2017学年四川省成都七中高二上学期期末数学试卷及参考答案(理科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.(5分)命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()

A.充要条件B.充分非必要条件

C.必要非充分条件 D.既不充分也不必要条件

2.(5分)成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()

A.简单随机抽样B.按性别分层抽样

C.按年级分层抽样 D.系统抽样

3.(5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离

4.(5分)已知双曲线的离心率为2,那么双曲线的渐近

线方程为()

A.B.x±y=0 C.2x±y=0 D.

5.(5分)函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f (x0)≤0的概率是()

A.B.C.D.

6.(5分)设实数x,y满足,则μ=的取值范围是()A.[,2]B.[,]C.[,2]D.[2,]

7.(5分)有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()

A.200 B.180 C.150 D.280

8.(5分)柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是

B.取出的鞋都是左脚的概率是

C.取出的鞋都是同一只脚的概率是

D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是

9.(5分)执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()

A.z≤42? B.z≤20? C.z≤50? D.z≤52?

10.(5分)某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()

A.B.

C.D.

11.(5分)如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()

A.随着角度θ的增大,e1增大,e1e2为定值

B.随着角度θ的增大,e1减小,e1e2为定值

C.随着角度θ的增大,e1增大,e1e2也增大

D.随着角度θ的增大,e1减小,e1e2也减小

12.(5分)以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y 0>0)满足=,则﹣S()

A.2 B.4 C.1 D.﹣1

二、填空题(每题5分,满分20分,将答案填在答题纸上)

13.(5分)命题∀x∈R,|x|<0的否定是.

14.(5分)已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.

15.(5分)在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为.

16.(5分)已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是.

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)

17.(10分)某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).

(1)求居民收入在[3000,3500)的频率;

(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;

(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?

18.(12分)口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.

(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;

(2)求抽取的编号能使方程a+b+2c=6成立的概率.

19.(12分)某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.

(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;

(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为 4.5元/件,为使科研所获利最大,该产品定价应为多少?

(附:=,=﹣,=8.5,=80)

20.(12分)已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m ﹣4=0.

(1)求证:直线l与⊙C恒有两个交点;

(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.

21.(12分)已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.

(1)求曲线C的方程;

(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.

22.(12分)已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;

(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;

(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C 交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.

相关文档
最新文档