SiC功率半导体器件的优势及发展前景

合集下载

SiC功率半导体器件的优势和发展前景

SiC功率半导体器件的优势和发展前景

SiC功率半导体器件的优势和发展前景SiC(碳化硅)功率半导体器件是一种新兴的半导体材料,具有许多优势和广阔的发展前景。

以下是SiC功率半导体器件的优势和发展前景。

1.高温工作能力:与传统的硅功率半导体器件相比,SiC器件能够在高温环境下工作,其工作温度可达到300摄氏度以上。

这使得SiC器件在航空航天、军事装备和汽车等应用领域具有巨大的潜力。

2.高电压耐受能力:SiC器件具有更高的击穿电场强度和较低的导通电阻,可以实现更高的电压耐受能力。

这使得SiC器件在高压和高电场应用中具有优势,如电力电子转换、电力传输和分配、电网充放电和电动车充电等。

3.高频特性:由于SiC材料的电子迁移率和终端速度较高,SiC器件具有优秀的高频特性。

这使得SiC器件在高频交流/直流转换器和射频功率放大器中具有广泛的应用。

4.低导通和开启损耗:SiC材料的电阻率较低,电流密度较大。

这导致SiC器件在导通过程中的能耗更低,进而减少了开关损耗。

相对于硅器件,SiC器件具有更高的效率和更小的温升。

这使得SiC器件在能源转换和电源管理领域具有潜在的应用前景。

5.小体积和轻量化:SiC器件的小体积和轻量化特性,使得其在高功率密度应用和紧凑空间条件下的应用更具优势。

这对于电动汽车、风力和太阳能发电系统、飞机和船舶等领域都有重要意义。

6.高可靠性和长寿命:由于SiC器件的抗辐射、抗高温、耐压击穿和抗电荷扩散等特性,它具有较高的可靠性和长寿命。

这对于军事装备、航空航天和核电等关键领域的应用具有重要意义。

SiC功率半导体器件的发展前景广阔。

随着科技的不断进步和物联网的快速发展,对于功率器件的要求愈发严苛。

在电力转换、能源管理和电动汽车等领域,对功率器件的需求将进一步增加,而SiC器件作为一种高温、高电压和高频特性都优异的功率半导体器件,将有望取代传统的硅器件,成为未来功率电子的主流。

此外,随着SiC材料的制备工艺和工艺技术的不断改进,SiC器件的成本也在逐渐下降。

SiC功率半导体器件发展历程、优势和发展前景

SiC功率半导体器件发展历程、优势和发展前景

SiC肖特基二极管同Si超快恢复二极管的比较
二极管
高阻断电压 高开关速度
高温时稳定性好
3) 单极场效应晶体管
这里指的是MESFET(金属 半导体接触场效应晶体管) 及JFET(结型效应晶体管),它 们的结构见右图。 采用SIC特别适合制作这二 种高压大电流器件。同样, 飘移区在决定它们的优良 特性方面起决定作用。不 过这二种器件通常是常导 通型,不适合直接用于开关。 但是它们可以同低压功率 MOSFET结合构成一种常截 止型器件,因而发展这二种 高压大电流器件有重要的 意义。
右图示出4H-SIC及SI的平 面功率同 MOSFET的比导通 电阻的比较。可以看出,对 容易实现的电子迁移率 µINV=10CM2/V.S, 在1000V击 穿电压时,4H-SIC器件的比 导通电阻为SI器件的几十分 之一。而当µINV=100CM2/V.S 时,4H-SIC器件的比导通电 阻比SI器件的小100倍以上。
单相HERIC-Inverter效率
当MOSFET高温时,采 用MOSFET和JFETs 的 效率相等 测量结果包括辅助 源的损耗
效率与温度的关系(HERIC®-逆变器)
最高效率和温度无关 更小的散热装置 损耗减半 散热装置温度可以更高
效率与电压关系(HERIC®-逆变器)
SiC晶体管最高效 率与直流电压关系 不大
采用槽深1µM栅条0.6µM的4H- SIC 3KV MESFET ,其比导通电阻为 1.83MΩ-CM2,在栅压为-4V时电流为1.7X104A/CM2,截止偏压为-24V.
采用结深1µM栅条0.6µM的4H- SIC 3KV JFET,其比导通电阻为 3.93MΩ-CM2。 这些特性大大优于同类SI器件的特性。
示例1

碳化硅功率半导体

碳化硅功率半导体

碳化硅功率半导体1. 碳化硅的特性和优势碳化硅(Silicon Carbide,SiC)是一种新型的半导体材料,其具有许多传统硅(Silicon,Si)材料所不具备的特性和优势。

主要特性和优势如下:1.1 宽带隙能量碳化硅具有较高的带隙能量,约为3.26电子伏特(eV),相比之下,硅的带隙能量仅为1.12eV。

宽带隙能量使得碳化硅具有更高的击穿电压和更低的漏电流,从而提高了功率半导体器件的性能。

1.2 高电子流动度和低电子迁移率碳化硅的电子流动度是硅的10倍以上,这意味着碳化硅器件可以承受更高的电流密度,从而实现更高的功率输出。

此外,碳化硅具有较低的电子迁移率,可以减小电流密度增加时的电阻增加效应。

1.3 高热导率和低热膨胀系数碳化硅具有较高的热导率和较低的热膨胀系数,使得碳化硅器件在高温工作环境下具有较好的热稳定性。

这使得碳化硅功率半导体器件可以在高功率、高温条件下工作,而不容易出现热失效问题。

1.4 高耐压和高温工作能力碳化硅具有较高的击穿电压,可以承受更高的电压应力。

此外,碳化硅器件的工作温度范围更广,可达到300摄氏度以上,远高于硅器件的极限。

2. 碳化硅功率半导体器件碳化硅功率半导体器件是利用碳化硅材料制造的功率电子器件,主要包括碳化硅二极管、碳化硅MOSFET、碳化硅IGBT等。

这些器件在高功率、高频率和高温度环境下具有优异的性能,广泛应用于电力电子、新能源、汽车电子等领域。

2.1 碳化硅二极管碳化硅二极管是最早商业化生产的碳化硅器件,其主要特点是低导通压降、快速开关速度和高耐压能力。

碳化硅二极管可以替代传统硅二极管,提高功率转换效率,减小能量损耗。

2.2 碳化硅MOSFET碳化硅MOSFET是一种基于金属-氧化物-半导体场效应管(MOSFET)结构的功率半导体器件。

碳化硅MOSFET具有低导通电阻、快速开关速度和高耐压能力的特点,可应用于高频率开关电源、电动汽车驱动系统等领域。

2.3 碳化硅IGBT碳化硅绝缘栅双极晶体管(IGBT)是一种结合了碳化硅和硅的功率半导体器件。

碳化硅半导体的介绍及发展前景

碳化硅半导体的介绍及发展前景

灵敏的,创新的
一些小型的,具有创新精神的公司往往会对先进技术产生促进作用。在SiC领域内, 一个这样的例子是Arkansas Power Electronics International Inc。APEI专攻对于使用 SiC器件作为核心技术的高性能功率电子系统的开发。APEI公司的总裁Alexander B. Lostetter博士说:“APEI公司特别关注那些用于极端环境(温度高于500℃或更高) 和/或具有很高功率密度的应用场合的技术。”
发展及前景
关于碳化硅的几个事件 1905 1905年 第一次在陨石中发现碳化硅 1907年 第一只碳化硅发光二极管诞生 1955年 理论和技术上重大突破,LELY提出生长高品质碳化概念,从此将S IC作为重要的电子材料 1958年 在波士顿召开第一次世界碳化硅会议进行学术交流 1978年 六、七十年代碳化硅主要由前苏联进行研究。到1978年首次采用“LE LY改进技术”的晶粒提纯生长方法 1987年~至今以CREE的研究成果建立碳化硅生产线,供应商开始提供商品 化的碳化硅基
Байду номын сангаас 图1 黑碳化硅
碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料 用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或 汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材 料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%) 是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。 此外,碳化硅还大量用于制作电热元件硅碳棒。 碳化硅的硬度很大,具有优良的导热性能,是一种半导体,高温时能抗氧化。
研究的结果证实了更高开关频率的可能性,在以前,更高的开关频率一直受限于纯 硅二极管的反向恢复损耗。Err限制了在减小开启损耗上的进一步发展。Skibinski解 释道:“硅模块的供给商推荐使用一个门电阻Rgate (例如25 ,来平衡IGBT的开启能 量损耗(Eon) 关断能量损耗(Eoff)。”然而对于SiC二极管,门电阻Rgate就可以省往不 用了。 他说:“SiC二极管能够降低总功率损耗(Eon+Err+Eoff),这一特性仔驱动上的应用 有着潜伏优点。”首先,在使用同样的制冷系统的条件下,它可以达到4倍的开关 频率,可以使前置电磁滤波用具有更好的性能、更小的体积和更低的价格。或者, 你也可以保存现在的开关频率和制冷系统,这样就可以得到更高的效率和稳定性、 更低的损耗、更高的额定输出。降低的总功率损耗可以潜伏地降低制冷花费。 Yaskawa Electric是另一个采用SiC技术的驱动生产商,他把SiC技术应用于雷达屏幕 上。Yaskawa Electric总结SiC的基本的优点有:高工作温度、高开关速度、在导通和 开关模式下都具有更低的损耗,这些是驱动系统更加有效率。

SiC技术的优点、缺点介绍

SiC技术的优点、缺点介绍

高效SiC技术的介绍和分析摘要:随着电力电子变换系统对于效率和体积提出更高的要求,SiC(碳化硅)将会是越来越合适的半导体器件。

尤其针对光伏逆变器和UPS应用,SiC器件是实现其高功率密度的一种非常有效的手段。

本文主要介绍SiC技术优点、缺点及目前应用层面的一些瓶颈。

1.引言由于SiC相对于Si的一些独特性,对于SiC技术的研究,可以追溯到上世界70年代。

简单来说,SiC主要在以下3个方面具有明显的优势:击穿电压强度高(10倍于Si)更宽的能带隙(3倍于Si)热导率高(3倍于Si)这些特性使得SiC器件更适合应用在高功率密度、高开关频率的场合。

当然,这些特性也使得大规模生产面临一些障碍,直到2000年初单晶SiC晶片出现才开始逐步量产。

目前标准的是4英寸晶片,但是接下来6英寸晶片也要诞生,这会导致成本有显着的下降。

而相比之下,当今12英寸的Si晶片已经很普遍,如果预测没有问题的话,接下来4到5年的时间18英寸的Si晶片也会出现。

Vincotech公司十几年前就已经采用SiC二极管来开发功率模块。

SiC二极管由于其卓越的反向恢复特性,可以有效的减小它本身的开关损耗和IGBT的开关损耗。

SiC肖特基二极管虽然已经应用了很多年,但是还需要进一步改善价格来获得更广阔的市场。

最近几年的主要研究和应用是基于SiC的有源开关器件,比如SiC MOSFET和SiC JFET. 从目前电压等级4Kv以下的应用来看,SiC MOSET有打败SiC JFET的势头。

SiC MOSFET有着卓越的开关损耗和超小的导通损耗。

SiC MOSFET大批量商业化的最大障碍目前还是由于其居高不下的价格。

然而我们还是要综合评估整个系统成本,因为SiC MOSFET还是带来系统整个体积和其他成本的下降。

文本会介绍一些SiC和Si在效率、损耗方面的对比来证明SiC在高频应用上的优势。

采用boost模型,对比分析SiC和Si器件的损耗我们来看一下boost电路。

中国碳化硅功率半导体产业运营现状及发展前景分析报告

中国碳化硅功率半导体产业运营现状及发展前景分析报告

中国碳化硅功率半导体产业运营现状及发展前景分析报告一、产业运营现状目前,中国碳化硅功率半导体产业已经形成了一定的规模,具备了较强的研发和生产能力。

随着国内厂商的不断涌现,中国已经成为全球碳化硅功率半导体产业的最大市场之一、在技术研发方面,中国企业在碳化硅功率半导体芯片设计、制造工艺和封装等方面取得了重要突破,形成了一些具有自主知识产权的核心技术。

在生产能力方面,中国企业已经建成了一系列的生产线,能够满足国内市场需求,并开始涉足国际市场。

此外,中国在碳化硅外延片和碳化硅单晶生长技术方面也有独特的优势,为产业发展提供了坚实的基础。

二、发展前景分析1.技术突破:中国的碳化硅功率半导体产业仍然存在与国际巨头的差距,未来需要继续在芯片设计、制造工艺和封装等方面进行技术突破。

国家政府应加大对产业的支持力度,加强科研机构和企业之间的合作,提升技术创新能力。

2.市场需求:随着我国电力系统和新能源领域的快速发展,碳化硅功率半导体的应用需求呈现出快速增长趋势。

特别是在电动汽车、光伏发电、风能转换和工业自动化等领域,碳化硅功率半导体有着广阔的市场空间。

因此,未来产业的发展前景十分乐观。

3.政策支持:中国政府高度重视碳化硅功率半导体产业的发展,出台了一系列政策和措施,鼓励企业加大研发投入,加速产业化进程。

例如,国家“千人计划”和“集成电路产业发展促进计划”等政策都对碳化硅功率半导体产业进行了明确的支持。

4.国际竞争:虽然中国在碳化硅功率半导体产业已经取得了一定的实力,但与国际巨头如美国的Cree和德国的Infineon相比,还存在一定的差距。

在国际市场上,中国企业需要在技术、品牌和服务等方面不断提升,并加强国际合作,以进一步扩大市场份额。

结论:中国碳化硅功率半导体产业正处于快速发展的阶段,取得了显著的成就,并展现出广阔的发展前景。

未来,企业应继续加强技术研发,提高产品品质,不断拓展市场,同时加强合作,提升国际竞争力,努力将中国打造成为碳化硅功率半导体产业的领军国家。

功率半导体在新能源汽车上的应用及发展趋势

功率半导体在新能源汽车上的应用及发展趋势

功率半导体在新能源汽车上的应用及发展趋势随着新能源汽车的发展,功率半导体在其上的应用逐渐增多。

功率半导体器件包括晶闸管、IGBT(绝缘栅双极性晶体管)、MOSFET(金属氧化物半导体场效应晶体管)和SiC (碳化硅)等,其主要作用是实现能量的变换、传递和控制。

在新能源汽车电动化的过程中,功率半导体器件被广泛应用于电动机驱动、汽车充电桩、车载充电器等领域。

其中,IGBT是最常用的功率半导体器件之一,可以实现高压、大电流的开关控制。

IGBT可与MOSFET相结合形成无感应无级变速器,提高了汽车的能效。

另外,SiC技术的发展也为汽车领域带来了新的变革。

SiC功率半导体器件比传统的硅器件拥有更好的导电、耐放热和抗辐照性能。

而且,SiC器件在高温、高电压和高频环境下的性能更加出色,可用于快速充电和快速放电,提高了新能源汽车的行驶距离和充电速度。

随着新能源汽车市场的发展,功率半导体在其上的应用也将不断增加,越来越多的新技术和新材料将被投入使用,以满足汽车行业对高效、低耗、高性能的需求。

基于智能、绿色和安全的原则,未来的发展趋势将主要表现在以下几个方向:1、功率器件的集成化发展。

通过集成化设计,减少不必要的反复连接和信号传递,提高了器件的可靠性和效率。

2、能量管理技术的完善。

包括电池管理、充电管理和功率管理等,以实现相互配合和优化调节,降低能量浪费和污染排放。

3、封装和散热技术的提升。

采用新型散热材料和散热设计,提高功率半导体器件的散热效率,保持器件的稳定运行。

4、新材料的应用。

如碳化硅、氮化镓等,这些新材料拥有更高的工作温度、功率密度和可靠性,能够满足未来汽车行业对高效、低耗电的需求。

5、智能化应用。

基于人工智能、物联网技术,实现汽车驾驶行为的预测和控制,使得汽车的运行更加高效和安全。

总之,功率半导体在新能源汽车上的应用将是一个全面和快速发展的过程。

汽车行业和半导体行业的合作将会在这一领域持续深入,带动新能源汽车的创新和发展。

全球及中国碳化硅(SiC)行业现状及发展趋势分析

全球及中国碳化硅(SiC)行业现状及发展趋势分析

全球及中国碳化硅(SiC)行业现状及发展趋势分析一、碳化硅产业概述碳化硅是一种无机物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。

碳化硅是一种半导体,在自然界中以极其罕见的矿物莫桑石的形式存在。

自1893年以来已经被大规模生产为粉末和晶体,用作磨料等。

在C、N、B等非氧化物高技术耐火原料中,碳化硅是应用最广泛、最经济的一种,可以称为金钢砂或耐火砂。

中国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体。

碳化硅常用品种二、碳化硅行业发展相关政策近年来,随着半导体行业的迅速发展,碳化硅行业也受到各级政府的高度重视和国家产业政策的重点支持。

国家陆续出台了多项政策,鼓励碳化硅行业发展与创新,如科技部在2020年发布的《“战略性先进电子材料”重点专项2020年度项目》中指出支持功率碳化硅芯片和器件在移动储能装置中的应用(应用示范类),为碳化硅行业提供了良好的发展环境。

碳化硅行业发展相关政策相关报告:产业研究院发布的《2024-2030年中国碳化硅(SiC)行业发展运行现状及投资战略规划报告》三、碳化硅行业产业链1、碳化硅行业产业链结构图碳化硅行业产业链主要包括原材料、衬底材料、外延材料以及器件和模块等环节。

在上游,原材料主要包括各类硅烷、氮化硼等,这些原材料经过加工后制成碳化硅衬底材料。

碳化硅衬底材料进一步加工后,可以制成外延材料。

碳化硅器件和模块被广泛应用于各个领域,包括5G通信、新能源汽车、光伏、半导体、轨道交通、钢铁行业、建材行业等。

碳化硅行业产业链结构图2、碳化硅行业上游产业分析碳化硅产业链价值量倒挂,关键部分主要集中在上游端,其中衬底生产成本占总成本的47%,外延环节成本占23%,合计上游成本占到碳化硅生产链总成本的约70%。

其中衬底制造技术壁垒最高、价值量最大,既决定了上游原材料制备的方式及相关参数,同时也决定着下游器件的性能,是未来碳化硅大规模产业化推进的核心。

宽禁带半导体SiC功率器件发展现状及展望

宽禁带半导体SiC功率器件发展现状及展望

Power
and Challenge
ZHANG Bo,DENG Xiao-chuan,ZHANG You—rlln,LI Zhao-ji (State key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and
第2期 2009年4月
中国露;料譬研宪隍学板
Journal of CAEIT
V01.4 NO.2 Apr.2009
宽禁带半导体SiC功率器件发展现状及展望
张波,邓小川,张有润,李肇基
(电子科技大学电子薄膜与集成器件国家重点实验室,成都610054)
摘要:碳化硅(SiC)是第三代半导体材料的典型代表,也是目前晶体生长技术和器件制造水平最
美国DARPA高功率电子器件应用计划—— HPE的目标有四个(如图1所示),即,大尺寸高质 量SiC导电衬底和轻掺杂的厚外延材料生长技术; 10~20 kV的SiC功率器件(PiN、MOSFET和IGBT 等)制造技术;大功率SiC器件的测试、可靠性和封
万方数据
装技术;集成SiC功率器件模块的2.7 MVA固态功 率变电站(SSPS,solid state power substatio子和光电子领域J均研究热点。
2 SiC功率半导体器件发展现状
2。1 SiC功率整流器 功率整流器是功率半导体器件的重要分支,主
要包括肖特基势垒二极管(SBD,schottky barrier di— ode),PiN二极管和结势垒肖特基二扳管(JBS,junc— tion barrier sehottky diode)。
21世纪初,美国国防先进研究计划局(DAR— PA)启动的宽禁带半导体技术计划(WBGSTI,wide bandgap semiconductor technology initiative),成为加 速和改善SiC、GaN等宽禁带材料和器件特性的重 要“催化剂”,并极大地推动了宽禁带半导体技术的 发展。它同时在全球范围内引发了激烈的竞争,欧 洲ESCAPEE和日本NEDO也迅速开展了宽禁带半 导体技术的研究。

碳化硅sbd用途

碳化硅sbd用途

碳化硅sbd用途碳化硅(SiC)是一种新型的半导体材料,被广泛应用于多个领域。

碳化硅助力电子行业的发展,其特殊的物性使其可以有效地应用于功率电子器件中。

一、功率电子应用领域功率电子器件是电力电子技术的核心组成部分,用于能源转换、电力调控、工控自动化等领域。

碳化硅SBD作为一种高性能功率电子器件,具有低导通压降、低反向电流和高频响应等优势,被广泛应用于以下几个方向:1. 变频器和逆变器:碳化硅SBD在变频器和逆变器中可以实现高效、高稳定性的电能转换,提高设备的能效和可靠性。

2. 电动汽车:碳化硅SBD在电动汽车的电池管理系统和驱动电路中发挥重要作用,帮助提高电动汽车的续航里程和充电效率。

3. 太阳能发电系统:碳化硅SBD在太阳能发电系统的逆变器中可以提高能量转换效率,降低能源损耗,提高系统的整体性能。

4. 风力发电系统:碳化硅SBD在风力发电系统的变频器中可以实现高效率的电能转换和调节,提高发电系统的工作效率和可靠性。

二、优势和特点除了应用领域广泛之外,碳化硅SBD还有以下几个显著的优势和特点:1. 高温特性:碳化硅SBD具有良好的高温稳定性,能够在高温环境下保持稳定的工作性能,适合在高温条件下应用。

2. 快速开关速度:碳化硅SBD具有快速的开关速度,可以实现高频率的开关操作,适用于高频电子器件。

3. 高电压耐受能力:碳化硅SBD具有较高的击穿电压和反向电压耐受能力,可以在高压环境下工作,提高系统的可靠性。

4. 低漏电流:碳化硅SBD具有低的反向漏电流,能够有效地减少能源损耗,提高系统的能效。

三、未来发展趋势碳化硅SBD作为一种新型的功率电子器件,其应用前景广阔。

随着新能源产业的快速发展以及电子设备的不断升级,碳化硅SBD将在以下几个方面有更大的应用空间和发展趋势:1. 新能源领域:碳化硅SBD在太阳能、风能等新能源发电系统中的应用将得到进一步推广和深化,帮助提高能源利用效率和可再生能源的开发利用。

SiC技术的优点、缺点介绍

SiC技术的优点、缺点介绍

高效SiC技术的介绍和分析摘要:随着电力电子变换系统对于效率和体积提出更高的要求,SiC(碳化硅)将会是越来越合适的半导体器件。

尤其针对光伏逆变器和UPS应用,SiC器件是实现其高功率密度的一种非常有效的手段。

本文主要介绍SiC技术优点、缺点及目前应用层面的一些瓶颈。

1.引言由于SiC相对于Si的一些独特性,对于SiC技术的研究,可以追溯到上世界70年代。

简单来说,SiC主要在以下3个方面具有明显的优势:击穿电压强度高(10倍于Si)更宽的能带隙(3倍于Si)热导率高(3倍于Si)这些特性使得SiC器件更适合应用在高功率密度、高开关频率的场合。

当然,这些特性也使得大规模生产面临一些障碍,直到2000年初单晶SiC晶片出现才开始逐步量产。

目前标准的是4英寸晶片,但是接下来6英寸晶片也要诞生,这会导致成本有显着的下降。

而相比之下,当今12英寸的Si晶片已经很普遍,如果预测没有问题的话,接下来4到5年的时间18英寸的Si晶片也会出现。

Vincotech公司十几年前就已经采用SiC二极管来开发功率模块。

SiC二极管由于其卓越的反向恢复特性,可以有效的减小它本身的开关损耗和IGBT的开关损耗。

SiC肖特基二极管虽然已经应用了很多年,但是还需要进一步改善价格来获得更广阔的市场。

最近几年的主要研究和应用是基于SiC的有源开关器件,比如SiC MOSFET和SiC JFET. 从目前电压等级4Kv以下的应用来看,SiC MOSET有打败SiC JFET的势头。

SiC MOSFET有着卓越的开关损耗和超小的导通损耗。

SiC MOSFET大批量商业化的最大障碍目前还是由于其居高不下的价格。

然而我们还是要综合评估整个系统成本,因为SiC MOSFET还是带来系统整个体积和其他成本的下降。

文本会介绍一些SiC和Si在效率、损耗方面的对比来证明SiC在高频应用上的优势。

采用boost模型,对比分析SiC和Si器件的损耗我们来看一下boost电路。

宽禁带半导体sic功率器件发展现状及展望

宽禁带半导体sic功率器件发展现状及展望

宽禁带半导体sic功率器件发展现状及展望
宽禁带半导体SiC(碳化硅)功率器件是当前发展最快的新一代半导体功率器件之一。

相比于传统的硅功率器件,SiC功率器件具有更高的电子能带宽度和更高的电子饱和漂移速度,因此具有更高的电压和电流承受能力,更低的开关损耗和更高的温度工作能力。

目前,SiC 功率器件已经应用于许多领域,包括电动汽车、太阳能逆变器、电网并网等。

SiC功率器件的应用主要集中在高功率、高压力和高温的场景下。

预计在未来几年,SiC功率器件市场将继续快速增长。

未来SiC功率器件的发展主要集中在以下几个方面:
1. 提高器件性能:进一步提高SiC功率器件的功率密度和效率,降低开关损耗和漏电流,增强温度工作能力和可靠性。

2. 降低制造成本:SiC材料和器件制造成本较高,需要进一步研究和发展新的制造工艺和技术,降低制造成本,提高生产效率。

3. 应用拓展:SiC功率器件将进一步拓展应用领域,如工业自动化、航空航天、能源领域等。

4. 系统集成:SiC功率器件将与其他器件(例如Si功率器件和GaN功率器件)集成在一起,实现更高效的系统设计和优化。

SiC功率器件具有巨大的发展潜力,并有望在未来几年内实现更广泛的应用。

随着技术的不断进步和市场需求的增长,SiC功率器件将逐渐取代传统的硅功率器件,成为主流的功率器件技术。

碳化硅技术

碳化硅技术

碳化硅技术的挑战与未来展望碳化硅(SiC) 是一种由硅和碳组成的半导体材料,用于制造用于高压应用的功率器件,例如电动汽车(EV)、电源、电机控制电路和逆变器。

与传统的硅基功率器件(例如 IGBT 和 MOSFET)相比,碳化硅具有多项优势,这些器件凭借其成本效益和制造工艺的简单性长期以来一直主导着市场。

在电力电子应用中,固态器件需要能够在高开关频率下运行,同时提供低导通电阻、低开关损耗和出色的热管理。

在电子领域,设计人员面临着几个艰巨的挑战,目的是最大限度地提高效率、减小尺寸、提高设备的可靠性和耐用性以及降低成本。

与传统的硅基技术相比,宽带隙(WBG) 材料(如SiC)的使用可实现更高的开关速度和更高的击穿电压,从而实现更小、更快、更可靠和更高效的功率器件。

在图1 中,比较了硅和SiC 的一些主要电气特性。

图1:SiC 和Si 的一些相关特性的比较(来源:IEEE)关于制造工艺,迄今为止最困难的挑战之一是从100 毫米(4 英寸)晶圆过渡到150 毫米(6 英寸)晶圆。

虽然晶圆尺寸的增加提供了显着降低组件单位成本的优势,但另一方面,它对消除缺陷和提高所交付半导体的可靠性提出了严峻的挑战。

市场带来的挑战主要涉及对适合满足车辆电气化和电池充电系统不断增长的需求的电源解决方案的需求。

汽车行业无疑是SiC 生产商的主要努力集中的行业之一。

制造下一代电动汽车需要一种能够满足高效率和可靠性、消除缺陷和降低成本等严格要求的技术。

制造挑战尽管SiC 的特性已经为人所知一段时间,但第一个SiC 功率器件的生产相对较新,从2000 年代初通过部署100 毫米晶圆开始。

几年前,大多数制造商完成了向150 毫米晶圆的过渡,而200 毫米(8 英寸)晶圆的大规模生产将在未来几年内投入运营。

SiC 晶圆从4 英寸到6 英寸的过渡并非没有问题,这与保持相同质量和相同产量的难度有关。

碳化硅生产的主要挑战涉及材料的特性。

由于其硬度(几乎类似于金刚石),碳化硅需要更高的温度、更多的能量和更多的时间来进行晶体生长和加工。

半导体材料Si、SiC和GaN 优势及瓶颈分析

半导体材料Si、SiC和GaN 优势及瓶颈分析

溺于刷“帅哥美女”。

今天我们再来聊聊这三兄弟~1.厚积薄发,应运而生作为半导体材料“霸主“的Si,其性能似乎已经发展到了一个极限,而此时以SiC和GaN为主的宽禁带半导体经过一段时间的积累也正在变得很普及。

所以,出现了以Si基器件为主导,SiC和GaN为”游击”形式存在的局面。

在Si之前,锗Ge是较早用于制造半导体器件的材料,随后Si以其取材广泛、易形成SiO2绝缘层、禁带宽度比Ge大的优势取代了Ge,成为主要的半导体材料。

随着电力电子技术的飞速发展,Si基半导体器件也在飞速发展,电流、电压等级越高,芯片越薄越小、导通压降越小、开关频率越高、损耗越小等等。

任何事物的发展,除了外在力的作用,自身特性也会限制发展,Si基半导体器件似乎已经到了”寸步难行”的地步。

而此时,以碳化硅SiC和氮化镓GaN 为主的新型半导体材料,也就是我们常说的第三代宽禁带半导体(WBG)”破土而出”,以其优越的性能突破的Si的瓶颈,同时也给半导体器件应用带来了显著的提升。

相对于Si,SiC和GaN有着以下几点优势:❶禁带宽度是Si的3倍左右,击穿场强约为Si的10倍;❷更高的耐压能力以及更低的导通压降;❸更快的开关速度和更低的开关损耗;❹更高的开关频率;❺更高的允许工作温度;❻SiC具有更高的热导率;根据上面的优势,第三代宽禁带半导体器件,能够达到更高的开关频率,提高系统效率,同时增大功率密度等,但是目前推动的最大推动力还得看成本!2. SiC&GaN目前,SiC和GaN半导体器件早已进入商业化,常见的SiC半导体器件是SiCDiode、JFET、MOSFET,GaN则以HEMT(高电子迁移率晶体管)为主。

2.1 SiC半导体器件不同类型的碳化硅器件结构和工艺难度都不一样,一般都是依据其工艺难度依次推出的。

可知,SiCDiode便是较早实现商业化碳化硅半导体器件,同时也是历经内部结构和外部封装优化最多的器件,自身耐压能力、抗浪涌能力和可靠性都得到了大大提高,是目前成熟的SiC半导体器件。

碳化硅功率器件及其发展现状

碳化硅功率器件及其发展现状

碳化硅功率器件及其发展现状碳化硅为代表的第三代宽禁带半导体,可在更高温度、电压及频率环境正常工作,同时消耗电力更少,持久性和可靠性更强,将为下一代更小体积、更快速度、更低成本、更高效率的电力电子产品提供飞跃的机遇。

碳化硅电力电子器件技术的进步及产业化,将在高压电力系统开辟全新应用,对电力系统变革产生深远影响。

碳化硅电力电子器件优异的高效、高压、高温和高频特性,使其在家用电器、电机节能、电动汽车、智能电网、航天航空、石油勘探、自动化、雷达与通信等领域有很大应用潜力。

碳化硅电力电子器件介绍:1.碳化硅(SiC)的定义碳化硅(SiC)电力电子器件是指采用第三代半导体材料SiC制造的一种宽禁带电力电子器件,具有耐高温、高频、高效的特性。

按照器件工作形式,SiC电力电子器件主要包括功率二极管和功率开关管。

功率二极管包括结势垒肖特基(JBS)二极管、PiN二极管和超结二极管;功率开关管主要包括金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、双极型开关管(BJT)、绝缘栅双极型晶体管(IGBT)、门极可关断晶闸管(GTO)和发射极可关断晶闸管(ETO)等。

2.技术优势碳化硅半导体的优异性能使得基于碳化硅的电力电子器件与硅器件相比具有以下突出的优点:(1)具有更低的导通电阻。

在低击穿电压(约50V)下,碳化硅器件的比导通电阻仅有1.12uΩ,是硅同类器件的约1/100。

在高击穿电压(约5kV)下,比导通电阻提高到25.9mΩ,却是硅同类器件的约1/300。

更低的导通电阻使得碳化硅电力电子器件具有更小的导通损耗,从而能获得更高的整机效率。

(2)具有更高的击穿电压。

例如:商业化的硅肖特基二极管通常耐压在300V以下,而首个商业化的碳化硅肖特基二极管的电压定额就已经达到了600V;首个商业化的碳化硅MOSFET电压定额为1200V,而常用的硅MOSFET 大多在1kV以下。

(3)更低的结-壳热阻,使得器件的温度上升更慢。

碳化硅sic器件应用笔记

碳化硅sic器件应用笔记

碳化硅sic器件应用笔记
碳化硅(SiC)是一种宽禁带半导体材料,具有高热导率、高击穿场强、高电子饱和速度等优良的物理特性,因此SiC器件在高温、高功率、高频率等极端环境下具有巨大的应用潜力。

以下是一些SiC器件的应用领域:
1. 电动汽车和混合动力汽车:SiC器件的高效、高功率密度和高温可靠性使其成为电动汽车和混合动力汽车中理想的功率控制和驱动元件。

例如,SiC MOSFET可以用于牵引逆变器,从而提高电动汽车的能效和加速性能。

2. 太阳能逆变器:SiC器件的高开关频率和低导通损耗使其成为太阳能逆变器的理想选择。

它们可以减小逆变器的体积和重量,提高系统的能效和可靠性。

3. 电网和工业电源:SiC器件的高效率、高温稳定性和高开关频率使其在电网和工业电源中具有广泛应用。

例如,用于无功补偿和谐波滤除的功率因数校正电路中,SiC器件可以提高系统的效率和工作稳定性。

4. 轨道交通:在轨道交通系统中,SiC器件可以用于牵引电机控制和辅助电源系统,从而提高系统的效率和可靠性。

5. 航空航天:在航空航天领域,SiC器件的高温稳定性和可靠性使其成为发动机控制、电源系统和航空电子设备的理想选择。

需要注意的是,虽然SiC器件具有许多优良的物理特性,但由于其制造成本较高,目前主要应用于高端应用领域。

随着技术的进步和生产成本的降低,SiC器件有望在未来逐渐应用于更广泛的领域。

电子设备行业深度研究:SiC:功率皇冠上的明珠,行业进入黄金期

电子设备行业深度研究:SiC:功率皇冠上的明珠,行业进入黄金期

[Table_Title]电子设备行业深度研究SiC:功率皇冠上的明珠,行业进入黄金期2021 年 12 月 20 日【投资要点】◆SiC高性能材料,适用于高压、高频场景。

与Si相交,SiC禁带宽度更大,热导率、击穿电厂强度更高,在高压高频等应用场景具有优势。

与SI器件相较,SiC器件的特性有1)耐高温,SiC器件的极限工作温度为600℃以上,Si器件不能超过300℃。

2)易散热,SiC材料的热导率是Si的2-3倍,因此SiC器件对散热设计的要求更低。

3)低损耗,相同规格下,SiC MOS的总能量损耗较Si IGBT降低70%。

4)可实现更高的工作频率。

因此SiC器件适用于高频率开关、650V-3.3kV 高压场景,目前制约SiC大规模应用的因素是价格,我们预计随着上游衬底产能逐步释放,良率提高,价格或将逐步降低。

◆SiC市场进入风口期。

根据Yole数据,全球SiC功率器件市场规模将从2019年的5.4亿美元增加至2025年的25.6亿美元,CAGR为30%,根据CASA Research数据,2020-2025年中国SiC、GaN电力电子器件市场规模CAGR为45%,新能源汽车和光伏储能是SiC功率器件增长的主要推动力。

补能焦虑是新能源汽车阿喀琉斯之踵,汽车800V高压平台技术逐渐冒尖,使用SiC的新能源汽车系统成本或与使用Si器件成本相差不大,因此我们认为汽车高压平台涌现促进SiC器件渗透率提升。

此外SiC器件能够促进能源高效转换,在光伏储能领域也起着至关重要作用,CASA预计至2025年光伏逆变器中SiC器件占比将提升至50%。

◆产能扩张+衬底尺寸扩大是未来的趋势。

SiC晶圆制造难度较大,全球SiC晶圆供给紧张,美国在SiC晶圆市占率较高,我们认为主因发达国家较早布局SiC晶圆片。

各国纷纷布局SiC产业,通过产能扩张和扩大衬底尺寸缓解产能紧平衡的状态,中国也在加大投资力度缩小与国外差距。

中国与全球在SiC产业的差距表现有:1)衬底:目前全球SiC衬底从6吋向8吋逐渐演变,中国SiC商业化衬底以4吋为主,正在逐步向6吋过渡。

第三代半导体更高的载流子迁移率

第三代半导体更高的载流子迁移率

第三代半导体更高的载流子迁移率1. 引言作为半导体材料的第三代,包括碳化硅(SiC)和氮化镓(GaN)等材料,具有更高的载流子迁移率,这在电子器件领域具有重要意义。

2. 第三代半导体材料的特点- 碳化硅(SiC)具有高硬度、高熔点和高电子迁移率的特点,适用于高温、高频和高电压等应用场景。

- 氮化镓(GaN)具有较宽的能隙、高饱和漂移速度和高电子迁移率,适用于功率电子器件和光电器件。

3. 第三代半导体材料的载流子迁移率- 载流子迁移率是衡量半导体材料导电性能的重要参数,第三代半导体材料具有更高的载流子迁移率。

- SiC材料电子迁移率可达900 cm2/Vs,远高于硅材料的150cm2/Vs。

- GaN材料电子迁移率可达2000 cm2/Vs,远高于硅材料和氮化铝镓(AlGaN)材料的700 cm2/Vs。

4. 第三代半导体材料的应用- 由于其高电子迁移率,第三代半导体材料可以应用于高频功率放大器、射频开关、功率器件等领域。

- SiC材料可以用于制造高压、高频的功率器件,如MOSFET、Schottky二极管等。

- GaN材料可以用于制造高速、高功率的微波器件,如HBT、HEMT等。

5. 第三代半导体材料的发展趋势- 随着对高频、高温、高压等环境下电子器件性能要求的不断提高,第三代半导体材料的研究和应用将会得到进一步推动。

- 未来,第三代半导体材料的电子迁移率有望不断提升,进一步拓展其在功率电子和光电器件领域的应用。

6. 结语第三代半导体材料具有更高的载流子迁移率,这为其在高频、高温、高压等特殊环境下的电子器件应用提供了重要支撑,将在未来取得更广泛的应用前景。

7. 第三代半导体材料的挑战与突破尽管第三代半导体材料具有较高的载流子迁移率,但在其开发和应用过程中仍然面临着诸多挑战。

其中最主要的挑战之一是制备工艺的复杂性。

由于第三代半导体材料的特殊物理和化学性质,其制备工艺相对于传统半导体材料更为复杂,需要更高水平的技术和设备支持。

新型功率半导体SiC器件技术综述

新型功率半导体SiC器件技术综述

新型功率半导体SiC器件技术综述与传统功率半导体相比,碳化硅(SiC)及氮化镓(GaN)等新一代功率半导体具有高频、损耗较小的特点,其应用有助于开发新一代高效率、高开关频率、高结温、高功率密度的电力电子变流器。

本文讲述了传统功率半导体发展以及特性,详细介绍了碳化硅(SiC))的材料特性与发展,以及新型功率半导体在新能源汽车,轨道交通领域的应用。

标签:碳化硅;碳化硅MOSFET;功率半导体Abstract Compared with the traditional power semiconductors,silicon carbide (SiC)and gallium nitride(GaN)such as a new generation of power semiconductors has the characteristics of high working frequency,its application will help to develop a new generation of high efficiency,high switching frequency,high junction temperature,high power density of the power electronics converter. In this paper,the development and characteristics of traditional power semiconductors are described,and then the material properties and development of silicon carbine(SiC)and the application of new power semiconductors are introduced in detail. Finally,the application of the new power devices in electric vehicle,rail transportation is introduced.keywords:Silicon carbide(SiC),Silicon carbide MOSFET,power device1 引言功率半导体器件(Power Semiconductor Device),也可以叫做电力半导体器件,或者电力电子器件,属于电力电子技术的范畴。

SiC功率半导体器件的优势及发展前景

SiC功率半导体器件的优势及发展前景

SiC功率半导体器件的优势及发展前景SiC(碳化硅)功率半导体器件是一种新型的高性能功率电子元件,具有很多优势和发展前景。

本文将从四个方面分析SiC功率半导体器件的优势和发展前景。

一、优势:1.高温特性:SiC功率半导体器件具有很高的耐高温能力,能够在高温环境下工作。

其工作温度可以达到600摄氏度以上,相对于传统的硅功率器件,SiC器件能够在更苛刻的工作条件下稳定工作,提高了系统的可靠性和稳定性。

2.高电压特性:SiC器件具有更高的击穿电压,相对于硅材料的400伏特击穿电压,SiC材料的击穿电压可以达到数千伏甚至更高。

这意味着同样体积和尺寸下,SiC器件能够承受更高的电压,提供更大的功率输出,满足更高需求的电力系统。

3.低导通和开关损耗:SiC功率器件的导通和开关损耗比传统硅功率器件更低。

SiC材料的特殊结构和载流子迁移特性使得SiC功率器件具有更低的导通电阻和开关电阻,减少了功率损耗和热量产生,提高了能源的利用率。

4.高频操作能力:SiC器件具有更高的频率应用能力。

由于SiC材料的载流子迁移速度较高,SiC功率器件可以在更高的频率下工作,实现更高的开关频率和更快的开关速度。

这使得SiC器件在电力电子转换器和无线通信系统等领域具有广泛的应用前景。

二、发展前景:1.新能源行业:随着新能源行业的快速发展,对功率半导体器件的需求也在不断增加。

SiC功率器件具有高温、高频等特性,能够应对新能源系统的高温环境和高频率要求,因此在太阳能发电、风能发电和电动交通等领域有很好的应用前景。

2.电动汽车:SiC功率器件在电动汽车的应用前景广阔。

电动汽车对功率器件的高频、高温能力要求较高,而SiC器件具有这些优势,可以提高电动汽车的能效和驱动系统的稳定性。

3.工业控制:SiC功率器件在工业控制领域也有广泛的应用前景。

工业控制系统对功率器件的可靠性和稳定性要求较高,而SiC器件的高温、高压、低损耗特性能够满足这些要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SiC功率半导体器件的优势 及发展前景
中国科学院半导体研究所
刘忠立
报告内容
1. Si功率半导体器件的发展历程及限制
2. SiC功率半导体器件的优势 3. SiC功率半导体器件的发展前景
1. Si功率半导体器件的发展历程及限制
Si功率半导体器件的发展经历了如下三代: 第一代-Si双极晶体管(BJT )、晶闸管(SCR)及其派生器件。 功率晶闸管用来实现大容量的电流控制,在低频相位控制领 域中已得到广泛应用。但是,由于这类器件的工作频率受到 dV/dt、di/dt的限制,目前主要用在对栅关断速度要求较低的 场合(在KHz范围)。 在较高的工作频率,一般采用功率双极结晶体管,但是对以 大功率为应用目标的BJT,即使采用达林顿结构,在正向导 通和强迫性栅关断过程中,电流增益β值一般也只能做到<10, 结果器件需要相当大的基极驱动电流。此外,BJT的工作电 流密度也相对较低(~50 A/cm2),器件的并联使用困难, 同时其安全工作区(SOA)受到负阻引起的二次击穿的限制。
逆变器最高效率提升图
未来Si的IGBT有望用SiC功率MOSFET代替,而 Si的PiN整流二极管将会被SiC肖特基二极管取代。 另外,由于SiC PN结二极管可以用低寿命的飘移区 实现快恢复,在应用时, SiC功率MOSFET的内部 体二极管可以取代并联的肖特基二极管,它将有利 于简化电路结构。 SiC功率将会带来更好的效益。 随着SiC材料及器件工艺的不断进步, SiC功率器 件的价格必将不断下降,SiC功率器件在电力电子 工业中的推广应用也将是必然的趋势,因此,SiC 功率器件的发展前景是十分美好的。
如上所述, 尽管Si功率半导体器件经过半个世纪的 发展取得了令人瞩目的成绩,但是由于Si材料存在难 以克服的缺点,它们使Si功率半导体器件的发展受到 极大的限制。首先, Si的较低的临界击穿场强Ec,限 制了器件的最高工作电压以及导通电阻,受限制的导 通电阻使Si功率半导体器件的开关损耗难以达到理 想状态。Si较小的禁带宽度Eg及较低的热导率λ,限 制了器件的最高工作温度(~200º C)及最大功率。为 了满足不断发展的电力电子工业的需求,以及更好地 适应节能节电的大政方针,显然需要发展新半导体材 料的功率器件。
275KWh
0.44EUR
121EUR
1210EUR
250KWh
0.55EUR
137EUR
1370EUR
示例2
单相HERIC®-逆变器
H4-桥 + HERIC-开关管 350VDC
5 kW
开关频率:16 kHz 功率半导体器件
IGBT: FGL40N120AND
SiC Transistors: MOSFET (CNM 1009), JFET (SJEP120R063) SiC Diodes: C2D20120D
1) P-i-N二极管
P-i-N二极管是广泛采用的电力电子高压 整流元件。Si 的P-i-N二极管主要靠厚的本 征i飘移区维持反向高压,厚的本征i区增加了 正向导通压降。对于SiC的情形,在相同反向 耐压时,飘移区的掺杂浓度可以高很多,其厚 度比Si 器件的薄很多(见下表),由此可以得 到低的正向导通损耗。
第三代-绝缘栅双极晶体管(IGBT)。 它是一种包括MOSFET以及双极晶体管的复合功率 半导体器件,兼有功率MOSFET和双极晶体管的优点。 自1982年由美国GE公司提出以来,发展十分迅速。 商用的高压大电流IGBT器件仍在发展中,尽关德国 的EUPEC生产的6500V/600A高压大功率IGBT器件 已经获得实际应用,但其电压和电流容量还不能完全 满足电力电子应用技术发展的需求,特别是在高压 领域的许多应用中,要求器件的电压达到10KV以上, 目前只能通过IGBT串联等技术来实现。
SiC肖特基二极管同Si超快恢复二极管的比较
SiC肖特基二极管 高阻断电压 高开关速度 高温时稳定性好
3) 单极场效应晶体管
这里指的是MESFET(金 属半导体接触场效应晶体 管)及JFET(结型效应晶体 管),它们的结构见右图。 采用SiC特别适合制作这 二种高压大电流器件。同 样,飘移区在决定它们的 优良特性方面起决定作用。 不过这二种器件通常是常 导通型,不适合直接用于 开关。但是它们可以同低 压功率MOSFET结合构 成一种常截止型器件,因 而发展这二种高压大电流 器件有重要的意义。
20年内IGBT将会和目 前的SiC元件具有同样 的性能
一台利用SiC晶体管7kW光伏逆变器的经济效益
能量增益 (每年) 最大再生能 源发电补助 /KWA
0.45EUR
效率提高代 来的增益 (每年)
63EUR
效率提高带 来的增益 (10年)
630EUR
佛莱堡 (德国)
140KWh
阿尔梅亚 (西班牙) 马 赛 (法国)
2. SiC功率半导体器件的优势
SiC是一种具有优异性能的第三代半导体材料, 与第一、二代半导体材料Si和GaAs相比, SiC材料及器件具有以下优势: 1) SiC的禁带宽度大(是Si的3倍,GaAs的2 倍), 本征温度高,由此SiC功率半导体器件的 工作温度可以高达600°C。
2) SiC的击穿场强高(是Si的10倍, GaAs的7 倍), SiC功率半导体器件的最高工作电压比 Si的同类器件高得多; 由于功率半导体器件的 导通电阻同材料击穿电场的立方成反比,因此 SiC功率半导体器件的导通电阻比Si的同类器 件的导通电阻低得多,结果SiC功率半导体器 件的开关损耗便小得多。
右图给出巴利格复 合结构的输出特性。这 个器件在栅压10V时达 到了很大的饱和电流 (>2x104A/cm2),线性区 的电流密度达到 570A/cm2,具有低到 1.9mΩ-cm2比导通电阻, 其特性非常优良。
4) 平面功率MOSFET
平面功率MOSFET如右图所 示。对于SiMOSFET,当击穿电 压超过200V时, 导通电阻增加。 在高电压时其比导通电阻大于 10-2 Ω-cm2,它导致导通电流密 度为100A/cm2时导通压降大于 1V。尽管改进的结构可以使其 工作在600V以上,但是比导通 电阻仍然很大,从而限制了它 在高频下应用。SiC功率 MOSFET可以克服平面功率 MOSFET的缺点,而安全工作 区又比Si 的IGBT好。
右图示出4H-SiC及Si的 平面功率同 MOSFET的比 导通电阻的比较。可以看 出,对容易实现的电子迁 移率µinv=10cm2/V.S, 在 1000V击穿电压时,4HSiC器件的比导通电阻为Si 器件的几十分之一。而当 µinv=100cm2/V.S时,4HSiC器件的比导通电阻比Si 器件的小100倍以上。
示例1
三相光伏逆变器
B6-Bridge 750 VDC 7 kW 开关频率:16.6 kHz 功率半导体器件 IGBT 2 (BSM15GD120DN2), IGBT 3 (FS25R12YT3), IGBT 4 (FS25R12W1T4)
SiC-MOSFET (CNM 1009)
三相光伏逆变器效率
在军用方面,美国Cree公司受军方资助,已开发 出10kV/50A的SiC PiN整流器件和10kV的SiC MOSFET。下一步他们将要按比例缩小这些器件的 尺寸,以得到10kV/110A的器件模块,并将它们用 于航母的电气升级管理中去。 在欧洲,德国、法国及西班牙将SiC MOSFET用 于太阳能逆变器,获得98.5%的效率,它的普遍推广, 将带来极可观的节能和经济效益。
2)肖特基二极管
肖特基二极管是单极器件 (见右图) ,具有快的正到反向 的恢复时间,是电力电子中重要 的高频整流元件。对于Si 器件, 在较高击穿电压时飘移区电阻 迅速增加,由此产生显著功率损 耗。一般Si肖特基二极管工作 电压约为200V,改进的结构也不 超过600V。 SiC肖特基二极管 可以用低得多的飘移区获得很 高的击穿电压。
3. SiC功率半导体器件的发展前景
由于SiC功率半导体器件在电力电子应用领域具 有节电节能及减小体积方面的巨大优势和应用前景, 由此各国大力投入,竞相研究,并且在器件研究及 应用方面不断地取得领人振奋的成绩。 在发展工业用的SiC功率半导体器件中,首先推 出的是SiC肖特基二极管,2001年Infineon公司推出 300V-600V(16A)的产品,接着Cree公司于2002年 推出600V-1200V(20A)的产品,它们主要用在开关 电源控制及马达控制中,IGBT中的续流二极管也是 它们的重要用途。2004年Cree公司销售该系列产品 达300万美元,此后销售额逐年上升
碳化硅和硅性质比较的图示
硅--面心立方晶体 碳化硅--立方晶体(一种)和六方晶系 (4H,6H等多种)
击穿范围(MV/cm) 导热性(W/cmK) 电子迁移率(*10³cm² /Vs) 饱和速(*107 cm/s) 带隙(eV)
SiC同Si一样,可以直接采用热氧化工艺在 SiC表面生长热SiO2,由此可以同Si一样, 采 用平面工艺制作各种SiC MOS相关的器件, 包括各种功率SiC MOSFET及IGBT。与同 属第三代半导体材料的ZnO、GaN等相比, SiC已经实现了大尺寸高质量的商用衬底, 以及低缺陷密度的SiC同质或异质结构材料, 它们为SiC功率半导体器件的产业化奠定了 良好的基础。 下面就一些SiC典型器件对其优势进行分析:
采用槽深1µm栅条0.6µm的4H- SiC 3KV MESFET ,其比导通电阻为1.83mΩ-cm2,在栅 压为-4V时电流为1.7x104A/cm2,截止偏压为24V.
采用结深1µm栅条0.6µm的4H- SiC 3KV JFET,其比导通电阻为3.93mΩ-cm2。 这些特性大大优于同类Si器件的特性。
单相HERIC-Inverter效率
当MOSFET高温时,采 用MOSFET和JFETs 的 效率相等 测量结果包括辅助 源的损耗
相关文档
最新文档