极坐标与参数方程习题
极坐标及参数法方程练习题
极坐标练习题
1.点N M ,分别是曲线2sin =θρ和θρcos 2=上的动点,则MN 的最小值是 。
2. 将极坐标方程cos()4π
ρθ=-化为直角坐标方程是______________.
3.在极坐标系中,直线(sin cos )2ρθθ-=被圆4sin ρθ=截得的弦长为 .
4. 在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ 图5
的距离的最小值是 .
5.在极坐标系中,直线1sin =θρ与圆θρcos 2=的交点的极坐标为 .
6.两直线sin()2008,sin()200944
ππρθρθ+=-=的位置关系 7.在极坐标系中,圆2cos ρθ=的圆心的极坐标是 ,它与方程π4θ=
(0ρ>)所表示的图形的交点的极坐标
. )47,2( ,22)4sin()( .14到这条直线的距离为点则为已知直线的极坐标方程题坐标系与参数方程选做ππθρA =+
9.坐标系与参数方程)在极坐标系中,圆2ρ=上的点到直线()
6sin 3cos =+θθρ的距
离的最小值是
10.(2009广东五校)极坐标方程分别是cos ρθ=和 sin ρθ=的两个圆的圆心距是 .。
极坐标与参数方程经典练习题-带详细解答汇编
1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 8cos ρθθ=.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB .2.已知直线l 经过点1(,1)2P ,倾斜角α=6π,圆C 的极坐标方程为)4πρθ=-.(1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(I )求圆心C 的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值. 4.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合,且两坐标系有相同的长度单位,圆C 的参数方程为12cos 12sin x y αα=+⎧⎨=-+⎩(α为参数),点Q的极坐标为7)4π。
(1)化圆C 的参数方程为极坐标方程;(2)直线l 过点Q 且与圆C 交于M ,N 两点,求当弦MN 的长度为最小时,直线l 的直角坐标方程。
5.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.6.(本小题满分10分) 选修4-4坐标系与参数方程在直角坐标系中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x ,(α为参数) M 是曲线1C 上的动点,点P 满足2=,(1)求点P 的轨迹方程2C ;(2)在以D 为极点,X 轴的正半轴为极轴的极坐标系中,射线3πθ=与曲线1C ,2C 交于不同于原点的点A,B 求AB7.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ⎛⎫-⎪⎝⎭,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标;(2)求直线OM 的极坐标方程.8.在直角坐标系中,曲线C 1的参数方程为:2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2是极坐标方程为:cos ρθ=, (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求PQ 的最小值.9.已知圆C 的极坐标方程为2cos ρθ=,直线l的参数方程为1221122x x t ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数),点A的极坐标为24π⎛⎫⎪ ⎪⎝⎭,设直线l 与圆C 交于点P 、Q .(1)写出圆C 的直角坐标方程;(2)求AP AQ ⋅的值.10.已知动点P ,Q 都在曲线C :2cos 2sin x ty t=⎧⎨=⎩(β为参数)上,对应参数分别为t α=与2t α=(0<α<2π),M 为PQ 的中点。
极坐标与参数方程题型大全及答案
参 数 方 程 集 中 训 练 题型 大 全一、回归教材数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x t t y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =5.点M 的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x t l t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A , 则AB =_______________.4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
高中数学极坐标与参数方程大题(详解)
参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),把直线C3:(t为参数)化为普通方程得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)点到直线的距离(6分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)6.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.7.选修4﹣4:参数方程选讲已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为,曲线C的极坐标方程为.(Ⅰ)写出点P的直角坐标及曲线C的普通方程;(Ⅱ)若Q为C上的动点,求PQ中点M到直线l:(t为参数)距离的最小值.解解(1)∵P点的极坐标为,答:∴=3,=.∴点P的直角坐标把ρ2=x2+y2,y=ρsinθ代入可得,即∴曲线C的直角坐标方程为.(2)曲线C的参数方程为(θ为参数),直线l的普通方程为x﹣2y﹣7=0设,则线段PQ的中点.那么点M到直线l的距离.,∴点M到直线l的最小距离为.8.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解答:解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.9.在直角坐标系xoy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P的坐标.解答:解:(1)由曲线C1:,可得,两式两边平方相加得:,即曲线C1的普通方程为:.由曲线C2:得:,即ρsinθ+ρcosθ=8,所以x+y﹣8=0,即曲线C2的直角坐标方程为:x+y﹣8=0.(2)由(1)知椭圆C1与直线C2无公共点,椭圆上的点到直线x+y﹣8=0的距离为,∴当时,d的最小值为,此时点P的坐标为.10.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.解答:解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)11.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].12.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos ()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.13.在直角坐标系xOy中,l是过定点P(4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O为极点,以x轴非负半轴为极轴,取相同单位长度)中,曲线C的极坐标方程为ρ=4cosθ(Ⅰ)写出直线l的参数方程,并将曲线C的方程化为直角坐标方程;(Ⅱ)若曲线C与直线相交于不同的两点M、N,求|PM|+|PN|的取值范围.解答:解:(I)直线l的参数方程为(t为参数).曲线C的极坐标方程ρ=4cosθ可化为ρ2=4ρcosθ.把x=ρcosθ,y=ρsinθ代入曲线C的极坐标方程可得x2+y2=4x,即(x﹣2)2+y2=4.(II)把直线l的参数方程为(t为参数)代入圆的方程可得:t2+4(sinα+cosα)t+4=0.∵曲线C与直线相交于不同的两点M、N,∴△=16(sinα+cosα)2﹣16>0,∴sinαcosα>0,又α∈[0,π),∴.又t1+t2=﹣4(sinα+cosα),t1t2=4.∴|PM|+|PN|=|t1|+|t2|=|t1+t2|=4|sinα+cosα|=,∵,∴,∴.∴|PM|+|PN|的取值范围是.14.在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.解答:解:(I)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(II)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).15.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.解答:解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0)(Ⅰ)求圆心C的极坐标;(Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3.解答:解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0.由得C:圆心(﹣,﹣).∴圆心C的极坐标(1,).(2)在圆C:的圆心到直线l的距离为:∵圆C上的点到直线l的最大距离为3,∴.r=2﹣∴当r=2﹣时,圆C上的点到直线l的最大距离为3.17.选修4﹣4:坐标系与参数方程在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(Ⅱ)求圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1从而于是圆C1,C2的公共弦的参数方程为.。
极坐标与参数方程-习题及答案
金材教育 极坐标与参数方程未命名1.在直角坐标系xOy 中,曲线C 1的参数方程为{x =cosαy =1+sinα (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2.(1(写出C 1的普通方程和C 2的直角坐标方程((2)直线y =x 与C 1交于异于原点的A ,与C 2交于点B ,求线段AB 的长. 【答案】(1)x 2+(y −1)2=1;C 2:x +y =4. (2)|AB |=√2.【解析】分析:(1)利用sin 2α+cos 2α=1,将曲线C 1的参数方程化为普通方程,由{x =ρcosθy =ρsinθ 求出C 2的直角坐标方程;(2)由直线的参数方程的意义,求出线段AB 的长。
详解:(1)C 1:{x =cosαy =1+sinα (α为参数)的普通方程是x 2+(y −1)2=1.∵ρsin (θ+π4)=2√2,整理得√22ρsinθ+√22ρcosθ=2√2,∴C 2的直角坐标方程为x +y =4; 故C 1:x 2+(y −1)2=1;C 2:x +y =4.(2)直线y =x 的极坐标方程为θ=π4,C 1的极坐标方程为ρ=2sinθ, ∴点A (√2,π4),B (2√2,π4),即ρA =√2,ρB =2√2, 于是|AB |=ρB −ρA =√2.点睛:本题主要考查曲线的普通方程、直角坐标方程的求法等,属于基础题。
考查了推理论证能力,运算求解能力。
2.(本题满分10分)选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.【答案】(1);(2)85。
【解析】试题分析:(1)根据曲线的参数方程,两式相加消去参数,即可得到普通方程;由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,可化为直角坐标方程;(2)将,代入直角坐标方程,整理后,利用=t1t2即可求解.试题解析:(1)两式相加消去参数t可得曲线的普通方程,由曲线的极坐标方程得ρ2=41+3sin2θ⇒ρ2+3ρ2sin2θ=4,整理可得曲线的直角坐标方程.(2)将代人直角坐标方程得利用韦达定理可得,所以|MA||MB|=考点:简单曲线的极坐标方程;直线的参数方程.3.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为:{x=√55ty=9+2√55t(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=8sinθ.(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,点P 的坐标为(0,9),求1|PA |+1|PB |. 【答案】(1)x 2+(y −4)2=16;2x −y +9=0. (2)4√59. 【解析】分析:(1)消元法解出直线C 1的普通方程,利用直角坐标和极坐标的互化公式解出圆C 2的直角坐标方程(2)将直线C 1的参数方程为代入圆C 2的直角坐标方程并化简整理关于t 的一元二次方程。
极坐标系与参数方程专题
练习题学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、选择题1.在极坐标系中,点)65,2(π到直线4)3sin(=-πθρ的距离为( ) A .1 B .2 C .3 D .4 2.在极坐标系中,设圆C :4cos ρθ=与直线:(R)4l πθρ=∈交于A ,B 两点,求以AB 为直径的圆的极坐标方程为( ) A .22sin()4πρθ=+B .22sin()4πρθ=-C .22cos()4πρθ=+D .22cos()4πρθ=-3.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( ) A .221x y +=或1y = B .1x =C .221x y +=或1x = D .1y =4.已知圆的直角坐标方程为2220x y y +-=.在以原点为极点,x 轴正半轴为极轴的极坐标系中,该圆的方程为()A .2cos ρθ=B .2sin ρθ=C .2cos ρθ=-D .2sin ρθ=-5.在极坐标中,与圆4sin ρθ=相切的一条直线方程为( )A .sin 2ρθ=B .cos 2ρθ=C .cos 4ρθ=D .cos 4ρθ=-6.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是( )(A )圆和直线 (B )直线和直线 (C )椭圆和直线 (D )椭圆和圆 评卷人 得分二、填空题7.在极坐标系中,经过点)3,4(π且与极轴垂直的直线的极坐标方程为 .8.(坐标系与参数方程选做题)极坐标系下,直线2)4cos(=-πθρ与圆2=ρ的公共点个数是________;9.极坐标系中,圆θρsin 4=的圆心到直线)(3R ∈=θπθ 的距离是 .10.已知圆C 的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为 .三、解答题(题型注释)11.在平面直角坐标系中,已知直线l 过点(),12P - ,倾斜角6πα=,再以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为3ρ=. (Ⅰ)写出直线l 的参数方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 分别交于、M N 两点,求PM PN ⋅的值.12.在极坐标系中,已知曲线)4sin(22:πθρ-=C ,P 为曲线C 上的动点,定点)4,1(πQ .(1)将曲线C 的方程化成直角坐标方程,并说明它是什么曲线; (2)求P 、Q 两点的最短距离.13.在平面直角坐标系xOy 中,直线l 经过点(10)A -,,其倾斜角是α,以原点O 为极点,以x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程是26cos 5ρρθ=-.(Ⅰ)若直线l 和曲线C 有公共点,求倾斜角α的取值范围; (Ⅱ)设()B x y ,为曲线C 任意一点,求3x y +的取值范围.14.在直角坐标系xoy 中,直线l 的参数方程为212242x ty t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数).再以原点为极点,以x 正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy 有相同的长度单位.在该极坐标系中圆C 的方程为4sin ρθ=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点M 的坐标为()2,1-,求MA MB +的值.15.在极坐标系中,已知点A 的极坐标为(22,)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系16.已知曲线1C 的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0,02ρθπ≥≤<).17.在平面直角坐标系xoy 中,已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),将1C 上的所有点的横坐标、纵坐标分别伸长为原来的2和2倍后得到曲线2C ,以平面直角坐标系xoy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线():2cos sin 4l ρθθ+=.(1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程;(2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值.18.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线12cos :3sin x C y αα=-+⎧⎨=+⎩(α为参数),28cos :23sin x Cy θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)将12,C C 的方程化为普通方程,并说明它们分别表示什么曲线; (2)若1C 上的点P 对应的参数为2πα=,Q 为2C 上的动点,求PQ 中点M 到直线l :cos 33πρθ⎛⎫-= ⎪⎝⎭的距离的最大值.19.在直角坐标系中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.20.在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为2,4π⎛⎫⎪⎝⎭,直线的极坐标方程为cos 4a πρθ⎛⎫-= ⎪⎝⎭,且点A 在直线上.(1)求a 的值及直线的直角坐标方程;(2)圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线与圆的位置关系.21.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为()2sincos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为222242x ty t ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB ⋅=,求a 的值.22.在直角坐标系xoy 中,直线l 的参数方程为122322x t y t ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),若以直角极坐标方程为2cos()4πρθ=-.(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于,A B 两点,求AB 的距离.23.已知在直角坐标系xOy 中,曲线t t y t x C (,233,211:1⎪⎪⎩⎪⎪⎨⎧+-=+-=为参数,)2≠t ,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线θρsin 32:2=C ,曲线θρcos 2:3=C . (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 2与C 1相交于点A ,C 3与C 1相交于点B ,求||AB 的值.24.在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程; (Ⅱ)射线4:πθ=OM 与圆C 的交点为O 、P 两点,求P 点的极坐标.25.已知曲线C 的参数方程是()cos sin x y m ααα=⎧⎨=+⎩为参数,直线l 的参数方程为()5152545x t t y t ⎧=+⎪⎪⎨⎪=+⎪⎩为参数, (1)求曲线C 与直线l 的普通方程;(2)若直线l 与曲线C 相交于,P Q 两点,且455PQ =,求实数m 的值。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
极坐标参数方程全套试题
极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。
A. 53,-⎛⎝ ⎫⎭⎪πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( )A 、线段B 、双曲线的一支C 、圆D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。
2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。
(其中O 是极点)3、极点到直线()cos sin 3ρθθ+=的距离是________ _____。
4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。
5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。
6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。
三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。
2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。
极坐标参数方程大题(含答案)
1、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程; (2与圆交于点,求线段的长.2、在直角坐标系中,以原点为极点,点的,点,曲线.(1和直线的极坐标方程;(2)过点的射线交曲线于点,交直线于点,若,求射线所在直线的直角坐标方程.3、在平面直角坐标系中,直线(为参数).在以原点为极点,轴正半轴为极轴的极坐标中,圆的方程为 (1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求xOy C O xC C ,M N MN O A B 22:(1)1C x y -+=AB O l C M AB N ||||2OM ON =l xOy l t O x C l C P C l B A ,4、在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为(1)求直线和曲线的普通方程; (2)已知点,且直线和曲线交于两点,求的值5、在平面直角坐标系中,直线经过点,倾斜角为在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)写出直线的参数方程和曲线的直角坐标方程; (2)设直线与曲线相交于两点,求.6、在平面直角坐标系中,直线(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为.(1)求直线的极坐标方程及曲线C 的直角坐标方程;(2)若是直线C最大值.xOy C 244x k y k ⎧=⎨=⎩k x l l C (2,0)P l C A B ,||||||PA PB -l ()0,1P x C 4sin ρθ=l C l C A B 、xoy l t x 2sin ρθ=l ()1,A ρθl参考答案1、【答案】(1(2试题分析:(1)由,得到圆的极坐标方程;(2)将直线的极坐标代入,得到,所以试题解析: (1(2得,∴,,∴2、【答案】(1),;(2).试题分析:(1)将代入化简得.同理求出点,的直角坐标分别为,,所以的直角坐标方程为,极坐标方程为;(2)设射线,代入曲线得,代入直线得:,代入求得,即方程为. 试题解析:(1)点,的直角坐标分别为,,所以直线的极坐标方程为;曲线化为极坐标为(2)设射线,代入曲线得,代入直线得:所以射线所在直线的直角坐标方程为 考点:坐标系与参数方程.cos ,sin x y ρθρθ==2250ρρ--=2250ρρ--=122ρρ+=125ρρ=-2cos ρθ=sin 3ρθ=3y x =cos ,sin x y ρθρθ==22(1)1x y -+=2cos ρθ=A B (0,3)A AB 3y =sin 3ρθ=:l θα=C 2cos M ρα=AB ||||2OM ON =tan 3α=3y x =A B (0,3)A AB sin 3ρθ=C 2cos ρθ=:l θα=C 2cos M ρα=AB l 3y x =3、【答案】(1(2试题分析:(1)将参数方程转化为直角坐标系下的普通方程,需要根据参数方程的结构特征,选取恰当的消参方法,常见的消参方法有:代入消参法、加减消参法、平方消参法;(2)将参数方程转化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若有范围限制,要标出的取值范围;(2)直角坐标方程化为极坐标方程,只需把公式及直接代入并化简即可;而极坐标方程化为极坐标方程要通过变形,构造形如,,的形式,进行整体代换,其中方程的两边同乘以(或同除以)及方程的两边平方是常用的变形方法.试题解析:(1得直线得圆的直角坐标方程为把直线的参数方程代入圆的直角坐标方程,得故可设,又直线l ,两点对应的参数分别为,,考点:1、参数方程与普通方程的互化;2、直线与圆的综合问题.4、【答案】(1)(2试题分析:(1)消去曲线C 中的参数可得C 的普通方程,利用极坐标与直角坐标的互化公式可得直线的普通方程.(2)由直线的普通方程可知直线过P ,写出直线的参数方程,与曲线C 的普通方程联立,利用直线参数的几何意义及韦达定理可得结果. 【详解】(1)因为曲线的参数方程为(为参数),所以消去参数,得曲线的普通方程为y x ,y x ,θρcos =x θρsin =y θρcos θρsin 2ρρl C l C 1t 2t B A ,1t 2t 24y x =l l l C 244x k y k ⎧=⎨=⎩k k C 24y x =因为直线所以直线(2)因为直线经过点,所以得到直线(为参数)把直线的参数方程代入曲线的普通方程,得【点睛】本题考查了直角坐标方程与极坐标方程及参数方程的互化,考查了直线参数方程及参数的几何意义,属于中档题.5、【答案】(1)直线(为参数);曲线的直角坐标方程为;(2试题分析:(1)先根据直线参数方程标准式写直线的参数方程,利用化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方试题解析:(1)直线(为参数). ∵,∴,∴,即, 故曲线的直角坐标方程为.l l l 20P (,)l t l C l t C ()2224x y +-=l y sin ,x cos ρθρθ==l t 4sin ρθ=24sin ρρθ=224x y y +=()2224x y +-=C ()2224x y +-=(2)将的参数方程代入曲线的直角坐标方程,得,显然,∴,∴6、【答案】(1,曲线;(2)2试题分析:(1)消去参数可得直线的普通方程,利用公式可把极坐标方程与直角坐标方程互化;(2这个最大值易求.【详解】(1)∵直线(为参数),∴消去参数,得直线由,得直线C的极坐标方程为,即,∴由,,得曲线C的直角坐标方程为.(2)∵在直线C上,l C230t t--=∆>2121,3lt t t t+==-2220x y y+-=cos,sinx yρθρθ==l tlcos,sinx yρθρθ==l2sinρθ=22sinρρθ=222x yρ=+sin yρθ=2220x y y+-=()1,Aρθl2【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,掌握公是解题基础,在求论易得,学习时应注意体会.cos,sinx yρθρθ==。
极坐标与参数方程经典题型(附含详细解答)
专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
极坐标、参数方程练习题
2017年5月25日极坐标、参数方程一、选择题(共7小题;共35分)1. 已知点的极坐标为,那么将点的极坐标化成直角坐标为A. B.C. D.2. 极坐标方程表示的图形是A. 两个圆B. 一条直线和一条射线C. 两条直线D. 一个圆和一条射线3. 将点的极坐标化成直角坐标为A. B. C. D.4. 已知点的极坐标是,则过点且垂直于极轴的直线的极坐标方程是A. B. C. D.5. 极坐标方程和参数方程(为参数)所表示的图形分别是A. 直线、直线B. 直线、圆C. 圆、圆D. 圆、直线6. 在极坐标系中,直线与圆的交点的极坐标为A. B. C. D.7. 极坐标方程表示的图形是A. 两个圆B. 两条直线C. 一个圆和一条射线D. 一条直线和一条射线二、填空题(共9小题;共45分)8. 如图,过点作边长为的等边,边上的高为.设的外接圆为圆,现以顶点为极点,以射线为极轴建立极坐标系,规定在极坐标系中,点的极坐标满足:,,则图中,(1)点的极坐标为;(2)圆的极坐标方程为;(3)直线的极坐标方程为.9. (坐标系与参数方程)在极坐标系中,直线过点且与直线垂直,则直线极坐标方程为.10. 已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,则与交点的直角坐标为.11. 在直角坐标系中,曲线和的参数方程分别为为参数和为参数.以原点为极点,轴正半轴为极轴,建立极坐标系,则曲线与的交点的极坐标为.12. 已知直线(为参数且)与曲线(是参数且),则直线与曲线的交点坐标为.13. 在极坐标系中,点到圆的圆心的距离为.14. 在极坐标系中,曲线与的交点的极坐标为.15. 曲线与极轴交点的极坐标是.16. 在极坐标系中,曲线与的公共点到极点的距离为.三、解答题(共6小题;共70分)17. 已知直线(为参数),圆(为参数).(1)当时,求被截得的线段的长;(2)过坐标原点作的垂线,垂足为,当变化时,求点轨迹的参数方程,并指出它是什么曲线.18. 在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程;(2)求与交点的极坐标(,).19. 在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)写出曲线的普通方程和极坐标方程;(2)若直线与曲线相交于点,两点,且,求证为定值,并求出这个定值.20. 在直角坐标系中,已知点,直线:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系;曲线的极坐标方程为;直线与曲线的交点为,.(1)求直线和曲线的普通方程;(2)求的值.21. 在直角坐标系中,曲线(为参数,),其中.在以为极点,轴正半轴为极轴的极坐标系中,曲线,.(1)求与交点的直角坐标;(2)若与相交于点,与相交于点,求的最大值.22. 在平面直角坐标系中,倾斜角为的直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.(1)写出直线的普通方程和曲线的直角坐标方程;(2)已知点.若点的极坐标为,直线经过点且与曲线相交于,两点,设线段的中点为,求的值.答案第一部分1. D2. D 【解析】因为,所以或,所以或轴正半轴,所以极坐标方程表示的图形是一个圆和一条射线.3. B 【解析】点的极坐标化为直角坐标为,即.4. D 【解析】点坐标为,所以垂直于极轴的直线方程为,所以极坐标方程为.5. D【解析】本题考查直线与圆的方程的不同表达方式,极坐标方程表示圆的方程,参数方程(为参数)消去参数后可知是直线的方程.6. A7. C第二部分8. ,,9.10.11.【解析】答案也可以是,.12.【解析】把直线的参数方程化为普通方程得,把曲线的参数方程化为普通方程得,由方程组解得交点坐标为.13.14.15. ,16.【解析】联立所以.(舍负)第三部分17. (1)当时,的普通方程为,的普通方程为.联立方程组解得与的交点为与.所以,被截得的线段的长为.(2)将的参数方程代入的普通方程得,所以点对应的参数,所以点坐标为.故当变化时,点轨迹的参数方程为:(为参数).因此,点轨迹的普通方程为.故点轨迹是以为圆心,半径为的圆.18. (1)曲线的参数方程为(为参数)普通方程为,将代入上式化简得,即的极坐标方程为.(2)曲线的极坐标方程化为平面直角坐标方程为,将代入上式得,解得,(舍去).当时,,所以与交点的平面直角坐标为,.因为,,,,,,所以,,故与交点的极坐标,.19. (1)曲线的普通方程为,极坐标方程为,所以所求的极坐标方程为.(2)不妨设点,的极坐标分别为,,则即所以,即(定值).20. (1)依题意得:直线的普通方程,曲线的普通方程.(2)将直线的方程化为(为参数)代入曲线得:,,,所以.21. (1)曲线的直角坐标方程为,曲线的直角坐标方程为,解得:或,所以与交点的直角坐标为或.(2)求得:曲线的极坐标方程为(),其中.因此的极坐标为,的极坐标为,所以,当时,取得最大值,最大值为.其他方法:的直角坐标方程为...,设,因为,所以,所以,,.当时,有最大值.22. (1)因为直线的参数方程为(为参数),所以直线的普通方程为.由得,即.所以曲线的直角坐标方程为.(2)因为点的极坐标为,所以点的直角坐标为.所以,直线的倾斜角.所以直线的参数方程为(为参数).代入,得.设,两点对应的参数分别为,.因为为线段的中点,所以点对应的参数值为.又点,则.。
极坐标及参数方程高考题练习含答案
极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。
直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。
二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。
极坐标与参数方程例题示范(分题型)
极坐标与参数方程例题示范(分题型)极坐标与参数方程是选修内容的必考题型,这里按照课本及高考考试说明,归纳总结为四类题型。
题型一。
极坐标与直角坐标的互化。
互化原理(三角函数定义)、数形结合。
1.在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+-=t y t x 13(t 为参数),以O 为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位,曲线C 的极坐标方程为0cos 2=+θρ.(1)把曲线C 的极坐标方程化为普通方程;(2)求直线l 与曲线C 的交点的极坐标(πθρ20,0<≤≥).试题解析:(1)由0cos 2=+θρ得θρcos 2-=,两边同乘以ρ,得x y x 222-=+; (2)由直线l 的参数方程为⎩⎨⎧-=+-=ty tx 13(t 为参数),得直线的普通方程为02=++y x ,联立曲线C 与直线l 的方程得,⎩⎨⎧-=-=11y x 或⎩⎨⎧=-=02y x ,化为极坐标为)45,2(π或),2(π.考点:极坐标方程与直角坐标方程的互化,直线参数方程与普通方程的互化. 考点:cos ,sin x y ρθρθ==,222x y ρ=+. 2.在极坐标系中,设圆C经过点6π⎛⎫P ⎪⎝⎭,圆心是直线sin 32πρθ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.试题解析:法一:6π⎛⎫P ⎪⎝⎭直线sin 32πρθ⎛⎫-=⎪⎝⎭它与x 轴的交点也就是圆心为()1,0所以圆的方程为()2211x y -+=,得2220x y x +-=所以,圆的极坐标方程为:2cos ρθ=法二:因为圆心为直线2sin sin 33ππρθ⎛⎫-= ⎪⎝⎭与极轴的交点,所以令0θ=,得1ρ=,即圆心是()1,0 又圆C经过点6π⎫P ⎪⎭,∴圆的半径1r ==,∴圆过原点,∴圆C 的极坐标方程是2cos ρθ=.考点:(1)转化为直角坐标,求出所求方程,再转化为极坐标;(2)先求圆心坐标,再运用余弦定理求半径,最后借助过原点写出圆的极坐标方程.题型二。
极坐标参数方程15道典型题(有答案)
联立方程解得交点坐标为 ………5分
(2)由(1)知: , 所以直线 : ,
化参数方程为普通方程: ,
对比系数得: , ………10分
2.极坐标系与直角坐标系 有相同的长度单位,以原点 为极点,以 轴正半轴为极轴,曲线 的极坐标方程为 ,曲线 的参数方程为 ,( 是参数, 是常数)
(1)求 的直角坐标方程和 的普通方程;
【解答】解:(I)设P(x,y),则由条件知M( , ).由于M点在C1上,
所以 即
从而C2的参数方程为
(α为参数)
(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.
射线θ= 与C1的交点A的极径为ρ1=4sin ,
射线θ= 与C2的交点B的极径为ρ2=8sin .
所以|AB|=|ρ2﹣ρ1|= .
(Ⅱ)设MN的中点为P,求直线OP的极坐标方程.
解:(1)将极坐标方程ρcos =1化为:
ρcosθ+ ρsinθ=1.
则其直角坐标方程为: x+ y=1,M(2,0),N(0, ),其极坐标为M(2,0),N .
(2)由(1)知MN的中点P .
直线OP的直角坐标方程为y= x,化为极方程为:ρsinθ= ·ρcosθ.
(Ⅱ)设P(2cosθ, sinθ),则|AP|= =2-cosθ,
P到直线l的距离d= = .
由|AP|=d得3sinθ-4cosθ=5,又sin2θ+cos2θ=1,得sinθ= , cosθ=- .
故P(- , ).…10分
4..在极坐标系Ox中,直线C1的极坐标方程为ρsinθ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|·|OM|=4,记点P的轨迹为C2.
数学选修4-4 极坐标与参数方程练习题及答案
一、选择题 1.把方程1xy=化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩2.曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 3.直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 BCD4.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则PF等于( )A .2B .3C .4D .5二、填空题 5.直线cos sin 0x y αα+=的极坐标方程为____________________。
6.曲线的极坐标方程为1tan cos ρθθ=⋅,则曲线的直角坐标方程为________________。
7.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。
8.在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,6π)到直线l 的距离为 .9.曲线的参数方程是211()1x t t y t ⎧=-⎪≠⎨⎪=-⎩为参数,t 0,则它的普通方程为__________________。
10.直线3()14x att y t=+⎧⎨=-+⎩为参数过定点_____________。
11.点P(x,y)是椭圆222312x y +=上的一个动点,则2x y +的最大值为___________。
12.设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。
极坐标与参数方程精选习题
极坐标与参数方程【重要知识】一、极坐标:(极坐标与直角坐标系的互相转化)1、极坐标→直角坐标系:(1)222y x +=ρ;(2)θρsin =y ;(3)θρcos =x2、直角坐标系→极坐标:(1)222y x +=ρ;(2)θ可以利用直角坐标系观察得出 二、参数方程:1、利用平方关系1cos sin 22=+θθ进行消参 2、利用t 相等进行消参【重要题型】1、已知曲线C 1与C 2的极坐标方向分别为cos 3ρθ=,4cos ρθ=(ρ≥0,0≤θ<2π),则曲线C 1与C 2交点的极坐标为________.2、在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(sin cos )1ρθθ-=的交点的极坐标为 .3、在极坐标系中,点)3,2(πM 到直线22)4sin(:=+πθρl 的距离为 4、在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧-=+=t y t x 33(参数R t ∈),圆C 的参数方程为⎩⎨⎧+==2sin 2cos 2θθy x (参数]2,0[πθ∈),则圆C 的圆心坐标为 ,圆心到直线l 的距离为 5、若直线1223x ty t =-⎧⎨=+⎩(t 为参数)与直线41x ky +=垂直,则常数k = .6、已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.7、已知直线l 的参数方程为⎩⎨⎧+==ty tx 412(t 为参数),圆C 的极坐标方程为θρsin 22=,则直线l 与圆C 的位置关系为8、直线0743=-+y x 截曲线⎩⎨⎧+==ααsin 1cos y x (α为参数)的弦长为9、已知圆C 的极坐标方程为2cos ρθ=,则圆C 上点到直线:l cos 2sin 40ρθρθ-+=的最短距离为10、在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .【参考答案】1、【答案】)6,32(π【解析】由cos 3ρθ=得,3=x ;由4cos ρθ=得,θρρc o s 42=,即x y x 422=+,即4)2(22=+-y x0≤θ<2π,0,0>≥∴y x 由⎩⎨⎧=+-=4)2(322y x x 解得,⎩⎨⎧±==33y x ,即⎩⎨⎧==33y x 利用直角坐标系可以看出,交点的极坐标为)6,32(π2、【答案】(1,)2π【解析】由(cos sin )1ρθθ+=得,1sin cos =+θρθρ,即1x y +=由(sin cos )1ρθθ-=得,1cos sin =-θρθρ,即1y x -=由⎩⎨⎧=+-=+11y x y x 解得,⎩⎨⎧==10y x由直角坐标系可以看出,点(0,1)对应的极坐标(1,)2π. 3、【答案】26【解析】点)3,2(πM 在直角坐标系中为点)3,1(直线l 方程化为22)4sin cos 4cos(sin =+πθπθρ,即01=-+y x 因此,距离26232131==-+=d 4、【答案】22);2,0( 【解析】由⎩⎨⎧-=+=t y t x 33得,⎩⎨⎧-=-=y t x t 33,即直线l 的方程化为y x -=-33,即06=-+y x由⎩⎨⎧+==2sin 2cos 2θθy x 得,⎪⎪⎩⎪⎪⎨⎧-==22sin 2cos y x θθ,即圆C 的方程化为14)2(422=-+y x , 即4)2(22=-+y x ,因此圆心坐标为)2,0(, 圆心到直线l 的距离22242620==-+=d 5、【答案】6-【解析】将1223x t y t=-⎧⎨=+⎩化为普通方程为3722y x =-+,斜率132k =-,当0k ≠时,直线41x ky +=的斜率24k k =-,由123412k k k ⎛⎫⎛⎫=-⨯-=- ⎪ ⎪⎝⎭⎝⎭得6k =-; 6、【答案】.【解析】sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y <≤≤, 254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =由22221(01)5450145x y x y x x x y x ⎧+=<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去),又因为πθ<≤0,所以它们的交点坐标为(1,57、【答案】相交【解析】直线l 的方程化为012=+-y x圆C 的方程化为2)2(22=-+y x ,所以圆心为)2,0(,半径为2圆心到直线的距离r d =<-=+-⨯=251251202,∴直线l 与圆C 相交 8、【答案】58 【解析】曲线方程化为1)1(22=-+y x ,所以圆心为1),1,0(=r圆心到直线的距离53571403=-⨯+⨯=d 因此,弦长为582516225912222==-=-dr 9、1【解析】由题意圆C 的直角坐标方程为22(1)1x y -+=,直线:l 240x y -+=所以圆C 上点到直线:l1 10、【解析】直线02:=-+y x l ,曲线2)2(:-=x y C ,联立方程组消y ,得0232=+-x x ,2,32121==+x x x x ,21212=-+=x x k AB(注:也可直接解出2,121==x x ,得到21212=-+=x x k AB )。
2024高考试题分类汇编-极坐标参数方程
极坐标参数方程1.(2024新课标Ⅲ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.2.(2024新课标Ⅲ理数)[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 改变时,P 的轨迹为曲线C . (1)写出C 的一般方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.3.(2024新课标Ⅱ文)[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为π(2,)3,点B 在曲线2C 上,求OAB △面积的最大值. 4(2024新课标Ⅱ理).[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=. (1)M 为曲线1C 上的动点,点P 在线段OM 上,且满意||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.5.(2024新课标Ⅰ文数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.6.(2024新课标Ⅰ理数)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.7(2024天津理)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.8[选修4-4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值. 9(2024北京理)在极坐标系中,点A 在圆上,点P 的坐标为(1,0),则|AP |的最小值为___________. xOy l 82x t t y =-+⎧⎪⎨=⎪⎩tC 22x s y ⎧=⎪⎨=⎪⎩s P C P l 22cos 4sin 40ρρθρθ--+=。
极坐标与参数方程(经典39题)(整理版)
( Ⅱ ) 设圆 C 与直线 l 交于点 A , B .若点 P 的坐标为 (3 , 5 ) ,求 PA PB 与
PA PB .
32.已知 A,B 两点是椭圆 x 2 y 2 1 与坐标轴正半轴的两个交点 . 94
(1) 设 y 2sin , 为参数,求椭圆的参数方程;
(2) 在第一象限的椭圆弧上求一点 P,使四边形 OAPB的面积最大,并求此最大值 .
标;
(Ⅱ) 点 M ( x0 ,y0 )在 e O1 上运动, 点 P (x, y) 是线段 AM 的中点, 求点 P 运
动轨迹的直角坐标方程.
x 3cos
15.已知曲线 C :
,直线 l : (cos
y 2sin
2sin ) 12 .
( 1)将直线 l 的极坐标方程化为直角坐标方程; ( 2)设点 P 在曲线 C 上,求 P 点到直线 l 距离的最小值.
2.在极坐标系中,曲线 L : sin 2 2cos ,过点 A( 5 , )( 为锐角且
3
tan
)作平行于
4
( Ⅰ ) 以极点为原点,极轴为
( R) 的直线 l ,且 l 与曲线 L 分别交于 B, C两点 . 4
x 轴的正半轴,取与极坐标相同单位长度,建立平面直
角坐标系,写出曲线 L 和直线 l 的普通方程;
( 2)若把 C1,C2 上各点的纵坐标都拉伸为原来的两倍, 分别得到曲线 C1, C2 .写
出 C1, C2 的参数方程. C1 与 C2 公共点的个数和
同?说明你的理由.
C1 与 C2 公共点的个数是否相
28.已知圆的方程为 y2 6 y sin x2 8x cos 7cos 2 8 0 求圆心轨迹 C 的参数方程 ; 点 P(x, y) 是( 1)中曲线 C上的动点,求 2x y 的取值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与参数方程习题极坐标与参数方程习题、选择题(t 为参数)2.已知实数x,y 满足 x3+cosx_2 = 0, 8y3 _ cos2y + 2 = 0,贝廿x 2y =(D. 83. 已知M 下列所给出的不能表示点的坐标的是()A ;,上]B 、‘5竺〕C 5厂竺] I 3丿i 3丿 I 3丿D「5,勺4. 极坐标系中,下列各点与点P (p , e )(e H kn , k € Z )关于极轴所在直线对称的是( )1.直线y=2x 1的参数方程是( ) A 、「x=「(t 为参数)B、y=2t +1为参数)C "^-1(t 为参数) D y = 2t — 1 収=2t —1y=4t+1(tx = sin vy =2si nr 1A. 0B. 1C . -2A. (- p , e)B. (- p , - e)C. ( p , 2 n -e) D ・(p, 2 n + e)5.点P1,「3,则它的极坐标是()6. 直角坐标系xoy 中,以原点为极点,x 轴的正 半轴为极轴建极坐标系,设点 A,B 分别在曲线(,为参数)和曲线C 2「—1上,则AB 的C.317. 参数方程为 心 过为参数)表示的曲线是( [y =2A. —条直线 B .两条直线 C .一条射线D.两条射线8. 若直线x 1 2t t 为参数 与直线4x ,ky=1垂直,则常数k =( )』=2+3t '丿A.-6 D.169.极坐标方程,=4cos=化为直角坐标方程是()A ・(x —2)2 + y 2=4n ]2,3 JB 、c 、n ]2,F'x =3+cos日G :i y =sin 日 最小值为( A.1). B.2C.6B. x2y2 =4C. x2(y — 2)2=4D. (x -1)2(y -1)^410.柱坐标(2, 2- , 1)对应的点的直角坐标是3( ).A.( -1, 3,1)B.( 1,-、3,1)C.( 3,一1,,1)D.( - , 3,1,1)11.已知二面角:-IJ的平面角为r,p为空间一点,作PA : , PB ,A, B 为垂足,且PA = 4,PB = 5,设点A、B到二面角:-I 的棱I的距离为别为x,y .则当=变化时,点(x,y)的轨迹是下列图形中的(A) (B) (C) ( D)'1色x = ———t12.曲线运P=4si n(x+l)与曲线/ 2 2的位置关系是4|y丄纟2 2( )。
A相交过圆心 B 、相交 C 、相切 D 、相离二、填空题13.在极坐标厂0乞八:2二中,曲线—2sin,与「cos—T 的交点的极坐标为_____________ .14.在极坐标系中,圆' =2上的点到直线「cost ’sin,=6的距离的最小值是______ .15.圆C: x=1+cos e(B为参数)的圆心到直线y = si n el :打=+ 3t(t为参数)的距离为16.A :(极坐标参数方程选做题)以直角坐标系的原点为极点,x轴的正半轴为极轴,已知曲线C1、C2的极坐标方程分别为一0,八§,曲线C3的参数方程为尸2豐为参数,且诃-黑]),则曲y =2sin B ] 2 2 7线C1、C2、C3所围成的封闭图形的面积是三、解答题17.在直角坐标系xOy中,直线i的方程为x-y+4=0,曲线C的参数方程为x「3cos(为参数)y = sin :(I )已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,2),判断点P与直线I的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到 直线i 的距离的最小值.18.在平面直角坐标系xOy 中,椭圆C 方程为"x =5cos® y =3sin参数)平行的直线I 的普通方程。
(H)求椭圆C 的内接矩形ABCD 面积的最大值19.坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合.直极坐标方程为:「= 4cosr .(1) 写出曲线C 的直角坐标方程,并指明C 是 什么曲线;(2) 设直线I 与曲线C 相交于P ,Q 两点,求PQ 的 值.20.在直角坐标系xoy 中,直线I 的参数方程是 [x [t (t 为参数), 在极坐标系(与直角坐标系 xoyy = 2t 1取相同的长度单位,且以原点O 为极点,以x 轴 正半轴为极轴)中,圆C 的极坐标方程是-2cos :(I )求圆C 的直角坐标方程;(I)求过椭圆的右焦点,且与直线x = 4-2ty =3_t(t 为 x = ,t2(t 为参数),曲线C 的(II )求圆心C到直线1的距离。
21.在直角坐标平面内,以坐标原点O为极点,X轴的非负半轴为极轴建立极坐标系•已知点M的极坐标为4.2,_ ,曲线C的参数方程为x"云0…(:I 4 丿[y = 42s in。
,为参数).(1)求直线OM的直角坐标方程;(2)求点M到曲线C上的点的距离的最小值.22.以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系。
已知点P的极坐标为.2,-,2 2直线l过点P,且倾斜角为兰,方程-^=1所对应3 36 16的切线经过伸缩变换1 1后的图形为曲线CI,1r(I)求直线l的参数方程和曲线C的直角坐标系方程(D)直线l与曲线C相交于两点A,B,求PA PB的值。
23.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知曲线C:「sin2八2acos: (a 0),已知过点P(-2—) 的直线l 的参数方程为: 直线l与曲线C 分别交于M ,N .(I)写出曲线C 和直线i 的普通方程; (H)若|PM |,|MN |,|PN |成等比数列,求a 的值.试卷答案1. C2. A3. A4. C5. C6. A. D 8.A 9.A io.A ii. D12. D 13.々2,竺; 14. 115.22兀I 4丿16. 317. 解: ( I )把极坐标系下的点P(4'2)化为直角坐标, 得P (0, 4)。
因为点P 的直角坐标(0, 4)满足直线|的方程x - y 4=0所以点P 在直线l 上,(II )因为点Q 在曲线C 上,故可设点Q 的坐标 ■为(73cos a ,sin a )从而点Q 到直线I 的距离为31十2d = |石cos。
+4| =2cos(;6)初=@込0 ―) + 2占V2 V2 6JI由此得,当C0S(:卫j时,d取得最小值,且最小值为2.18.( 1)由已知得椭圆的右焦点为4,0,已知直线的参数方程可化为普通方程:x-2y 2=0,所以k=1 , 于是所求直线方程为x_2y 4=0。
当2匕时,面积⑵ S=4xy =60sin ® cos半=30sin 2® ,最大为3019.解:(1)v p = 4cos^, /. p" —cos0 T由p" = X1+ y*» /7cos0 = x>得* p * = 4x所以曲线C的直肃坐标芳程为ly-2F+F: =4, 分它是以(2,0 I为圆心'半径为2的圆.…4分八、r x = -1 +——t(2 )把J 12代入x2+ y2=4x,整理得”弓tt2-3.3t 5=0. ,——6分设其两根分别为t1,t2,则匕• t2 =3 3,以 2 =5,---8分所以PQ| =h -t?] = V7. —10 分20. ( 1)圆C的直角坐标方程是x2+y2-2x=0 ;(2)圆心C到直线l的距离d二驳5。
521.解:(I)由点M的极坐标为 4 2, n,得点M的直角坐标为(4, 4),所以直线0M的直角坐标方程为y=x .(n)由曲线C的参数方程xj.jg’c为参y 2 sin:数),化成普通方程为:(x-1)2y2=2 , 圆心为A(1,0),半径为r =、2 .由于点M在曲线C夕卜,故点M到曲线C上的点的距离最小值为| MA | -r = 5 - - 2 .22.Mid的亶角坐标为(hi>.r 1所以[的卷數方趨为彳片1 +如由一■整理**T+4所以C的直角坐标方程为护+" (5)«人jr z+y = 4 領F+G/J-m—2nD.设谏方<i+6-V3*l t r)• ft—t :•................................. |FA| • | PB| ~ |fi I * |G I ■= 2......* ................................. * ****** .. (10)23. (I) 2 y 2ax, y = x —2(H)直线I 的参数方程为f ■<2x = —2+ — t y _ _4 I 2(t 为参数),代入 y 2=2ax , 得到 t 2—2>/2(4+a)t+8(4+a)=0 , 贝V 有匕 t2 =2 2 (4 a), t i t 2 =8(4 a).因为 | MN |2=| PM | | PN | , 所以 (ti —12)=(tl+t 2)—4t l解得a =1.丄 2= t i t 2.。