二次根式的除法 (优秀课件).ppt
二次根式的除法课件
$sqrt{frac{a}{b}} = frac{sqrt{a}}{sqrt{b}}$($a geq 0, b > 0$),即非负数的平方根与正数的 平方根的商等于这两个数商的平方根。
二次根式的化简
化简二次根式的一般步骤是
把被开方数分解因式;利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;化简 后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2。
二次根式的除法课件
目录
• 引言 • 二次根式的基本概念 • 二次根式的除法法则 • 二次根式除法的运算步骤 • 二次根式除法的应用举例 • 练习题与解答 • 总结与回顾
01
引言
目的和背景
掌握二次根式的除法 运算法则,理解其算 理。
通过学习,提高学生 的运算能力和数学素 养。
能够运用二次根式的 除法运算法则进行简 单的计算。
解答
$(sqrt{3} + sqrt{2}) div (sqrt{3} - sqrt{2}) = frac{(sqrt{3} + sqrt{2})(sqrt{3} + sqrt{2})}{(sqrt{3} - sqrt{2})(sqrt{3} + sqrt{2})} = frac{5 + 2sqrt{6}}{1} = 5 + 2sqrt{6}$
数学兴趣和数学素养。
02
二次根式的基本概念
二次根式的定义
二次根式是指形如$sqrt{a}$ ($a geq 0$)的代数式,其中
$a$叫做被开方数。
当$a > 0$时,$sqrt{a}$表示 $a$的正平方根;当$a = 0$时,
$sqrt{a} = 0$。
二次根式的除法课件(PPT 18页)
二次根式的除法
(第三课时)
会熟练地运用二次根式的性质化简二次 根式;
会运用二次根式的除法法则及分母有理 化方法,熟练进行简单二次根式的除法 运算;
学习、体会灵活运用二次根式的性质和 法则的方法。
复习提问
1、二次根式的性质有哪些?
1) a 0a 0
2) a 2 aa 0
2
x y x y
x y
x y
2 m m m m 1 m 1
m
m
3 x2 2 x 2 x 2 x 2
x 2
x 2
1
1 1
2
6 2
2
1
5x
5x
5x
3 y xy
x
x
4 4 a 2 2a
2
已知:
2 1.414 ,如何求
1 2
与
8的
近似值?(结果保留两位有效数字)
解:
例题选讲
分母有理化: 3x 6
x2
解:方法1
3x 6 x2 方法2
(
3x (
6) x
x 2 )2
2
3(x 2) x 2 x2
3
x2
3x 6 3( x 2 ) 3( x 2 两种方法的依据各是什么?哪种
方法更简便?
把下列各式分母有理化
1
x y
方法2: 10 27 10 3 3 3 30
解(2):方法1: 15 12 2 45 15 12 45 15 22 3532
2 45 45
2 45
15 2 3 15 15 2 45
方法2: 15 12 2 45 15 2 3 5 3 15
23 5 5
二次根式的乘除法PPT课件
二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
二次根式的除法PPT精品课件
一、读一读
xù 煦煦
yì 翌日
wān 蜿蜒
piāo 剽悍
qǐ 绮丽
jù 飓风
zhù 伫立
móu 凝眸
二、记一记
伫立:
长时间地站着。
绮丽:
鲜艳美丽。
轻盈:
形容身材苗条,动作轻快。
剽悍:
敏捷而勇猛。
寡不敌众: 人少的一方抵抗不住人多的一方。本文形容
一只苍鹰抵挡不住众多鹤的攻击。
无济于事: 对于事情没有什么帮助。
(3) a-1 •( a-1)= a-1
2.把下列各式的分母有理化:
(4)3
2=
3
6
(1)-8 3 (2)3 2
8
27
(3) 5a 10a
(4) 2y 2 4xy
3.化简:
(1) - 19 ÷ 95
(2)9 1 ÷(-3 2 1)
48
24
mm- -4531成、1解 立、 4.: 的等要 条式使件等 mm是- -式 __53成 _=_m立_>_,_5mm_m- -_必_53_须 _成。满立足的 条
除 作以 为除 商式 的的被算开术方平数方根。
例5:化简 (1) 3 100
(2) 1 3 16
3 25x
9y2
解: 1 3 3 3
100 100 10
(2) 1 3 =
19
=
19 =
19
16 16 16 4
3 25x 25x 5 x
9y2 9y2 3y
注意: 如果被开方数是 带分数,应先化 成假分数。
(3)原式=
41 7= 5 10
21 10=
57
6
如果根号前 有系数,就 把系数相除
二次根式的除法课件
二次根式的除法满足交换律、结 合律和倒数性质。
除法的意义
简化二次根式
通过除法,可以将复杂的二次根式化简为简单的二次根式或非二次根式。
解决实际问题
在解决一些实际问题时,如计算面积、体积等,需要用到二次根式的除法。
除法与乘法的关系
互为逆运算
二次根式的除法与乘法是互为逆运算 的关系,即乘法的逆运算是除法,除 法的逆运算是乘法。
乘法与除法的对比与联系
乘法和除法在运算性质、运算法 则和公式等方面存在明显的差异
。
乘法是加法的重复,而除法是减 法的重复。
在二次根式的运算中,乘法和除 法既有联系又有区别,需要仔细
区分和掌握。
05
CATALOGUE
二次根式的除法在实际问题中的应用
在几何问题中的应用
总结词
解决实际问题
详细描述
二次根式的除法在几何问题中有着广泛的应用,例如计算图形的面积、周长等。通过将二次根式进行除法运算, 可以得出精确的数值结果,从而帮助解决各种几何问题。
相互转换
在一定条件下,二次根式的除法可以 转换为乘法,通过乘法的运算性质和 公式进行计算,反之亦然。
02
CATALOGUE
二次根式的除法法则
除法法则的推导
01
从二次根式的乘法法则出发,通 过逆向操作推导出除法法则。
02
举例说明:如$frac{a}{sqrt{b}
除法运算的实例
实例一
$frac{2sqrt{3}}{3sqrt{2}}$:首先将被除数和除数进行除法运 算,得到商和余数,然后根据余数的大小对商进行化简,最 终得到结果为$frac{sqrt{6}}{3}$。
实例二
$frac{-sqrt{5}}{5sqrt{3}}$:首先将被除数和除数进行除法运 算,得到商和余数,然后根据余数的大小对商进行化简,最 终得到结果为$-frac{sqrt{15}}{15}$。
《二次根式除法》课件
02
二次根式除法运算
除法运算步骤
1 2
3
步骤一
确定被除数和除数:首先需要确定二次根式的被除数和除数 ,这是进行除法运算的基础。
步骤二
进行除法运算:根据二次根式的性质,将被除数和除数进行 相除,得到商。
步骤三
化简结果:对得到的商进行化简,确保结果是最简二次根式 。
运算注意事项
注意一
除数不能为零:在二次根式除法中,除数不能为零,否则会导致无意义。
分母有理化的应用
解决二次根式的除法问题
通过分母有理化,可以将二次根式的除法问题转化为乘法问题,简化计算过程。
化简复杂表达式
在数学和物理中,有些表达式可能包含难以处理的根式,通过分母有理化可以化简这些表达式,使其更易于理解 和计算。
04
二次根式除法在数学中的应 用
在代数方程中的应用
代数方程是数学中常见的形式之一,二次根式除法在解决代 数方程中具有重要作用。通过将方程中的根式化为分数指数 幂,可以简化方程,使其更容易求解。
《二次根式除法》ppt课件
$number {01}
目录
• 二次根式除法概述 • 二次根式除法运算 • 二次根式除法与分母有理化 • 二次根式除法在数学中的应用 • 二次根式除法的练习与巩固
01
二次根式除法概述
定义与性质
定义
二次根式除法是指将一个二次根 式除以另一个二次根式的过程。
性质
二次根式除法具有乘法的分配律 、结合律等基本性质,同时还有 除法的倒数性质等特殊性质。
除法与乘法的关联
关联
二次根式除法可以转化为乘法运算,即被除数乘以除数的倒 数。
应用
通过这种转化,可以简化二次根式除法的计算过程,提高运 算效率。
八年级数学下册教学-16.2 二次根式的乘除 课件(共16张PPT).ppt
02
练一练
1.(2019·海口市丰南中学初三期末)已知: 是整数,则满足条件
的最小正整数为(
A.2
)
B.3
C.4
D.5
【答案】D
【解析】
∵ 20 = 4 × 5 = 2 5 ,且 20 是整数,
∴2 5是整数,即5n是完全平方数,
∴n的最小正整数为5.
故选D.
02
练一练
2.已知 = , = ,则 = (
PA R T
02
练一练
02
练一练
计算:
1) 14 × 7 = 14 × 7 = 2 × 72 = 7 2
2)2 10 × 3 5 = 2 × 3 × 10 × 5
= 6× 2×5×5
= 6 × 52 × 2=30 2
3) 3 ×
1
3
= 3 × 1 =
3
× 2= = 2 × =
A.2a
B.ab
C.
)
D.
【答案】D
【详解】
解: 18 = 2 × 3 × 3 = 2 × 3 ×
3 = ⋅ ⋅ = 2 .
故选D.
3.(2019·肇庆市端州区南国中英文学校初二期中)下列
各数中,与2 的积为有理数的是(
A.2
B.3
C.
)
【答案】D
【详解】
解:A、2×2 3=4 3为无理数,故不能;
01
二次根式的乘法法则变形
注意公式成立条件
ab = • ≥ 0,b ≥ 0
在本章中,如果没有特别说明,所有的字母都表示正数.
计算:
1) 16 × 81 =
=
二次根式的除法课件
04 典型例题解析
分母有理化的应用
总结词
分母有理化是一种重要的二次根式除 法技巧,通过将分母转化为有理数, 可以简化二次根式的运算。
详细描述
分母有理化的目的是将二次根式中的 分母转化为一个平方数,从而消除根 式中的分母。实现分母有理化的关键 是找到与分母相乘的平方数。
复杂二次根式的除法
总结词
复杂二次根式的除法需要灵活运用各种运算法则和技巧,如因式分解、分母有理化等,以简化运算。
详细描述
在进行复杂二次根式除法时,应先观察被除式的特点,选择合适的运算顺序和技巧。例如,可以先运 用因式分解将复杂二次根式化为多个简单二次根式的积,再运用分母有理化等方法进行化简。
含参变量的二次根式除法
总结词
含参变量的二次根式除法是数学运算中常见的题型之一,需要学生掌握如何处理参数与二次根式之间的关系。
03 二次根式除法的技巧和方 法
分子有理化
总结词
利用有理化分子的方法,将二次根式 化简成最简二次根式。
详细描述
通过分子有理化,可以将二次根式转 化为有理数或整式,从而简化计算过 程,提高运算效率。具体方法包括: 分母有理化和分子有理化。
换元法
总结词
用字母代替未知数,将复杂表达式转换为简单表达式。
二次根式的定义
二次根式是一种表达数值的方式,它 表示对一个数或代数式进行开方运算 。
课程目标与内容
课程目标
帮助学生掌握二次根式除法的基 本原理、方法和技巧,理解其运 算过程,培养其数学思维和解决 问题的能力。
课程内容
介绍二次根式除法的定义、性质 、法则和运算方法,并通过例题 和练习题加深学生对知识点的理 解和掌握。
1. $\frac{4 \div 2}{\sqrt{4}} = 2 \div 2 = 1$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.把下列各式分母有理化: 寻找分母的
有理化因式,
1 5 3 5
4 12 8
应找最简单 的有理化因 式,也可灵
2 45 3
2 20
4
活运用我们 学过的性质 和法则,简
3
a2
(a 2)
a
1
化、优化解 答过程。
2 a 1
2a 2
练习:
(1)3 6
(2)- 45 (3) 2
2 20
3
(4)-4 2 (5) 3 (6)1
(1) 2 ( 2) 2 3 ( 3) 27
3
8
3x
2 3
2 3
23 33
6 32
6 6 32 3
2 2 3
6
6
3 3 3 ( 3)2 3
(2) 2 3 2 3 3 3 2 6
8 22
2
2 2 2
(3) 27 27 3x 9 x 3 x
3x
3x 3x 3x
x
在二次根式的运算中,一般要求最后结果的分母中不含根式。
例2.计算:
(1) 40 5
解:
(2) 4 1 3 12
(1) 40 5 40 40 8 22 2 2 2
55
(2) 4 1 4 1 4 12 42 4 3 12 3 12 3
练习:
1 72
6
2 11 1
26
3 40
45
4 m5n4 5 m4n3
小结:二次根式性质4:
温故:
二次根式性质3:
如果a≥0,b≥0,那么有 a· b ab 如果a≥0,b≥0,那么有 ab a· b
化简:
1 4 16
练习
7 18
2 36 256
8 5 2 3 18
3 30000
9 45 48
4 132 122
10 ab 1 1
5 a2 (b c)2 (a≥0,b+c≥0)
×× √
××
2
x2 y,
ab ,
3xy ,
5(a2 b2 )
25
√
×√
√
化简:
15 12 2 45
15 12 2 45 15 2 3 5 3 15 23 5 5
由上面的计算可知: 二次根式的除法运算,通常采
用分子、分母同乘以一个式子化 去分母中的根号的方法,这种方 法就叫做分母有理化
× × (3) 41 2 1 ( 22
)(4
(5) 4 4 4 4( √ )(6)5 5 5 5 ( √)
15 15
24 24
观察、猜想训练
验证下列各式,猜想下一个式子是什 么?你能找到反映上述各式的规律吗?
1 2 2 2 2
3
3
2
3 3
3
3
8
8
n n n n n 2
n2 1
n2 1
3 4 4 4 4
15
15
4 5 5 5 5
24
24
化简二次根式
注意点: (1)当二次根式的被开方数中含有字母 时应充分注意式子中所含字母的取值范围 (2)进行二次根式的乘除运算或化简, 最终结果定要尽可能化简
作业
1 1 1
2
2 1
5x
3 y
x
4 4 a
2
(5) 4 4 9
ab
6 b a
ab
11 2 xy 1 1
3x
导新:
二次根式性质2:
a2 =|a|=
=a (a≥0) =-a (a<0)
计算
(1) (3) (5)
4 9 49 100 25 64
(2) (4) (6)
4 9 49 100 25 64
a 一般地,有 a _____b___, (a 0,b 0)
例1.化简
(1) 1 5
(2) 1 2 3
解:
(1)
1
=
1
5
=
5= 5
5 5 5 ( 5)2 5
2 5 5 5 3 15
(2) 1 = = =
=
3 3 3 ( 3)2 3
最简二次根式
1、被开方数不含分母(即被开方数的因数是整数,因 式是整式);
2、被开方数中不含能开得尽方的因数或因式(即被 开方数的每一个因数或因式的指数都小于2 )。
如果a 0,b 0,那么有 a a bb
也可以写成 a a (a 0, b 0) bb
注意:(1)a、b的取值范围; (2)当二次根式除以二次根式时
的系数与系数相除,若二次根式前面有系 数,可类比单项式除以单项式,即系数除 系数,被开方数相除作被开方数。
探究
把 a a bb
反过来,就可以得到:
a2b (6) 8c2
2、计算:
(1) 7 3 14 3 2 1 15 2 2
(2) ab3 (3 b ) (3 2a ) 2a
课堂练习
b
二次根式除法法则:
两个二次根式相除,将它们的被开方 数相除的商,作为商的被开方数;
这个公式反过来写,得到:___ba_____ba____( a 0,b 0)
例1.计算或化简:
(1) 15
3
(2) 24 3
解:(1) 15 15 5
33
(2) 24 24 8 22 2 2 2 33
37
5
6
(7)-2 2 (8) 5
53
10
二次根式的化简要求满足以下两 条: (1)被开方数的因数是整数,因式是 整式,也就是说“被开方数不含分 母”. (2)被开方数中不含能开得尽的因 数或因式,也就是说“被开方数的 每一个因数或因式的指数都小于
2”.
辨析训练
判断下列各等式是否成立。
× √ (1) 16 9 4 3( )(2) 3 3 ( ) 22
a a (a≥0,b>0) bb
利用它可以对二次根式进行化简.
例题讲解
化简: (1)
3 (2) 100
25 y 9x2
解: (1) 3 3 3 100 100 10
(2)
25 y 9x2
25 y
9x2
52 y 5 y
32 x2 3x
你能去掉分母中的根号吗?
计算:
解(1)
解法一: 解法二:
我们把满足上述两个条件的二次根式,
叫做最简二次根式。 二次根式的运算中,最后的结果中的二次根式一般要 写成最简二次根式的形式。
下列哪些是最简二次根式 2 5、36、12、27、 2、 7 、 2
3 32
探究
下列根式中,哪些是最简二次根式?
12a , 18, x2 9, 5x3 y , 27abc,