波器概述 (19)3.1.1 模拟滤波器概述 (19)3.1.2 数字滤波器概述 (19)3.2 IIR数字滤波器概述 (20)3.3 FIR数字滤波器概述 (21)3.4 设计FIR数字滤波器和IIR数字滤波器比较 (21)3.5 数字滤波器设计的基本思路 (21)3.6 设计FIR滤波器 (22)3.6.1 窗函数法及设计步骤 (22)3.6.2源程序与仿真图像 (23)3.7 设计IIR滤波器 (25)3.7.1双线性变换法与设计步骤 (25)3.7.2源程序与仿真图像 (26)3.8 本章小结 (27)4 滤波并绘制滤波前后语音信号的波形及频谱 (29)4.1滤波及仿真 (29)4.1.1 FIR滤波器法去噪 (29)4.1.2 IIR滤波器法去噪 (30)4.2 结合去噪后的频谱图对比两种方式滤波的优缺点 (32)4.3本章小结 (33)总结 (33)致谢 (34)参考文献 (35)附录 (36)附录(I)设计FIR和IIR数字滤波器 (36)附录(II)比较滤波前后语音信号的波形及频谱 (41)1.绪论数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科。
用MATLAB实现语音信号降噪滤波
用MATLAB实现语音信号降噪滤波语音信号降噪是指通过滤波技术减少或消除语音信号中的噪声成分,以提高语音信号的质量和清晰度。
MATLAB作为强大的计算软件平台,提供了丰富的信号处理工具箱和函数库,可以用来实现语音信号降噪滤波。
语音信号降噪滤波的基本步骤包括:预处理、噪声估计、滤波处理和后处理。
下面将详细介绍每个步骤以及如何在MATLAB中实现。
1. 预处理:预处理通常包括读取语音信号、预加重和分帧处理。
MATLAB提供了读取音频信号的函数audioread(,可以将音频文件读取为一个向量。
预加重是为了强调高频部分,减小低频部分的能量,常用的预加重滤波器是一阶高通滤波器。
可以通过设计一个一阶IIR滤波器实现:```matlabfunction y = preemphasis(x, alpha)b = [1 -alpha];a=1;y = filter(b, a, x);end```分帧处理是将长时间的语音信号分成若干个短时段的音频帧,通常每帧长度为20ms-40ms。
可以使用函数buffer(实现分帧处理:```matlabframe_length = 0.02; % 20msframe_shift = 0.01; % 10msframe_samples = frame_length * fs; % fs为采样率frame_shift_samples = frame_shift * fs;frames = buffer(y, frame_samples, frame_shift_samples,'nodelay');```2. 噪声估计:噪声估计是为了获得噪声信号的特征,以便将其从语音信号中减去。
常用的噪声估计方法有简单平均法、中位数法等。
以简单平均法为例,可以使用函数mean(进行噪声估计:```matlabnoise_frames = frames(:, 1:noise_frame_num); % 噪声帧noise_spectrum = abs(fft(noise_frames)); % 噪声帧频谱noise_spectrum_mean = mean(noise_spectrum, 2); % 帧频谱平均```3. 滤波处理:滤波处理是将估计得到的噪声信号从语音信号中减去。
用MATLAB实现语音信号降噪滤波
目录一、设计目的。
二、设计要求。
三、详细设计过程。
四、调试分析。
五、结果分析与体会。
六、附录或参考资料。
一、设计目的在Matlab 软件平台上,对录制的语音信号采样,综合运用数字信号处理的理论知识分析时域波形和频谱图。
根据降噪要求用双线性变化法设计低通数字滤波器,并运用所设计的滤波器对采集的信号进行滤波, 绘制滤波后信号的时域波形和频谱。
二、设计要求利用MATLAB中的函数wavread对语音信号采集,sound 函数播放语音,并且声音采用的是单声道。
采样频率Fs=22050Hz,Bits表示量化阶数,y为采样数据。
利用快速傅里叶变换对语音数据进行傅里叶变换,分析语音信号频谱。
人的语音信号频率一般集中在200 k Hz到4.5 k Hz之间,从声音频谱的包络来看, 分析频谱图可清楚地看到加噪前的样本声音的主要以低频为主,样本声音的能量集中在低频部分。
样本声音的能量集中在0.1pi(即1102.5Hz)以内, 0.4pi以外的高频部分很少。
所以信号宽度近似取为1.1k Hz, 由采样定理可得FS>2F0=2*1102.5=2205Hz,相对的小高频部分应该属于背景噪声。
是人为的在这段语音中加入的高频噪声,加噪后语音信号的频谱中在高频部分的能量有所增加。
下面将利用低通滤波器处理这段加噪语音,以达到去除高频噪声的目的。
IIR 滤波器设计是以模拟滤波器为基础进行的,椭圆滤波器的通带和阻带都有切比雪夫波纹,是等波纹的逼近方式,过渡带非常陡峭,在滤波器阶数N 给定的情况下,同样的性能指标要求的阶数是最小的,这使得在众多的模拟滤波器中椭圆滤波器设计是最优化的,性能是最好的,同时为了防止频率混叠,普遍采用双线性变换法, 实现模拟滤波器到数字滤波器的转换。
依据这样的设计思路,设定滤波器的参数。
三、详细设计过程(1)语音信号采集语音信号采集该实验以研究者本人的声音为分析样本。
1.准备音频线、麦克风,连接好电脑2.开启Windows中的录音机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再将S1平面通过以下标准变换关系映射到Z平面
(2-4)
从而得到S平面和Z平面的单值映射关系为:
(2-5)
(2-6)
式(2-4)与式(2-5)是S平面与Z平面之间的单值映射关系[4],这种变换都是两个线性函数之比,因此称为双线性变换
式(2-5)与式(2-6)的双线性变换符合映射变换应满足的两点要求。
首先,把z=ejω,可得
(2-7)
即S平面的虚轴映射到Z平面的单位圆。
其次,将s=σ+jΩ代入式(2-7),得
(2-8)
因此
(2-9)
由此看出,当σ<0时,|z|<1;当σ>0时,|z|>1。也就是说,S平面的左半平面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上。因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的。
(1)确定指标
在设计一个数字滤波器之前,必须首先根据工程实际的需要确定数字滤波器的技术指标。在很多实际应用中,数字滤波器常常用来实现选频操作。因此,指标一般在频域中给出,诸如通带截止频率wp、阻带截止频率ws、阻带内允许的最大衰减ap、阻带内允许的最小衰减as等。此外还必须确定采样周期T或采样频率Fs。
(1)因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的。
(2)数字滤波器的频率相应模仿模拟滤波器的频响特性,s平面的虚轴映射为z平面的单位圆,相应的频率之间呈线性关系。
利用模拟滤波器成熟的理论设计IIR数字滤波器的过程是:
(1)确定数字低通滤波器的技术指标:通带边界频率 、通带最大衰减 、阻带截止频率 、阻带最小衰减 。
摘要
滤波器设计在数字信号处理中占有极其重要的地位,本次课程设计主要是录制一段语音信号对其进行加噪处理,然后利用IIR低通滤波器对加有随机噪声的语音信号进行滤波处理及时频谱分析,画出滤波之后的频谱图与时域波形,并对信号滤波处理前后进行分析比较,分析信号的变化。通过对对所设计滤波器的仿真和频率特性分析,由仿真结果可以看出,所设计的滤波器能够实现对语音信号的语音有效去噪,并对滤波前后的语音信号进行对比。
(2)将数字低通滤波器的技术指标转换成相应的模拟低通滤波器的技术指标。
(3)按照模拟低通滤波器的技术指标设计过渡模拟低通滤波器。
(4)用所选的转换方法,将模拟滤波器 转换成数字低通滤波器系统函数 。
IIR数字滤波器的设计流程图2-1如下:
变换
ΩΩ=g(ω)
变换
S=f(Z)
图2-1 IIR数字滤波器的设计步骤流程图[1]
1
一个数字滤波器可用它的系统函数H(z)来描述 ,
或者用一个N阶差分方程来描述,即 [6]
因此,设计一个数字滤波器,实质上是寻找一组系数[ak,br],使其性能满足预定的技术要求,它是一个数学逼近问题,显然它与模拟滤波器的设计方法是完全一致的,只不过模拟滤波器的设计是在Z平面上用数学逼近方法寻找近似于所需特性的H(s),而数字滤波器的设计则在Z平面上寻找合适的H(z)。确定了[ak,br],剩下的问题是设计一个具体的网络结构去实现它。可见数字滤波器设计的基本步骤如下:
1
(1)确定所需类型数字滤波器的技术指标:通带边界频率Fp、通带最大衰减As,阻带截止频率Fc、阻带最小衰减Ap。
(2)将所需类型数字滤波器的边界频率转换成相应的模拟滤波器的边界频率,转换公式为Ω=2/T tan(0.5ω)
(2)逼近
确定了技术指标后,就可以建立一个目标数字滤波器模型。通常采用理想的数字滤波器模型。之后,利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。
(3)性能分析和计算机仿真
上两步的结果是得到以系统函数H(z)或单位冲激响应h(n)描述的数字滤波器。根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。数字滤波器根据其单位冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。IIR滤波器的特征是具有无限持续时间冲激响应。这种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间,在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如脉冲响应不变法、双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等[5]。
图2-2双线性变换的映射关系[3]
为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现
(2-1)
式中T仍是采样间隔。
当Ω1由-π/T经过0变化到π/T时,Ω由-∞经过0变化到+∞,也即映射了整个jΩ轴。将式(2-1)写成
(2-2)
将此关系解析延拓到整个S平面和S1平面,令jΩ=s,jΩ1=s1,则得
成熟的模拟滤波器设计方法主要有脉冲响应不变法和双线性变换法。
2.2
脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=esT转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的-π/T~π/T一条横带里;第二步再通过标准变换关系z=es1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图2-2所示[2]。
关键词:去噪;滤波器;MATLAB
一
1
IIR数字滤波器的设计一般有两种方法:一个是借助模拟滤波器的设计方法进行。其设计步骤是,先设计模拟滤波器,再按照某种方法转换成数字滤波器。这种方法比较容易一些,因为模拟滤波器的设计方法已经非常成熟,不仅有完整的设计公式,还有完善的图表供查阅;另外一种直接在频率或者时域内进行,由于需要解联立方程,设计时需要计算机做辅助设计。其设计步骤是:先设计过渡模拟滤波器得到系统函数 ,然后将 按某种方法转换成数字滤波器的系统函数 [1]。为了保证转换后的 稳定且满足技术指标要求,对转换关系提出两点要求: