三角形及三角函数相关定理,公式
高中解三角形公式大全
高中解三角形公式大全1.三角函数公式:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} =\frac{c}{\sin C}$,其中$a, b, c$为三角形的边长,$A, B, C$为对应的角度。
- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$,其中$a, b, c$为三角形的边长,$C$为对应的角度。
- 正弦函数:$\sin A = \frac{a}{c}$,其中$a, c$为三角形的边长,$A$为对应的角度。
- 余弦函数:$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$,其中$a, b, c$为三角形的边长,$C$为对应的角度。
- 正切函数:$\tan A = \frac{\sin A}{\cos A} = \frac{a}{b}$,其中$a, b$为三角形的边长,$A$为对应的角度。
2.三角形面积公式:- 海伦公式:设$a, b, c$为三角形的边长,$p$为半周长,则三角形的面积$S = \sqrt{p(p-a)(p-b)(p-c)}$。
- 线段法求面积公式:设$a, b, c$为三角形的边长,$h$为对应底边的高,则三角形的面积$S = \frac{1}{2}ah$。
3.特殊三角形公式:-等边三角形:三个边长相等,所有角度都是$60^\circ$,高度等于边长的$\frac{\sqrt{3}}{2}$倍,面积$S = \frac{\sqrt{3}}{4}a^2$。
- 直角三角形:有一个角为$90^\circ$,满足勾股定理$a^2 + b^2 = c^2$,其中$a, b, c$分别为直角三角形的两直角边和斜边的长度,面积$S = \frac{1}{2}ab$。
-等腰三角形:两边边长相等,两底角相等。
- 正弦定理在特殊三角形中的应用:对于任意三角形,若角$A=90^\circ$,则正弦定理退化成斜边与对边的关系$\sin B =\frac{c}{a}$;若角$A=90^\circ$,则正弦定理退化成斜边与邻边的关系$\sin C = \frac{a}{c}$。
初一数学三角形公式总结归纳
初一数学三角形公式总结归纳数学三角公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。
下面是小编为大家整理的关于初一数学三角形公式,希望对您有所帮助!常见三角诱导公式公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα初中数学三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积公式2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角形的公式定理1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1关于某条直线对称的两个图形是全等形43.定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1四边都相等的四边形是菱形68.菱形判定定理2对角线互相垂直的平行四边形是菱形69.正方形性质定理1正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2相似三角形周长的比等于相似比98.性质定理3相似三角形面积的比等于相似比的平方。
三角形三边关系公式三角函数
三角形三边关系公式三角函数三角形是平面几何中一种基本的图形,由三条边和三个角组成。
研究三角形的关系和性质,可以帮助我们解决很多与三角形相关的问题,如计算三角形的周长、面积,确定三角形的形状等。
在三角形中,三边之间的关系是三角函数的基础。
本文将详细介绍三角形三边关系公式和三角函数的相关知识。
首先,我们来看一下三角形的基本属性。
假设我们有一个三角形ABC,边a对应角A,边b对应角B,边c对应角C。
根据三角形的性质,我们可以得到以下结论:1.三角形的三个内角之和等于180度,即A+B+C=180度。
2.三角形的每个内角都小于180度。
3.三角形的任意两边之和大于第三边。
即a+b>c,b+c>a,c+a>b。
接下来,我们来介绍三角形的三边关系公式。
这些公式可以帮助我们计算三角形的周长、面积以及判断三角形的形状。
我们以边a、b、c来表示三角形的三边长度。
1.周长公式三角形的周长是三边长度之和,即P=a+b+c。
2.海伦公式对于任意三角形,可以使用海伦公式来计算其面积。
海伦公式的表达式为:S=√(p(p-a)(p-b)(p-c))其中,p是半周长,即p=(a+b+c)/23.直角三角形的斜边长度公式对于直角三角形,我们可以使用勾股定理来计算其斜边长度。
勾股定理的表达式为:c=√(a^2+b^2)其中,c为斜边的长度,a和b分别为直角三角形的两个直角边的长度。
4.三角形的面积公式根据三角形的性质,我们可以将任意三角形划分为两个直角三角形,并使用直角三角形的面积公式来计算三角形的面积。
面积公式的表达式为:S=1/2*b*h其中,b为三角形的底边长度,h为底边对应的高的长度。
三角函数是三角形内角和三边之间关系的另一种表达形式。
常用的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
这些函数可以通过三角形的内角和三边之间的关系来定义。
解三角形知识点归纳(附三角函数公式)
高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:ααααααsin cos cot ,cos sin tan ==特殊角的三角函数值三角函数值0 111不存在三角函数诱导公式:“ (2k πα+)”记忆口诀: “奇变偶不变,符号看象限”,是指(2kπα+),k ∈Z 的三角函数值,当k 为奇数时,正弦变余弦,余弦变正弦(正切,余切;正割、余割也同样);当k 为偶数时,函数名不变。
三角形三边关系公式三角函数
三角形三边关系公式三角函数三角形是初中数学中一个重要的几何形体,也是很多高中数学的基础知识。
而三角形的三边关系公式和三角函数则是三角形相关的必备知识。
下面我们来详细了解一下这方面的内容。
一、三角形三边关系公式三角形三边关系公式是求解三角形的重要公式,在初中的教学中,通过这些公式,可以求解任意三角形的内角和、周长、面积等重要性质。
1. 余弦定理:在任意三角形ABC中,设三边对应的内角分别为α、β、γ,边长分别为a、b、c,则有:cos α = (b² + c² - a²) / 2bccos β = (a² + c² - b²) / 2accos γ = (a² + b² - c²) / 2ab其中,cos表示余弦函数,a、b、c表示三边,α、β、γ表示与其对应的内角。
2. 正弦定理:在任意三角形ABC中,设三边对应的内角分别为α、β、γ,边长分别为a、b、c,则有:a / sin α =b / sin β =c / sinγ其中,sin表示正弦函数。
3. 勾股定理:在直角三角形ABC中,设斜边AB对应的内角为α,直角边AC和BC分别对应的内角为β、γ,斜边AB的长度为c,直角边AC和BC的长度分别为a、b,则有:a² + b² = c²二、三角函数三角函数是三角学中的重要分支,是数学和物理学中非常基础而常用的知识。
在初中数学中,学习三角函数有助于理解三角形的各种性质,同时也是后续高中数学学习的基础。
1. 正弦函数:在直角三角形ABC中,设斜边AB对应的内角为α,斜边AB的长度为c,直角边AC的长度为a,则有正弦函数:sin α = a / c2. 余弦函数:在直角三角形ABC中,设斜边AB对应的内角为α,斜边AB的长度为c,直角边BC的长度为b,则有余弦函数:cos α = b / c3. 正切函数:在直角三角形ABC中,设直角边AC对应的内角为α,直角边BC的长度为b,直角边AC的长度为a,则有正切函数:tan α = b / a4. 余切函数:在直角三角形ABC中,设直角边BC对应的内角为α,直角边BC的长度为b,直角边AC的长度为a,则有余切函数:cot α = a / b通过学习上述三角形三边关系公式和三角函数的知识,我们可以更深刻地理解三角形的结构和性质,从而更好地解决与其相关的问题。
三角形及三角函数相关定理,公式
中线三角形的一个顶点与它的对边中点的连线,平分三角形的面积的这条线叫做三角形的中线。
高过三角形的顶点作对边的垂线,垂足与顶点间的线段叫三角形的高线。
角平分线三角形的内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线中位线任意两边中点的连线。
它平行于第三边且等于第三边的一半。
[3]界心(不常见)三角形三条周界中线的交点叫做三角形的界心。
三角形界心性质:设点D、E、F分别为⊿ABC的BC、CA、AB边上的周界中点,R、r分别为⊿ABC的外接圆和内切圆的半径,则(1)S⊿DEF/S⊿ABC=r/2R;(2)S⊿DEF≤S⊿ABC/4。
五心的距离OH^2=9R^2 – (a^2+b^2+c^2),OG^2=R^2 – (a^2+b^2+c^2)/9,OI^2=R^2 – abc/(a+b+c)=R^2 – 2RrGH^2=4OG^2GI^2=(p^2+5r^2 – 16Rr)/9,HI^2=4R^2-p^2+3r^2+4Rr=4R^2+2r^2-(a^2+b^2+c^2)/2,三角函数合一变形公式两角和公式sin(A+B) = sinAcosB+c osAsinBsin(A-B) = sinAcosB-c osAsinBcos(A+B) = cosAc osB-sinAsinBcos(A-B) = cosAc osB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAc otB-1)/(cotB+cotA)cot(A-B) = (cotAc otB+1)/(cotB-cotA)倍角公式Sin2A=2SinA•Cos ACos2A=CosA^2-Si nA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] c os[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAc osB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAc osB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -s inαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= si nA/c osAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/〔1+tan^(α/2)〕cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕tanα=2tan(α/2)/〔1-tan^(α/2)〕其它公式(1)(si nα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2。
三角形及三角函数公式
三角函数一共有6个:直角三角形中:正弦:sin 对边比斜边余弦:cos 邻边比斜边正切:tan 对边比邻边余切:cot 邻边比对边正割:csc 斜边比对边余割:sec 斜边比邻边设三角形三个内角分别为A,B,C;对边分别为a,b,c正弦定理:a/sinA=b/sinB=c/sinC=2R,(R为该三角形外接圆半径)余弦定理:c2=a2+b2-2abcosCb2=a2+c2-2accosBa2=b2+c2-2bccosA由余弦定理可推导出:a=bcosC+ccosBb=ccosA+acosCc=acosB+bcosA海仑公式:SΔABC=√[p(p-a)(p-b)(p-c)],而公式里的p为半周长: p=(a+b+c)/21 三角函数公式大全一,诱导公式口诀:(分子)奇变偶不变,符号看象限.1. sin (α+k·360)=sin αcos (α+k·360)=cos atan (α+k·360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二,两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三,二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a': cos2α=1-2sin2αcos2α=2cos2α-1四*,其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b) asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a) 2.降次,配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式sin3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1) cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]7. 半角公式书p45 例4小计:57个另:三角函数口诀三角知识,自成体系,记忆口诀,一二三四。
三角函数定义及三角函数公式大全
三角函数定义及三角函数公式大全一:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余A90B90∠-︒=∠︒=∠+∠得由BA对边C角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向),南偏西60°(西南方向), 北偏西60°(西北方向)。
高中数学知识系列之三角函数,解三角形的基本公式概念及应用
高中数学知识系列之三角函数,解三角形的基本公式、概念及应用1三角不等式:(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.2 同角三角函数的基本关系式 :22sin cos 1θθ+=,tan θ=θθcos sin , 3 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 4 和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ). 5 二倍角公式及降幂公式sin 2sin cos ααα=22tan 1tan αα=+. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 22tan tan 21tan ααα=-.sin 21cos 2tan 1cos 2sin 2ααααα-==+ 221cos 21cos 2sin ,cos 22αααα-+==6 三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 三角函数的图像:7 正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=8余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.9面积定理:(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=2,2a b c S r r a b c ∆∆∆+==++斜边内切圆直角内切圆-10三角形内角和定理:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 11实数与向量的积的运算律:设λ、μ为实数,那么: (1) 结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b )=λa +λb .12a 与b 的数量积(或内积):a ·b =|a ||b |cos θ。
任意三角形三角函数公式
任意三角形三角函数公式一、正弦定理正弦定理是三角形中的重要定理之一,它描述了三角形的边长和角度之间的关系。
在任意三角形ABC中,我们可以用正弦定理来表示三角形的边长和角度之间的关系。
正弦定理的数学表达式为:a/sinA = b/sinB = c/sinC其中a、b、c分别表示三角形ABC的三边的长度,A、B、C表示对应的角度。
通过正弦定理,我们可以计算出三角形中任意一个角的正弦值,从而进一步计算出三角形的边长。
二、余弦定理余弦定理是三角形中的另一个重要定理,它描述了三角形的边长和角度之间的关系。
在任意三角形ABC中,我们可以用余弦定理来表示三角形的边长和角度之间的关系。
余弦定理的数学表达式为:c^2 = a^2 + b^2 - 2abcosC其中a、b、c分别表示三角形ABC的三边的长度,C表示对应的角度。
通过余弦定理,我们可以计算出三角形中任意一个角的余弦值,从而进一步计算出三角形的边长。
三、正切定理正切定理是三角形中的另一个重要定理,它描述了三角形的边长和角度之间的关系。
在任意三角形ABC中,我们可以用正切定理来表示三角形的边长和角度之间的关系。
正切定理的数学表达式为:tanA = a/b其中a、b分别表示三角形ABC的两边的长度,A表示对应的角度。
通过正切定理,我们可以计算出三角形中任意一个角的正切值,从而进一步计算出三角形的边长。
正弦定理、余弦定理和正切定理是三角形中常用的三角函数公式。
它们描述了三角形中边长和角度之间的关系,可以方便地计算三角形的边长和角度。
在实际应用中,这些三角函数公式被广泛运用于测量、导航、建筑等领域。
通过测量三角形的边长和角度,我们可以确定物体的位置、测量距离、计算高度等。
这些三角函数公式为我们提供了一个强大的工具,帮助我们解决实际问题。
正弦定理、余弦定理和正切定理是解决三角形问题的重要工具。
它们通过三角函数的关系,将三角形的边长和角度联系起来,为我们提供了便捷的计算方法。
三角函数的运算法则及公式
三角函数的运算法则及公式三角函数是数学中常见的一类函数,它们具有一些特殊的运算法则和公式,可以在解决各种实际问题中发挥重要作用。
本文将介绍三角函数的运算法则及公式,并通过实例来说明它们的应用。
一、三角函数的运算法则1. 和差化积法则:对于任意两个角A和B,有以下公式成立:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以将三角函数的和差化为乘积或差的形式,简化计算过程。
2. 二倍角公式:对于任意角A,有以下公式成立:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)这些公式可以将三角函数的二倍角转化为单角的形式,便于求解和计算。
3. 三倍角公式:对于任意角A,有以下公式成立:sin3A = 3sinA - 4sin^3Acos3A = 4cos^3A - 3cosAtan3A = (3tanA - tan^3A) / (1 - 3tan^2A)这些公式可以将三角函数的三倍角转化为单角的形式,用于解决一些特殊情况下的问题。
二、三角函数的常用公式1. 正弦定理:对于任意三角形ABC,有以下公式成立:a/sinA = b/sinB = c/sinC = 2R其中,a、b、c分别为三角形ABC的边长,A、B、C分别为对应的角,R为三角形的外接圆半径。
正弦定理可以用于求解三角形的边长或角度,推导其他相关公式。
2. 余弦定理:对于任意三角形ABC,有以下公式成立:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC余弦定理可以用于求解三角形的边长或角度,特别适用于已知两边和夹角的情况。
【初中数学】三角形与三角函数公式大全
【初中数学】三角形与三角函数公式大全【—三角形与三角函数】三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=ccosb+bcosc。
三角形与三角函数1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sina=b/sinb=c/sinc=2r.(其中r为外接圆的半径)2.切线定理(纳皮尔类比):三角形任意两边的差和之比等于相应半角上的差和之比,即(a-b)/(a+b)=Tan[(a-b)/2]/Tan[(a+b)/2]=Tan[(a-b)/2]/cot(C/2)三、三角形中的恒等式:对于任何非直角三角形,比如ABC,总有Tana+tanb+Tanc=tanatanbtanc证明:已知(a+b)=(π-C)所以tan(a+b)=tan(π-c)然后(Tana+tanb)/(1-tanatanb)=(Tanπ-Tanc)/(1+TanπTanc)整理可得tana+tanb+tanc=tanatanbtanc类似地,我们同样也可以求证:当α+β+γ=nπ(n∈z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ域和范围sin(x),cos(x)的定义域为r,值域为[-1,1]。
Tan(x)的定义域是x,它不等于π/2+Kπ(K)∈ z),值域为r。
cot(x)的定义域为x不等于kπ(k∈z),值域为r。
y=a·sin(x)+B·cos(x)+C的取值范围为[C-√ (a+b),C+√ (a+b)]三角函数的画法以y=SiNx的图像为例,获得y=asin的(ωx+φ)图像:方法一:Y=SiNx→ [左移](φ>0)/右移(φ<0)oooφO单位]→ y=sin(x)+φ)→ 【纵坐标保持不变,横坐标扩展到原来的(1/ω)】→y=sin(ωx+φ)→ [纵坐标更改为原始a 倍(伸长[a>1]/缩短[0]方法二:Y=SiNx→ [纵坐标保持不变,横坐标扩展到原来的(1/ω)]→y=sinωX→ 【向左移动】(φ>0)/向右移动(φ<0)oφo/ω[单位]→ y=sin(ωx+φ)→ [纵坐标更改为原始a倍(伸长[a>1]/缩短[0]温馨提示:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosa。
任意三角形三角函数公式
任意三角形三角函数公式一、正弦定理正弦定理是三角形中非常重要的一个公式,它描述了三角形的边与角之间的关系。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC其中,a、b、c分别代表三角形的边长,A、B、C分别代表对应的角度。
正弦定理的应用非常广泛,可以用来求解三角形的各个边长和角度。
例如,已知一个三角形的两条边和夹角,可以利用正弦定理求解第三条边的长度。
二、余弦定理余弦定理是三角形中另一个重要的公式,它描述了三角形的边与角之间的关系。
余弦定理可以表示为:c² = a² + b² - 2abcosC其中,a、b、c分别代表三角形的边长,C代表对应的角度。
余弦定理的应用也非常广泛,可以用来求解三角形的各个边长和角度。
例如,已知一个三角形的三条边,可以利用余弦定理求解其中一个角的大小。
三、正切定理正切定理是三角形中另一个重要的公式,它描述了三角形的边与角之间的关系。
正切定理可以表示为:tanA = a/b其中,a、b分别代表三角形的边长,A代表对应的角度。
正切定理的应用也非常广泛,可以用来求解三角形的各个边长和角度。
例如,已知一个三角形的一条边和夹角,可以利用正切定理求解另一边的长度。
正弦定理、余弦定理和正切定理是三角形三角函数公式中非常重要的三个公式。
它们描述了三角形的边与角之间的关系,可以用来求解三角形的各个边长和角度。
在实际应用中,我们经常会用到这些公式来解决各种问题,如测量不规则地形的高度、计算天体的距离等等。
因此,掌握和理解这些公式对于数学和物理的学习都是非常重要的。
在学习和应用这些公式时,我们需要注意一些常见的问题。
首先,要注意单位的统一,确保计算过程中使用的单位是一致的,否则会导致计算结果的错误。
其次,要注意角度的选择,一般使用弧度作为单位,但在实际问题中可能会使用角度制,需要进行转换。
此外,还需要注意精度问题,尽量使用精确的数值进行计算,避免舍入误差的累积。
三角公式及应用中职
三角公式及应用中职三角公式及应用一、三角公式1、余弦定理:在△ABC中,若a、b、c分别表示三边的长度,则有:a²=b²+c²-2bc·cosA。
2、正弦定理:在△ABC中, a/sin(A)=b/sin(B)=c/sin(C)。
3、正切定理:在△ABC中,a·cotA=b·cotB=c·cotC。
4、勾股定理:在直角三角形中,斜边的平方等于两直角边的平方之和,即:c²=a²+b²。
二、三角函数1、余弦函数:它是由复变函数和三角函数组合而成,用cosθ表示,记为cosx或y=cosx(x为弧度)。
2、正弦函数:它是三角函数之一,用sinθ表示,记为sinx或y=sinx(x为弧度)。
3、正切函数:它是由复变函数和三角函数组合而成,用tanθ表示,记为tanx或y=tanx(x为弧度)。
4、反余弦函数:它是一种特殊的反函数,用arccos x表示,记为y=arccos x(x为弧度)。
5、反正弦函数:它是一种特殊的反函数,用arcsin x表示,记为y=arcsin x(x为弧度)。
6、反正切函数:它是一种特殊的反函数,用arctan x表示,记为y=arctan x(x为弧度)。
三、三角公式的应用1、物理:可用来求出反射角、折射角、夹角等相关角度,并设计各类专用仪器;2、几何:我们可以用三角公式推导一些三角形的各种属性;3、天文:可以用来确定地球与太阳之间的日周期,以及其他天体的运行;4、测绘:可以用来解决道路、河流的测量和绘制;5、工程:可以应用来解决建筑计算和设计中遇到的各种三角形问题。
三角公式总结正弦定理余弦定理诱导公式二倍角公式半角公式积化和差公式和差化积公式
三角公式总结正弦定理余弦定理诱导公式二倍角公式半角公式积化和差公式和差化积公式三角公式是解决三角形问题的基本工具,包括正弦定理、余弦定理、诱导公式、二倍角公式、半角公式、积化和差公式和和差化积公式等。
下面我们详细介绍这些公式。
1. 正弦定理(Sine Rule):在一个三角形ABC中,边长a、b、c与其对应的角A、B、C满足如下关系:a/sinA = b/sinB = c/sinC这个公式可以用于求解已知三角形任意两边及其夹角,求解三角形内外角和的问题。
2. 余弦定理(Cosine Rule):在一个三角形ABC中,边长a、b、c 与其对应的角A、B、C满足如下关系:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC这个公式可以用于求解已知三角形两边及其夹角,求解三角形内外角和的问题。
3. 诱导公式(Tangent Addition Formula):对于角A和角B,有如下关系:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)tan(A-B) = (tanA - tanB) / (1 + tanA*tanB)这个公式可以用于求解角的和与差的正切值。
4. 二倍角公式(Double Angle Formula):对于角A,有如下关系:sin(2A) = 2*sinA*cosAcos(2A) = cos^2(A) - sin^2(A)tan(2A) = 2*tanA / (1 - tan^2(A))这个公式可以用于求解角的两倍角的正弦、余弦和正切值。
5. 半角公式(Half Angle Formula):对于角A,有如下关系:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]这个公式可以用于求解角的半角的正弦、余弦和正切值。
三角形中的三角函数
三角函数公式大全及其推导方法
三角函数公式大全及其推导1. 三角函数的定义由此,我们定义:如Figure I, 在ΔABC 中sin () cos () tan ()11 cot ()tan 11 sec ()cos 11 csc ()sin b c ac ba ab b ac a a cc b b cθθθθθθθθθθθθθθθ∠=∠=∠=∠===∠===∠===对边的正弦值:斜边邻边的余弦值:斜边对边的正切值:邻边邻边的余切值:对边斜边的正割值:邻边斜边的余割值:对边 备注:当用一个字母或希腊字母表示角时,可略写∠符号,但用三个子母表示时,不能省略。
在本文中,我们只研究sin 、cos 、tan 。
2. 额外的定义222222sin (sin )cos (cos )tan (tan )θθθθθθ===Ac b θC a B Figure I3. 简便计算公式22sin cos cos(90)cos sin sin(90)111tan tan tan(90)sin cos 1bA c cA b b a a A bθθθθθθθθ===-∠===-∠====-∠+= 证明:2222222222901sin sin 1sin cos 1ABC ABC a b c a b c cB A θθ∆∠=∴+=∴+=∴+=∴+=在中,证完222222sin tan cos sin cos 1tan 1cos cos cos b b c a a cθθθθθθθθθ===+=+=4. 任意三角形的面积公式如Figure II ,Ca b hd eFigure II121sin 21sin ()2ABC S ah ab C ac B ∆===两边和其夹角正弦的乘积 5. 余弦定理:任意三角形一角的余弦等于两邻边的平方和减对边的平方之差与两邻边积的两倍之比。
证明: 如Figure II,2222222222222222222222(cos )(sin )2cos cos sin =2cos (cos sin )2cos cos 22b d h a c B c B a ac B c B c Ba ac B c B B a c ac Bb ac a c b B ac ac=+=-+=-++-++=+---+-⇒==-证完6. 海伦公式 证明: 如Figure II ,1sin 212121212ABC S ab C ∆=========2ABC a b c s S ∆===++=设:7. 正弦定理如 Figure III ,c 为ΔABC 外接圆的直径,sin 2 sin a A cac r r ABC A =∴==∆(为的外接圆半径)同理:, sin sin 2sin sin sin b c c c B Ca b c r A BC ==∴===Figure III8. 加法定理(1)两角差的余弦如 Figure IV,AOC BOC AOB αβαβ∠=∠∠=∠∠=∠-∠令AO=BO=r点A 的横坐标为cos A x r α= 点A 的纵坐标为sin A y r α= 点B 的横坐标为cos B x r β= 点B 的纵坐标为sin B y r β=()()()()()()22222222222222222222222222sin sin cos cos sin sin 2sin sin cos cos 2cos cos sin sin 2sin sin cos cos 2cos cos sin cos sin cos 2sin sin 2cos cos 112s A B A B AB y y x x r r r r r r r r r r r r r αββααβαβαβαβαβαβαβαβααββαβαβ=-+-=-+-=+-++-=+-++-=+++--=+-()()()22in sin cos cos 22sin sin cos cos 21sin sin cos cos r r αβαβαβαβαβαβ+⎡⎤⎣⎦=-+⎡⎤⎣⎦=-+⎡⎤⎣⎦Figure IV由余弦公式可得:()()()()2222222222cos 2cos 22cos 22cos 21cos AB AC BC AC BC ACBr r r r r r r r αβαβαβαβ=+-⋅∠=++⋅-=+-=--⎡⎤⎣⎦=--⎡⎤⎣⎦综上得:()cos sin sin cos cos αβαβαβ-=+ (2)两角和的余弦 ()()()()cos cos sin sin cos cos sin sin cos cos cos cos sin sin αβαβαβαβαβαβαβαβ+=--⎡⎤⎣⎦=-+-=-+=-(3)两角和的正弦()()()()()sin cos 90cos 90sin 90sin cos 90cos cos sin sin cos αβαβαβαβαβαβαβ+=︒-+⎡⎤⎣⎦=︒--⎡⎤⎣⎦=︒-+︒-=+(4)两角差的正弦 ()()()()sin sin cos sin sin cos cos sin sin cos sin cos cos sin αβαβαβαβαβαβαβαβ-=+-⎡⎤⎣⎦=-+-=-+=-(5)两角和的正切()()()sin tan cos cos sin sin cos cos cos sin sin cos sin sin cos cos cos cos cos sin sin cos cos sin sin cos cos sin sin 1cos cos tan tan 1tan tan αβαβαβαβαβαβαβαβαβαβαβαβαββαβααβαβαβαβ++=++=-+=-+=-+=-(6)两角差的正切()()()()tan tan tan tan 1tan tan tan tan 1tan tan αβαβαβαβαβαβ-=+-⎡⎤⎣⎦+-=---=+9. 两倍角公式()()()()()()()222222222222sin 2sin sin cos sin cos 2sin cos cos 2cos cos cos sin sin cos sin 12sin 2cos 1sin 2tan 2cos 22sin cos cos sin 2sin cos cos cos sin cos 2sin cos sin 1cos 2tan 1ta αααααααααααααααααααααααααααααααααααααα=+=+==+=-=-=-=-==-=-=-=-2n α10.积化和差公式()()()()1sin cos 2sin cos 21sin cos sin cos cos sin cos sin 21sin sin 2αβαβαβαβαβαβαβαβ==++-=++-⎡⎤⎣⎦()()()()()()()()1cos cos 2cos cos 21cos cos cos cos sin sin sin sin 21cos cos 21sin sin 2sin sin 21sin sin sin sin cos cos cos cos 21cos cos 2αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ==++-=++-⎡⎤⎣⎦==++-=+--⎡⎤⎣⎦ 11.和差化积公式(1)设:A=α+β, B=α-β,()()()()sin sin sin sin sin cos cos sin sin cos cos sin 2sin cos 2sin cos 222sin cos 22sin sin sin sin sin cos cos sin sin cos cos sin 2cos si A B A B A B A B αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβα+=++-=++-=++-+--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭-=+--=+-+=n 2cos sin 222cos sin 22A B A B βαβαβαβαβ++-+-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2)设:cos sin αα==∵22cos sin 1αα+=()()sin sin cos cos sin sin cos sin sin b a θθθθαθαθαθ+=+=+=+12.其他常用公式()()()()()()()()()()()()()()000sin 360sin cos 360cos tan 360tan sin 90cos cos 90sin 1tan 90tan sin 90cos cos 90sin 1tan 90tan sin 90cos cos 90sin 1tan 90tan sin 180sin cos 180cos n n n θθθθθθθθθθθθθθθθθθθθθθθθθθθ+⨯=+⨯=+⨯=︒-=︒-=︒-=︒+=︒+=-︒+=--︒=--︒=-︒=-︒-=︒-=-()()()()()()()()tan 180tan sin 180sin cos 180cos tan 180tan sin sin cos cos tan tan tan 2190 1cos 1cos 11sin 1sin 1n θθθθθθθθθθθθθθθθθθθ︒-=-±︒=-±︒=-±︒=-=--=-=-+⨯︒⎡⎤⎣⎦-≤≤⇒≤-≤≤⇒≤不存在在计算机中,三角函数的算法是这样的,其中x 用弧度计算()()1357210246sin 1!3!5!7!21!cos 0!2!4!6!2!n n nn x x x x x x n x x x x x x n +=∞=∞=-+-+=+=-+-+=∑∑推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径) 由正弦定理有a/sinA=b/sinB=c/sinC=2R所以a=2R*sinAb=2R*sinBc=2R*sinC加起来a+b+c=2R*(sinA+sinB+sinC)带入(a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R 两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式Sin2A=2SinA?CosA对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB) 平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*( n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*( n-1)/n]=0以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
三角恒等变换的基本公式与应用
三角恒等变换的基本公式与应用三角恒等变换是指由三角函数之间的关系,通过变换得到等价关系的过程。
它们是解决三角函数计算和证明题非常有用的工具。
本文将介绍三角恒等变换的基本公式、根据这些公式的应用以及相关的数学问题。
一、基本公式1. 正弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则正弦定理表达式如下:a/sin(A) = b/sin(B) = c/sin(C)该定理可以用于求解三角形的边长或角度,甚至用于构造和证明三角形的性质。
2. 余弦定理对于任意三角形ABC,其三边长度分别为a、b、c,夹角分别为A、B、C,则余弦定理表达式如下:c² = a² + b² - 2abcos(C)该定理可以用于求解三角形的边长或角度,尤其适用于解决非特殊角的计算问题。
3. 正弦、余弦、正切的关系三角函数的基本关系:sin²(A) + cos²(A) = 1tan(A) = sin(A)/cos(A)这些关系可以通过三角函数间的相互转化和运算来推导和应用。
二、应用1. 角度推导与证明三角恒等变换的基本公式可以用于推导和证明角度之间的关系。
例如,我们可以利用正弦定理推导两角和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)这个公式在三角函数运算中非常常用。
2. 三角函数的化简与计算三角函数的公式化简是三角恒等变换的重要应用之一。
例如,我们可以利用tan(A) = sin(A)/cos(A)将复杂的三角函数表达式化简为更简洁的形式。
另外,当我们需要计算某些特殊角度的三角函数值时,也可以利用三角恒等变换的公式得到准确的数值结果。
3. 三角方程的求解三角方程是指含有未知角度的方程。
解决三角方程的关键是将其转化为已知角度的三角函数公式。
通过利用三角恒等变换的公式,我们可以将复杂的三角方程转化为简单的代数方程,从而求解出未知角度的值。
三角函数公式及证明
三角函数公式及证明(本文由**************编辑整理 2013.5.3)基本定义1.任意角的三角函数值:在此单位圆中,弧AB 的长度等于α; B 点的横坐标αcos =x ,纵坐标αsin =y ;(由 三角形OBC 面积<弧形OAB 的面积<三角形OMA 的面积 可得: a a tan sin <<α (20πα<<))2.正切:αααcos sin tan =基本定理1.勾股定理: 1cos sin 22=+αα 1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos bca cb A 2cos 222-+=⇒3.诱导公试:απ±k 2cottan cossin ⇔⇔奇变偶不变,符号看相线4.正余弦和差公式:①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±推导结论1. 基本结论ααα2sin 1)cos (sin 2+=+αα22cos 11tan =+ 2. 正切和差公式:βαβαβαβαβαβαβαβαβαtan tan 1tan tan sin sin cos cos sin cos cos sin )cos()sin()tan( ±=⎪⎪⎭⎫ ⎝⎛±=±±=±3.二倍角公式(包含万能公式):θθθθθθθθθ222tan 1tan 2cos sin cos sin 2cos sin 22sin +=⎪⎭⎫ ⎝⎛+== θθθθθθθθθθθ2222222222tan 1tan 1cos sin sin cos sin 211cos 2sin cos 2cos +-=⎪⎪⎭⎫ ⎝⎛+-=-=-=-=θθθθθ2tan 1tan 22cos 2sin 2tan -==θθθθ222tan 1tan 22cos 1sin +=-=22cos 1cos 2θθ+=4.半角公式:(符号的选择由2θ所在的象限确定)2cos 12sinθθ-±= 2cos 12sin 2θθ-= 2sin 2cos 12θθ=- 2cos 12cosθθ+±= 2cos 12cos 2θθ+= 2cos 2cos 12θθ=+ θθθθθθθθθθθθθθθsin cos 12sin 2cos 2sin2sincos 1sin 2cos2cos 2cos2sin cos 1cos 12tan-=••=+=••=+-±=2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±5.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(21sin sin6.和差化积公式:①2cos 2sin 2sin sin βαβαβα-+=+ ②2sin2cos 2sin sin βαβαβα-+=- ③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=-7.三角形面积公式S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin=R abc 4 =2R 2A sin B sin C sin=AC B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (海伦公式,证明见下文)(其中)(21c b a p ++=, r 为三角形内切圆半径)定理结论的证明1. 勾股定理的证明:本证明选自《几何原本》(欧几里得)第I卷命题47.2.正弦定理的证明:做三角形外接圆进行证明;需利用结论同弧所对的圆周角相等,及直径所对圆周角为直角;同弧所对圆周角相等的证明:本证明选自《几何原本》(欧几里得)第III卷命题20. 直径所对圆周角为直角的证明:本证明选自《几何原本》(欧几里得)第III卷命题31.3.余弦定理的证明:本证明选自《几何原本》(欧几里得)第II卷命题12,13.4.诱导公式的证明:同理可证ααπαππαπcos )2sin()2sin()23sin(-=+-=++=+ ααπαππαπsin )2cos()2cos()23cos(=+-=++=+ 本证明选自人教版高中数学教材.5.正余弦和差公式的证明:))(sin()sin(βαβα--=+可得)sin(βα+的结论本证明选自人教版高中数学教材.5. 海伦公式的证明:本证明选自/view/78e82de50975f46527d3e182.html。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中线
三角形的一个顶点与它的对边中点的连线,平分三角形的面积的这条线叫做三角形的中线。
高
过三角形的顶点作对边的垂线,垂足与顶点间的线段叫三角形的高线。
角平分线
三角形的内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线
中位线
任意两边中点的连线。
它平行于第三边且等于第三边的一半。
[3]
界心(不常见)
三角形三条周界中线的交点叫做三角形的界心。
三角形界心性质:设点D、E、F分别为⊿ABC的BC、CA、AB边上的周界中点,R、r分别为⊿ABC的外接圆和内切圆的半径,则
(1)S⊿DEF/S⊿ABC=r/2R;
(2)S⊿DEF≤S⊿ABC/4。
五心的距离
OH^2=9R^2 – (a^2+b^2+c^2),
OG^2=R^2 – (a^2+b^2+c^2)/9,
OI^2=R^2 – abc/(a+b+c)=R^2 – 2Rr
GH^2=4OG^2
GI^2=(p^2+5r^2 – 16Rr)/9,
HI^2=4R^2-p^2+3r^2+4Rr=4R^2+2r^2-(a^2+b^2+c^2)/2,
三角函数合一变形公式
两角和公式
sin(A+B) = sinAcosB+c osAsinB
sin(A-B) = sinAcosB-c osAsinB
cos(A+B) = cosAc osB-sinAsinB
cos(A-B) = cosAc osB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAc otB-1)/(cotB+cotA)
cot(A-B) = (cotAc otB+1)/(cotB-cotA)
倍角公式
Sin2A=2SinA•Cos A
Cos2A=CosA^2-Si nA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] c os[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAc osB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAc osB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α) = -s inα
cos(-α) = cosα
tan (—a)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π+α) = -sinα
cos(π+α) = -cosα
tanA= si nA/c osA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/〔1+tan^(α/2)〕
cosα=〔1-tan^(α/2)〕/1+tan^(α/2)〕
tanα=2tan(α/2)/〔1-tan^(α/2)〕
其它公式
(1)(si nα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2。