ansys_复合材料分析介绍

合集下载

基于ANSYS有限元的复合材料传动轴失效分析

基于ANSYS有限元的复合材料传动轴失效分析

基于ANSYS有限元的复合材料传动轴失效分析基于ANSYS有限元的复合材料传动轴失效分析1. 引言复合材料在传动轴应用中越来越广泛,其具有较高的强度和刚度,以及较低的密度和惯性矩。

然而,由于其复杂的结构和复杂的加载条件,传动轴在运行过程中可能会发生失效。

因此,基于有限元分析的复合材料传动轴失效分析显得尤为重要。

2. 传动轴结构和材料传动轴主要有轴状结构,通常由多个复合材料组件组成,如纤维增强聚合物复合材料(FRP)和碳纤维增强复合材料(CFRP)。

这些材料的组合可以提供较高的轴向和环向强度,从而提供更好的传递力矩和转速。

3. 复合材料传动轴的失效模式复合材料传动轴的失效模式包括弯曲破坏、蠕变破坏、疲劳破坏和环剪切破坏等。

这些失效模式通常是由不同的应力和应变引起的,并在不同的加载条件下发生。

4. 有限元模型的建立基于ANSYS有限元软件,可以建立复合材料传动轴的三维有限元模型。

模型的几何形状和材料属性可以根据实际情况进行设定。

5. 材料参数的输入复合材料的性能参数需要根据实际测试数据进行输入。

这些参数包括纤维体积分数、纤维方向的弹性模量和剪切模量,基体材料的弹性模量和剪切模量等。

这些参数的准确性对于分析结果的准确性至关重要。

6. 边界条件和加载条件的设定在进行有限元分析之前,需要确定边界条件和加载条件。

边界条件通常包括固定支撑和固定约束等,以保证模型的稳定性。

加载条件通常包括径向和环向的力矩和转速等。

7. 模型分析和结果评价通过对复合材料传动轴模型进行有限元分析,可以得到应力和应变的分布图,以及轴的变形情况。

利用这些结果可以评估轴的失效模式和强度。

8. 参数敏感性分析和优化设计在分析过程中,可以对模型的几何形状和材料参数进行敏感性分析。

通过调整这些参数,可以优化设计,提高传动轴的性能和可靠性。

9. 模型验证和实验验证为了验证有限元模型的准确性,可以进行实验验证。

将有限元分析结果与实验结果进行对比和验证,以确定模型的准确性和可靠性。

Ansys复合材料结构分析操作指导书

Ansys复合材料结构分析操作指导书

Ansys复合材料结构分析操作指导书Any10.0复合材料结构第一章概述复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。

由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Any是个不错的选择。

1、有限元分析方法应用简介有限元法(FiniteElementMethod,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。

该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相连构成整个有限元模型,用该模型代替实际结构进行结构分析。

在对结构离散后,要求解的基本未知量就转变为各个节点位移(Any中称之为DOF(DegreeOfFreedom),试想一下,节点的位移包括沿某,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。

2、Any软件的发展近况Any软件目前已发展到AnyV12版本,从V10开始Any加入了一个新的工作环境Workbench,原先的Any被称为Any(claic),虽然操作界面不同,但两者的求解器是一样的。

Any(claic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。

也许是迫于另一个有限元分析软件ABQUS的竞争压力,Any推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分网格方面有了巨大进步,建模方面与传统CAD软件一样采用图形界面,极大地提高了图形的可视性,划分网格采用了AnyICEMCFD 的功能,使划分的网格更加易控,最重要的是免去了从第三方软件导入模型、网格过程中可能存在的各种问题,实现了真正的“无缝”连接。

ANSYS-复合材料长纤维梁热膨胀分析(参考模板)

ANSYS-复合材料长纤维梁热膨胀分析(参考模板)

184单元选项
建模,直接通过节点创建单元创建单元时选定义单元属性
创建体并粘合相交的面
pick all 划分网格:单元大小(选择技巧)创建单元,先设属性
选择所有,创建单元,划网
合并节点
加载
位移约束,选择所有施加参考温度0与均匀温度载荷100
加载求解
结果,
查看所选定节点(1.5,0.15,0.075)(注意两次使用reselect)的节点应力值先选择节点,再获取节点编号(参数菜单下get scalar data)
然后获取节点应力编号
以列表形式
(本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

Ansys的复合材料分析

Ansys的复合材料分析
– No material property matrix input – Supports plasticity, large­strain behavior; laminated and sandwich structures – Failure Modeling through TB, FAIL
© 2005 ANSYS, Inc.
8
ANSYS, Inc. Proprietary
SHELL99 Linear Layered Structural Shell Element
• Element Definition
– 8­node, 3­D shell element with six degrees of freedom at each node – Thin to moderately thick plate and shell structures with a side­to­ thickness ratio of roughly 10 or greater
© 2005 ANSYS, Inc.
rietary
Benefits of Composites
• Stronger and stiffer than metals on a density basis • Capable of high continuous operating temperatures • Highly corrosion resistant • Electrically insulating/conducting/selectively conducting properties • Tailorable thermal expansion properties • Exceptional formability • Outstanding durability

ANSYS ACP复合材料案例详解-1

ANSYS ACP复合材料案例详解-1

ANSYS ACP复合材料案例详解-1该算例为简单层合板分析,描述了从几何模型到后处理的基本操作流程。

1.前处理部分1〉打开ANSYS Workbench,直接拖拽ACP(Pre)到工作界面:2〉双击打开Engineering Data,分别创建单向纤维增强复合材料UD_T700与中心层材料Corecell_A550,详细定义如下:3〉返回Project,打开DesignModeler界面,设置单位制:4〉创建草图:5〉生成surface:6〉双击Model,打开Mechanical界面,设置厚度(此处厚度设置与铺层厚度无关):7〉网格设置,生成网格:8〉更新流程:9〉双击或者右键-Edit打开ACP,可以看到,Engineering Data中的材料已经自动导入ACP:10〉注意单位设置,另外,ACP操作的每一步都需点击update图标才能更新:11〉创建层板与厚度(Fabrics):12〉创建Stackups:13〉创建子层合板Sub Laminate:14〉创建铺层参考方向Rosetts:15〉定义Oriented Selection Sets,Point选择几何上的任一点即可,带[]部分,点击[],再点击左侧相关项,即可自动导入;其中三Resetts代表的是铺层材料的0°方向,16〉查看参考方向,铺层零度方向,以及法向等可点击工具栏图标,如下:17〉右键点击Modeling Groups,创建三个层组,命名如下:18〉在sandwich_bottom下进行第一个层设置,命名为bottom_1,如下:19〉在sandwich_core下进行第二个层设置,命名为core_2,如下:20〉在sandwich_top下进行第三个层设置,命名为top_3,如下:21〉更新,层定义应该如下图所示:22〉返回workbench主界面,更新ACP流程:拖拽Static Structural流程到界面,将ACP的A5连接到Static Structural的B4,选择传递壳数据,连接好的流程见下图:23〉更新结构分析流程,双击打开Mechanical界面,四条边固定支撑,面上施加0.1Mpa压力,边界条件设置如图:2.求解,点击Solve直接求解3.后处理1〉拖拽ACP(Post)流程到ACP(Pre)上,连接效果如下:2〉将Static Structural的结果Solution与ACP后处理的Results部分连接,求解结果文件将被读入到后处理模块,如图:3〉更新流程,保证静态分析与ACP前处理流程上都是绿色对勾标志,刷新ACP后处理的Results部分:4〉双击打开ACP(Post),在Solution分支下查看变形结果,设置如下:5〉变形结果云图:6〉接下来,配置组合失效准则,创建复合材料结构的失效结果图,两种材料的强度极限最初在Engineer Data中已经定义好。

ansys hashin准则 -回复

ansys hashin准则 -回复

ansys hashin准则-回复如何使用ANSYS Hashin准则进行复合材料的强度分析ANSYS Hashin准则是一种常用于复合材料的强度分析方法,它根据材料的各向异性和多层堆叠结构,可以准确预测复合材料在不同载荷情况下的破坏行为。

本文将从理论介绍、建模、求解、分析结果等方面,一步一步详细解答如何使用ANSYS Hashin准则进行复合材料的强度分析。

第一步:理论介绍ANSYS Hashin准则是根据材料的宏观本构关系和微观裂纹机理,通过建立微切变模型和损伤修复模型,来预测复合材料的破坏行为。

Hashin准则主要包括纤维断裂准则和基体压缩准则两部分。

纤维断裂准则关注复合材料中纤维的断裂行为,而基体压缩准则则关注基体的破坏行为。

第二步:建模首先,我们需要根据具体的复合材料结构和几何参数,利用ANSYS软件进行建模。

在建模过程中,我们可以考虑将复合材料分为纤维和基体两个部分,并设置相应的材料属性和几何参数。

在ANSYS软件中,我们可以使用几何建模工具,如DesignModeler或SpaceClaim,进行复合材料几何模型的创建。

在创建几何模型时,我们可以选择不同的几何体描述方法,如从文件导入、自动生成几何体或手动绘制。

在绘制几何模型时,需要准确表达出复合材料的纤维和基体的层厚、层数、堆叠方式等参数。

第三步:求解建立了几何模型后,我们需要对模型进行网格划分,即为模型中的每个单元分配节点,以便进行数值计算。

在ANSYS软件中,我们可以使用自动或手动网格划分工具,如Meshing或Tetrahedrons,进行网格的生成。

在网格生成过程中,需要合理选择网格密度和网格质量,以确保计算结果的准确性和可靠性。

完成网格划分后,我们可以将复合材料的材料性质、载荷条件和边界条件等输入到ANSYS软件中。

在输入界面中,我们可以定义复合材料的弹性模量、剪切模量、断裂应力、断裂应变等材料性质。

同时,我们还可以设置各个层间的界面条件和约束条件,以模拟实际工况下的复合材料破坏行为。

ANSYS命令流学习笔记14-shell单元的铺层复合材料分析

ANSYS命令流学习笔记14-shell单元的铺层复合材料分析

!ANSYS命令流学习笔记 14-shell 单元的铺层复合材料分析!学习重点:!1、熟悉复合材料的材料特点工程应用中典型的复合材料为纤维增强复合材料。

玻璃纤维增强塑料(玻璃钢)、碳纤维、石墨纤维、硼纤维等高强度和高模量纤维。

复合材料各层为正交各向异性材料(O rthotropic )或者横向各向异性材料( Transversal Isotropic),材料的性能与材料主轴的取向有关。

各向异性 Anisotropic,一般的各项同性材料需要两个材料参数弹性模量而各向异性在 XYZ有着不同的材料属性,而且拉伸行为和剪切行为互相关联。

程需要 21 个参数。

E 和泊松比v。

定义其几何方正交各向异性 orthotropic,在XYZ有着不同的材料属性,而且拉伸行为和剪切行为无关,定义材料需要 9 个参数: Ex, Ey, Ez, Vxy, Vyz,Vxz, Gxy, Gyz, Gxz。

横向各向异性 Transversal Isotropic,属于各向异性材料,但是在某个平面上表现出二维上的各向同性。

!2、熟悉复合材料分析所用的ANSYS单元复合材料单元关键在于能够实现铺层。

不同截面属性的梁单元(beam188, beam189, elbow290 ),2D 对称壳单元( shell208, shell209 ),3D 铺层壳单元( shell181, shell281, shell131, shell132),3D 铺层实体单元( solid185, solid186, solsh190, solid278, solid279 ),均能实现复合材料的搭建。

其中Beam 单元和2D 对称壳单元很少使用。

SHELL91、 SHELL99、 SOLID46、SOLID191 用于一些以前的分析教程中,但是现在这些单元已经被淘汰,最好选择下列单元区替代他们。

用越来越少的单元做越来越多的事情也是趋势。

Shell208 和 shell209, 2D 对称壳单元前者为 2 节点 3 自由度单元,后者为 3 节点 3 自由度单元,均能用于薄板和中厚板结构(L/h > 5-8 )。

ansys 复合材料分析

ansys 复合材料分析

第五章复合材料5.1 复合材料的相关概念复合材料作为结构应用已有相当长的历史。

在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。

复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。

在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。

ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。

利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。

对于热、磁、电场分析,目前尚未提供层单元。

5.2 建立复合材料模型与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。

由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。

本节主要探讨如下问题:选择合适的单元类型;定义材料层;确定失效准则;应遵循的建模和后处理规则。

5.2.1 选择合适的单元类型用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。

但 ANSYS/Professional 只能使用 SHELL99 和SHELL46 单元。

具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。

所有的层单元允许失效准则计算。

1、SHELL99--线性层状结构壳单元SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。

该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。

对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。

SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。

如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。

还可以通过一个选项将单元节点偏置到结构的表层或底层。

2、SHELL91--非线性层状结构壳单元SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。

ansys复合材料

ansys复合材料

5.3 复合材料分析实例(GUI方法)5.3.1 问题描述如图5-7所示,有一长3米的工字梁,高度为0.3m,上下翼缘的宽度为0.2m。

材料为T300/5208,是20层对称分布叠层板,每层的厚度为0.001m,各层的方向角分别为0、45、90、-45、0、0、45、90、-45和0度,材料特性为:E x=181Gpa,E y=E z=10.3Gpa,G xy=7.17Gpa,G yz=3.78Gpa,υ12=0.016。

沿轴强度:σx+=1500Mpa,σx-=1500Mpa,σy+=40Mpa,σy-=246Mpa,σx+=40Mpa,σx-=246Mpa,τxy=68Mpa (+表示受拉,-表示受压)。

工字梁一端固定,另一端受集中力分别为:100N 、10000N和100N 。

计算工作应力和应变、失效应力和失效层等。

图5-7叠层板工字梁结构和载荷示意图5.3.2 GUI方式(一) 定义单元类型、实常数和材料特性1. 选取菜单元途径Main>Preprocessor>Element type>Add/edit/delete,弹出Element Types窗口。

2. 单击Add,弹出Library of Element Types窗口,左边选择窗口选择Structural Shell,右边选择窗口选择中选择Linear Layer99,单击OK。

3. 单击Element Types窗口中Options,弹出SHELL99 ElementType Options窗口,将K8设置为ALL Layer,单击OK。

单击Element Types窗口中Close。

4. 选取菜单途径Main menu>Preprocessor>Element Type>Real Constants,弹出Real Constants 窗口。

单击OK,弹出Element type for Real Constants窗口。

Ansys复合材料结构分析总结

Ansys复合材料结构分析总结

Ansys复合材料结构分析总结说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感他呀目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。

(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。

笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的容。

在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。

ansys 复合材料添加分析流程

ansys 复合材料添加分析流程

ansys 复合材料添加分析流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!ANSYS复合材料分析流程详解在现代工程设计中,复合材料因其独特的性能组合而被广泛应用于航空、航天、汽车和能源等领域。

ansys_复合材料分析

ansys_复合材料分析

第五章复合材料5.1 复合材料的相关概念复合材料作为结构应用已有相当长的历史。

在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。

复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。

在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。

ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。

利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。

对于热、磁、电场分析,目前尚未提供层单元。

5.2 建立复合材料模型与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。

由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。

本节主要探讨如下问题:选择合适的单元类型;定义材料层;确定失效准则;应遵循的建模和后处理规则。

5.2.1 选择合适的单元类型用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。

但 ANSYS/Professional 只能使用 SHELL99 和SHELL46 单元。

具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。

所有的层单元允许失效准则计算。

1、SHELL99--线性层状结构壳单元SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。

该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。

对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。

SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。

如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。

还可以通过一个选项将单元节点偏置到结构的表层或底层。

2、SHELL91--非线性层状结构壳单元SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。

航空用复合材料层合结构ANSYS有限元分析

航空用复合材料层合结构ANSYS有限元分析

复合材料的优势
层合结构的特点
层合结构是复合材料的一种重要形式, 通过将不同材料层层叠加形成,具有 各向异性的特点,对其进行分析需要 采用有限元方法。
复合材料具有高强度、轻质、抗疲劳 等优点,能够显著提高航空器的性能 和安全性。
目的和意义
目的
通过对航空用复合材料层合结构进行 ANSYS有限元分析,探究其力学性 能和损伤演化规律,为优化设计和安 全评估提供依据。
意义
有限元分析能够准确模拟层合结构的 复杂应力分布和变形行为,有助于提 高航空器的结构效率和安全性,对于 推动航空工业的发展具有重要意义。
02
航空复合材料层合结构概述
复合材料的定义和分类
定义
复合材料是由两种或两种以上材 料组成的一种材料,其性能取决 于各个组成材料的性质以及它们 的组合方式。
分类
软件概述
01
全球知名的工程仿真软件
02
提供多物理场仿真能力
支持多种操作系统平台
03
功能模块
前处理模块
支持复杂模型的建立和网 格划分
求解模块
进行各种物理场的仿真计 算
后处理模块
提供丰富的可视化功能和 结果分析工具
在复合材料分析中的应用
高效模拟复合材料的力学 行为
预测复合材料的损伤和破 坏行为
考虑材料的非均匀性和各 向异性
优化设计和改进建议
要点一
总结词
基于有限元分析结果,可以提出优化设计和改进建议。
要点二
详细描述
根据应力和应变分布以及损伤和破坏模式的分析结果,我 们可以提出一系列优化设计和改进建议。例如,可以调整 复合材料的层合顺序、改变连接方式或增加加强筋等措施 来改善结构的力学性能。同时,还可以通过优化工艺参数 和选择合适的材料来提高复合材料的质量和可靠性。这些 建议有助于提高航空用复合材料层合结构的安全性和可靠 性。

ansys命令流学习笔记5-圆柱形shell单元的复合材料分析

ansys命令流学习笔记5-圆柱形shell单元的复合材料分析

ansys命令流学习笔记5-圆柱形shell单元的复合材料分析! ANSYS命令流学习笔记15-圆柱形shell单元的复合材料分析!学习重点:!1、熟悉单元坐标系下的铺层当零件形状为规则圆筒时,如何进行铺层?建立局部的柱坐标系,将需要铺层单元坐标设置为局部坐标系,进行铺层即可。

譬如圆筒铺层的单元坐标系要建立局部圆柱坐标系。

如果还使用笛卡尔坐标系,铺层也能进行,但是铺层方向有很大不同,求解结果也会异常。

所以划分网格时,确认单元坐标系选择,划分网格之后,检查单元坐标系情况。

确认铺层方向符合预期要求。

本例中要特别注意横向(即Y向)是否符合要求。

!2、熟悉圆面的建模和局部坐标系建立不解释!3、熟悉利用MPC施加扭矩APDL如何对一个圆周施加扭矩?在圆心处建立一个节点,然后用MPC单元连接圆心节点和圆周节点,然后在圆心节点上施加一个扭矩即可。

注意将MPC单元的属性改为刚性梁。

注意这里MPC单元的利用,也是自己的一些理解。

很多细节也不知道如何在APDL实现。

!问题描述! 传动轴长度为1m,壁厚0.003m,直径0.08m,铺层共十层,角度为-45/45/-45/45/-45/45/-45/45/-45/45。

一端固定,一端圆周施加扭矩M=2000N·m。

复合材料为横向正交各向异性Ex,Ey,Ez,Vxy,Vyz,Vxz,Gxy,Gyz,Gxz分别为195e9Pa, 35e9Pa, 35e9Pa,0.28, 0.3, 0.3, 15e9Pa, 3.78e9Pa, 15e9Pa。

应力失效参数:+X:767E6Pa; -X:392E6Pa; +Y:20E6Pa; -Y:70E6Pa; +Z:30E6Pa; -Z:55E6Pa; Sxy: 41E6Pa; Syz: 30E6Pa; Sxz:41E6Pa。

应变失效参数:+X:0.05; -X:0.045; +Y:0.08; -Y:0.06; +Z:0.04; -Z:0.045; Sxy: 0.035; Syz: 0.042; Sxz:0.025。

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用复合材料,是由两种或两种以上性质不同的材料组成。

主要组分是增强材料和基体材料。

复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。

复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。

目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。

飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。

板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。

此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。

一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。

采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。

在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。

复合材料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。

这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。

有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。

二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。

许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。

如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
SOLID95 是 20 节点的结构实体单元,在 KEYOPT(1)=1 时,其作用与单
层的 SOLID191 单元类似,包括应用方位角和失效准则,还允许非线性材料和大
◆ 料。
5.2.2
BEAM188 和 BEAM189 为三维有限应变梁单元,其截面可以包含多种材
定义材料的叠层结构
复合材料最重要的特征就是其叠层结构。每层材料都有可能由不同的正交各 向异性材料构成,并且其主方向也可能各不相同。对于叠层复合材料,纤维的方 向决定了层的主方向。 有两种方法可用来定义材料层的配置: 通过定义各层材料的性质; 通过定义表示宏观力、力矩与宏观应变、曲率之间相互关系的本构矩阵(只 适合于 SOLID46 和 SHELL99)。
5.2.2.1 定义各层材料的性质
这种方法由下到上一层一层定义材料层的配置。底层为第一层,后续的层沿 单元坐标系的 Z 轴正方向自底向上叠加。如果叠层结构是对称的,可以只定义一 半的材料层。 有时,某个物理层可能只延伸到模型的一部分。为了建立连续的层,可以把 这些中断的层的厚度设置为零,图 5-1 显示了一个四层模型,其中第二层在某处 中断了。
1
及一个特殊的“三明治”选项, 而 SHELL99 则不能。另外 SHELL91 更适用于大 变形的情况。 3、SHELL181—有限应变壳单元 SHELL181 是四节点三维壳单元,每个节点有六个自由度。该单元支持所有 的非线性功能(包括大应变),允许有多达 250 层材料层。应该通过截面命令, 而不是实常数来定义层的信息,可以通过 FC 命令来指定失效准则。 4、SOLID46—三维层状结构体单元 SOLID46 是八节点三维实体单元 SOLID45 的一种叠层形式,其每个节点有 三个自由度(UX, UY, UZ)。它可用来建立叠层壳或实体的有限元模型,每个单元 允许有多达 250 层的等厚材料层, 或者 125 层的厚度在单元面内呈现双线性变 化的不等厚材料层。 该单元的另一个优点是可以用叠加几个单元的方式来对多于 250 层的复合材料建立模型,并允许沿厚度方向的变形斜率连续。用户也可输入 自己的本构矩阵。SOLID46 调整横向的材料特性,以允许在横向上为常应力。与 八节点壳单元相比较,SOLID46 的阶次要低些,因此,如在壳结构应用中要得到 与 SHELL91 或 SHELL99 相同的求解精度,需要更密的网格。 5、SOLID191--层状结构体单元 SOLID191 是 20 节点三维实体单元 SOLID95 的一种叠层形式,其每个节点 有三个自由度(UX, UY, UZ)。它可用以建立厚的叠层壳或实体的有限元模型,每 个单元允许有多达 100 层的材料层。与 SOLID46 类似,SOLID191 可以模拟厚度 上的不连续。SOLID46 可以调整横向的材料特性,以允许在横向上为常应力。这 个单元不支持非线性材料或大挠度。 6、其他 除上述层单元外,还有其它的一些具有层功能的单元: ◆ 挠度。 ◆ SHELL63 是四节点壳单元,可用于对“三明治”壳结构作粗糙、近似 的计算。 象两块金属片之间夹有一层聚合物的问题就很典型,此时聚合物的弯曲 刚度相对于金属片的弯曲刚度来说是一个小量。用户可以用实常数 RMI 来修正 单元的弯曲刚度, 使其等效于由金属片引起的弯曲刚度。从中面到外层纤维的距 离(实常数 CTOP 和 CBOT)可用来获得“三明治”壳的表层输出应力。这种单元 不如 SHELL91 、SHELL99 和 SHELL181 那样用得频繁,故后面不再论述。 ◆ SOLID65 是三维钢筋混凝土实体单元,可以模拟在三个用户指定方向 配筋的各向同性介质。
5.2.1 选择合适的单元类型
用于建立复合材料模型的单元类型有 SHELL99、 SHELL91、 SHELL181、 SOLID46 和 SOLID191 五种单元。但 ANSYS/Professional 只能使用 SHELL99 和 SHELL46 单元。 具体应选择哪一类单元要根据具体应用和所需计算结果类型等来 确定。所有的层单元允许失效准则计算。 1、SHELL99--线性层状结构壳单元 SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。该单元主要适 用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于 10。对于宽厚比小于 10 的结构,则应考虑选用 SOLID46 来建立模型。SHELL99 允许有多达 250 层 的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。如 果材料层大于 250, 用户可通过输入自己的材料矩阵形式来建立模型。还可以通 过一个选项将单元节点偏置到结构的表层或底层。 2、SHELL91--非线性层状结构壳单元 SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而 且用户不能输入自己的材料性能矩阵。但是,SHELL91 支持塑性、大应变行为以
第五章
5.1 复合材料的相关概念
复合材料
复合材料作为结构应用已有相当长的历史。在现代,复合材料构件已被大量 应用于飞行器结构、汽车、体育器材及许多消费产品中。 复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很 高的比刚度(刚度与重量之比)。 在工程应用中,典型复合材料有纤维和叠层型材 料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。 ANSYS 程序中提供一种特殊单元--层单元来模拟复合材料。利用这些单元就 可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。 对于热、 磁、 电场分析,目前尚未提供层单元。 5.2 建立复合材料模型 与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。由于各层 材料性能为任意正交各向异性,和方向时要特别注意。本节主要探讨如下问题: 选择合适的单元类型; 定义材料层; 确定失效准则; 应遵循的建模和后处理规则。
图 5-1
相关文档
最新文档