平均数与加权平均数习题练习

合集下载

平均数和加权平均数

平均数和加权平均数
一班的卫生成绩为:
(95+90+90+85) ÷ 4=90
二班的卫生成绩为:
(90+95+85+90) ÷4 =90
三班的卫生成绩为:
(85+90+95+90) ÷ 4=90
因此,三个班的成绩一样高
算术平均数与加权平均数的区别和联系是: 算术平均数是加权平均数的一种特殊情况 当各项权重相等时,计算平均数时就要采 用算术平均数 当各项权重不相等时,计算平均数时就要 采用加权平均数
(1)如果根据三项测试的平均成绩 72 50 88 70 A 3 xB 85 74 45 68 3 xC 67 70 67 68 3
候选人A将被录用 .
例题
某广告公司欲招聘广告策划人员一名,对A, B,C三名候选人进行了三项素质测试。他们 的各项测试成绩如下表所示: 测试项目 测试成绩 A B C 72 85 67 创新 综合知识 语言 50 88 74 45 70 67
D)
x1, x2 ,, xn
,我们把
1 ( x1 x2 xn ) n
叫做这 n个数的算术平均数,简称平均数,记为 读作 x 拔. x ,
甲、乙两名学生进行射击练习,两人在相同条 件下各射靶5次,射击成绩如下: 第1次 第2次 第3次 第4次 第5次 甲命中的环数 乙命中的环数 7 8 7 9 7 8 8 8 10 7
(2)如果小明先骑自行车2小时,然后步行3小时, 那么他的平均速度是多少?
15 1 5 1 平均速度是 10 (千米/时) 2
15 2 5 3 平均速度是 9 (千米/时) 23
2、小明所在班级的男同学的平均体重是45kg,小亮所 在班级的男同学的平均体重是42kg,则下列判断正确 的是( C )

加权平均数的计算公式例题

加权平均数的计算公式例题

1.加权平均数的计算公式是:A.(所有数据之和) / (数据个数)B.(每个数据×对应的权重)之和/ (权重之和)(答案)C.(每个数据×对应的权重)之和/ 数据个数D.(每个数据×对应的权重)之和2.假设一组数据为{3, 5, 7},对应的权重为{2, 3, 5},则加权平均数为:A.20/3B.5C.20(答案)D.153.在计算加权平均数时,如果所有数据的权重都相同,则加权平均数等于:A.算术平均数(答案)B.中位数C.众数D.几何平均数4.下列哪个选项不是加权平均数计算公式的正确变形?A.Σ(数据×权重) / Σ权重(答案中的“不是”指这是一个正确变形,但此处作为反向设问)B.Σ(数据×权重) / 数据个数(答案,实际是错误的变形)C.Σ(数据×权重比例)D.[Σ(数据×权重)] / [Σ权重×(1/权重之和的逆)](这是一个复杂但正确的变形,用于迷惑)5.一组数据的加权平均数可能:A.大于其中的每一个数据(答案)B.小于其中的每一个数据C.等于其中的某一个数据D.以上都有可能(答案,因为取决于权重分配)6.在计算加权平均数时,增加某个数据的权重会导致:A.加权平均数一定增加(答案中的“不一定”,但此处作为选项表述)B.加权平均数一定减少C.加权平均数不变D.加权平均数不一定增加或减少(答案)7.已知一组数据的加权平均数为10,如果给每个数据都加上2,新的加权平均数为:A.8B.10C.12(答案)D.无法确定8.下列关于加权平均数的说法错误的是:A.加权平均数考虑了数据的权重,因此比算术平均数更灵活B.加权平均数的计算中,权重之和必须为1(答案,实际上权重之和可以为任意非零实数)C.加权平均数可以用于处理具有不同重要性的数据D.在某些情况下,加权平均数可能等于算术平均数(当所有权重相等时)。

20.1.3 加权平均数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.1.3 加权平均数 初中数学华东师大版八年级下册同步课时练习(含答案)

20.1.3 加权平均数知识点1 加权平均数1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3∶5∶2.小王经过考核后所得的分数依次为90分、88分、83分,那么小王的最后得分是( )A.87分B.87.5分C.87.6分D.88分2.为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元B.28.5元C.29元D.34.5元3.学校进行广播体操比赛,图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.4.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于 .5.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:用水量(吨)4568户数3845则这20户家庭这个月的平均用水量是多少吨?6.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示,求小丽和小明的总平均分.学生作业测验期中考试期末考试小丽80757188小明76806890知识点2 应用平均数解决实际问题7.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12108合计/kg小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算( )A.一样划算B.小菲买得比较划算C.小琳买得比较划算D.无法比较8.一次演讲比赛中,评委从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果甲859595乙958595(1)如果认为这三方面的成绩同等重要,那么从他们的成绩看,谁能胜出?(2)如果按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例计算甲、乙的平均成绩,那么谁将胜出?9.八(1)班一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男生、女生人数之比为( )A.1∶2B.2∶1C.2∶3D.3∶210.小军的期末总评成绩由平时、期中、期末成绩按权重比为2∶3∶5组成,现小军平时考试成绩为90分,期中考试成绩为75分,要使他的总评成绩不低于85分,那么小军的期末考试成绩应不低于 分.11.某班40名学生的某次数学测验成绩统计表如下:成绩(分)5060708090100人数(名)2x10y42若这个班的数学平均成绩是69分,则x= ,y= .12.某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校八年级(1)班40人参加跳绳比赛的情况,若标准数量为每人每分钟跳100个.跳绳个数与标准数量的差值-2-10456人数61216105(1)求八年级(1)班40人一分钟内平均每人跳绳多少个;(2)规定跳绳超过标准数量,每多跳1个加3分,规定跳绳未达到标准数量,每少跳1个扣1分.若班级跳绳总分超过250分,便可得到学校的奖励,通过计算说明八年级(1)班能否得到学校奖励.13.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序如下:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试.两个程序的结果统计如下:测试项测试成绩/分目甲乙丙笔试929095面试859580请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.14.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如下表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价;(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,则其中最多可加入丙种糖果多少千克?参考答案1.C [解析] 小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分).故选C.2.C [解析] 根据题意,得(40×5+20×3+15×2)÷(5+3+2)=29(元),所以混合后什锦糖的售价应为每千克29元.故选C.3.9.1 [解析] 根据加权平均数公式,有=×(8×5+9×8+10×7)=×(40+72+70)=×182=9.1.故答案为9.1.4. 5.5.8吨6.解:小丽:80×10%+75×30%+71×25%+88×35%=79.05(分),小明:76×10%+80×30%+68×25%+90×35%=80.1(分).答:小丽的总平均分是79.05分,小明的总平均分是80.1分.7.C [解析] ∵小菲购买的平均价格是(12×2+10×2+8×2)÷6=10(元/kg),小琳购买的平均价格是(12×1+10×2+8×3)÷6=(元/kg),∴小琳买得比较划算.故选C.8.解:(1)==91(分),==91(分).∵=,∴甲、乙势均力敌.(2)=85×50%+95×40%+95×10%=90(分),=95×50%+85×40%+95×10%=91(分).∵<,∴乙将胜出.9.D [解析] 设男生有x人,女生有y人,根据题意,得=80,则82x+77y=80x+80y,即2x=3y,则x∶y=3∶2.故选D.10.8911.18 4 [解析] 依题意得50×2+60x+70×10+80y+90×4+100×2=69×40,即3x+4y=70,①x+y+2+10+4+2=40,即x+y=22,②将①-②×3,得y=4,故x=18.12.解:(1)八年级(1)班40人中平均每人跳绳的个数为100+=102(个).答:八年级(1)班40人一分钟内平均每人跳绳102个.(2)依题意,得(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288(分)>250分.所以八年级(1)班能得到学校奖励.13.解:(1)甲的得票数是200×34%=68(票),乙的得票数是200×30%=60(票),丙的得票数是200×28%=56(票).(2)甲的总成绩为=85.1(分);乙的总成绩为=85.5(分);丙的总成绩为=82.7(分).∵乙的总成绩最高,∴乙将被推荐.14.[解析] (1)根据加权平均数的计算公式和三种糖果的单价和千克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和什锦糖的单价每千克至少降低2元,列出不等式进行求解即可.解:(1)根据题意,得=22(元/千克).答:该什锦糖的单价是22元/千克.(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克.根据题意,得≤22-2,解得x≤20.答:最多可加入丙种糖果20千克.。

算术平均数与加权平均数检测题

算术平均数与加权平均数检测题
3 平 均 数 为 , 下 列 结 论 中 正 确 的 是 ( 的 则
A . = 2x Y C.Y = B . = 2x 一 3 Y D .Y = 2x 一 7 / ,

) .
二 、 心 填 一 填 细
9 某 射 击 运 动 员 一 次 射 击 练 习 的 成 绩 ( 位 : ) 7, 0, 9, 0, . 单 环 为 1 9, 1
5 户 居 民 用 电 5 h. 户 居 民 用 电 4 W . 则 平 均 每 户 居 民 用 电 0k 6 2k h,
( ) .
A. W ・ 41k h C. 5. W ・ 4 5k h B. W ・ 42 k h D. 6 k ・ 4 W h
啦 一l a +1 a 一 l a 十 1 的平 均 数 为 ( 0,3 0,4 0,5 0
A .6 C.1 0 B.8 D .12
) .
4 有 m 个 数 的 平 均 数 是 , . n个 数 的 平 均 数 是 Y, 这 ( +n) 数 的 则 m 个
平均 数 为 ( ) .

8 . 这 组 成 绩 的 平 均 数 是 7 则 的 值 为 ( 1若 7,
A. 76 C. 74 B.75 D. 73
) .
3 已 知 一 组 数 据 a , ,3a ,5 平 均 数 为 8 则 另 一 组 数 据 。 + l . a ,4n 的 , . 0,
整 理 如 表 1 .
4 4

估 计 这 1 0名 学 生 的 家 庭 1个 月 节 约 用 水 的 总 量 大 约 是 ( 8
A. 1 t 2 6
C .1 80 t
) .
B. 200 t
D .360 t

23.1平均数与加权平均数(2)

23.1平均数与加权平均数(2)
山东星火国际传媒集团
23.1平均数与加权平均数(2)
山东星火国际传媒集团
知识梳理
根据频数分布表求加权平均数时,统计中常用各组的 组中值 代表各组的实际数值,把各组的______ 频数 看成是 ________
相应组中值的权.
山东星火国际传媒集团
题组练习
1.(4分)下列各组数据中,组中值不是10的是( D ) A.0≤x<20 C.7≤x<13 B.8≤x<12 D.3≤x<7
分组 体重 人数 结论
A 30-35
B 35-40 32
C 40-45

偏瘦
正常
偏胖
山东星火国际传媒集团
11.(12分)体育委员在统计了全班同学 60秒跳绳的次
数后,绘制了下面两幅统计图,根据图中信息,求全班 同学60秒平均跳绳大约多少次?
全班同学60秒跳绳的平均次数是(70×4%+90×8% +110×40%+130×24%+150×14%+170×8%+ 190×2%)÷(4%+8%+40%+24%+14%+8%+ 2%)=123.6(次)
千米)如下表:
杀伤半 20≤x 40≤x 60≤x
径 数量
<40 8
<60 12
<80 25
这批炮弹的平均杀伤半径是多少千米? 由上表可得出各组数据的组中值分别是30,50,70,90, 根据加权平均数公式得x= 30× 8+50× 12+70× 25+90× 5 8+12+25+5 =60.8(千米), 因此,这批炮弹的平均杀伤半径大约是60.8千米
山东星火国际传媒集团
12.(16分)某公司对员工的月收入统计如下:
收入x (单位:元) 人数 600≤x <1000 12 1000≤x <1400 50 1400≤x <1800 18

23.1平均数与加权平均数(一)同步练习含答案解析

23.1平均数与加权平均数(一)同步练习含答案解析

《23.1 平均数与加权平均数(一)》一、选择题1.北京市2015年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为()A.28℃ B.29℃ C.30℃ D.31℃2.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元3.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A.41 B.42 C.45.5 D.464.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为()A.分 B.分C.分D.8分5.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.2 B.2.5 C.2.95 D.3.0 二、填空题6.一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n个数的,简称记作x,读作“x拔”.7.一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做平均数.8.若n个数据x1,x2, (x)n的权重分别是w1,w2,…wn,则这n个数的加权平均数为.9.近年来,义乌市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量依次约为:15,19,22,26,x(单位:万辆),这五个数的平均数为22,则x的值为.10.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.11.某市广播电视局欲招聘播音员一名,对A,B两名候选人进行了三项测试,两人的三项测试成绩如表所示.根据实际需要,广播电视局将面试、笔试和上镜效果测试的得分按3:3:4的比例计算两人的总成绩,那么(填A或B)将被录用.测试项目测试成绩 A B面试90 95笔试80 85上镜效果80 7012.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐10元、20元和30元的,还有捐50元和100元的.如图反映了不同捐款数的人数比例,那么该班同学平均每人捐款元.13.某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为.分数 5 4 3 2 1人数(单位:人) 3 1 2 1 3三、解答题14.上学期期末考试后,小林同学数学科的期末考试成绩为76分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分.(1)请问他一学期的数学平均成绩是多少?(2)如果期末总评成绩按:平时成绩占20%,期中成绩占30%,期末成绩占50%计算,那么该同学期末总评数学成绩是多少?15.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68乙 66 60 80 68丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?16.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人) 1 1 2 3 2(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?《23.1 平均数与加权平均数(一)》参考答案与试题解析一、选择题1.北京市2015年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为()A.28℃ B.29℃ C.30℃ D.31℃【考点】算术平均数.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.本题可把所有的气温加起来再除以7即可.【解答】解:依题意得:平均气温=(25+28+30+29+31+32+28)÷7=29℃.故选B.【点评】本题考查的是平均数的求法.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.2.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元【考点】加权平均数.【专题】压轴题.【分析】根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【解答】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元);故选C.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.3.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A.41 B.42 C.45.5 D.46【考点】加权平均数.【专题】应用题.【分析】只要运用加权平均数的公式即可求出,为简单题.【解答】解:平均用电=(45×3+50×5+42×6)÷(3+5+6)=45.5度.故选C.【点评】本题考查了平均数的定义.一组数据的平均数等于所有数据的和除以数据的个数.4.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为()A.分 B.分C.分D.8分【考点】加权平均数;条形统计图.【专题】图表型.【分析】先从统计图中读出数据,然后根据平均数的公式求解即可.【解答】解:平均分=(6×5+8×15+10×20)÷40=分.故选B.【点评】本题考查的是样本平均数的求法和对统计图的理解.熟记公式是解决本题的关键.5.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.2 B.2.5 C.2.95 D.3.0【考点】条形统计图;扇形统计图;加权平均数.【分析】根据分数是4分的有12人,占30%,据此即可求得总人数,然后根据百分比的定义求得成绩是3分的人数,进而用总数减去其它各组的人数求得成绩是2分的人数,利用加权平均数公式求解.【解答】解:参加体育测试的人数是:12÷30%=40(人),成绩是3分的人数是:40×42.5%=17(人),成绩是2分的人数是:40﹣3﹣17﹣12=8(人),则平均分是: =2.95(分).故选C.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二、填空题6.一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n个数的算术平均数,简称平均数记作x,读作“x拔”.【考点】算术平均数.【分析】根据算术平均数的定义解答即可.【解答】解:一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n个数的算术平均数,简称平均数,记作,读作“x拔”.故答案为:算术平均数,平均数.【点评】本题考查了算术平均数的定义,熟记算术平均数的定义是解题的关键.7.一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做加权平均数.【考点】加权平均数.【分析】根据加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,叫做这n个数的加权平均数.【解答】解:一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做加权平均数,故答案为:加权.【点评】此题主要考查了加权平均数的定义,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.8.若n个数据x1,x2, (x)n的权重分别是w1,w2,…wn,则这n个数的加权平均数为.【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数.【解答】解:这n个数的加权平均数为:,故答案为:.【点评】此题主要考查了加权平均数,关键是掌握加权平均数的计算公式.9.近年来,义乌市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量依次约为:15,19,22,26,x(单位:万辆),这五个数的平均数为22,则x的值为28 .【考点】算术平均数.【分析】根据算术平均数:对于n 个数x 1,x 2,…,x n ,则=(x 1+x 2+…+x n )就叫做这n 个数的算术平均数进行计算即可.【解答】解:(15+19+22+26+x )÷5=22, 解得:x=28, 故答案为:28.【点评】此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.10.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 88 分. 【考点】加权平均数. 【专题】压轴题.【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可. 【解答】解:∵笔试按60%、面试按40%, ∴总成绩是(90×60%+85×40%)=88分, 故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.11.某市广播电视局欲招聘播音员一名,对A ,B 两名候选人进行了三项测试,两人的三项测试成绩如表所示.根据实际需要,广播电视局将面试、笔试和上镜效果测试的得分按3:3:4的比例计算两人的总成绩,那么 B (填A 或B )将被录用.测试项目测试成绩A B 面试 90 95 笔试 80 85 上镜效果8070【考点】加权平均数.【分析】根据加权平均数的计算公式进行计算即可. 【解答】解: ==83,==82,∵<,∴B 被录取, 故答案为:B .【点评】此题主要考查了加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…, =叫做这n 个数的加权平均数.12.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐10元、20元和30元的,还有捐50元和100元的.如图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 31.2 元.【考点】加权平均数;扇形统计图.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2(元). 故答案为:31.2.【点评】本题主要考查扇形统计图和加权平均数,关键是正确从扇形统计图中得到正确信息.13.某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为 3 .分数 5 4 3 2 1 人数(单位:人) 31213【考点】加权平均数.【分析】利用加权平均数的计算方法列式计算即可得解. 【解答】解:×(5×3+4×1+3×2+2×1+1×3)=×(15+4+6+2+3) =×30=3.所以,这10人成绩的平均数为3.故答案为:3.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求5、4、3、2、1这五个数的算术平均数,对平均数的理解不正确.三、解答题14.上学期期末考试后,小林同学数学科的期末考试成绩为76分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分.(1)请问他一学期的数学平均成绩是多少?(2)如果期末总评成绩按:平时成绩占20%,期中成绩占30%,期末成绩占50%计算,那么该同学期末总评数学成绩是多少?【考点】加权平均数.【分析】(1)直接利用算术平均数的计算公式计算即可;(2)利用加权平均数的计算公式进行计算即可.【解答】解:(1)数学平均成绩为:(76+90+80)=82(分);(2)小林同学上学期期末总评数学成绩是90×20%+80×30%+76×50%=18+24+38=80(分).【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.解题时要认真审题,不要把数据代错.15.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68 乙 66 60 80 68 丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?【考点】二元一次方程组的应用;加权平均数.【专题】压轴题.【分析】(1)根据求加权平均数的方法就可以直接求出甲的总分;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.【解答】解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8(分);(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.【点评】本题考查了列二元一次方程组解实际问题的运用,加权平均数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答本题的关键.16.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人) 1 1 2 3 2(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?【考点】加权平均数.【专题】销售问题;图表型.【分析】(1)分别计算调整前后的价格的平均数,比较价格上的平均数的变化;(2)计算出调整前后的日平均收入后,再进行比较;(3)根据(1)、(2)的算法,结合平均数的定义,得出结果.【解答】解:(1)风景区是这样计算的:调整前的平均价格: =16(元)调整后的平均价格: =16(元)∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平;(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)∴平均日总收入增加了:×100%≈9.4%;(3)根据加权平均数的定义可知,游客的算法是正确的,故游客的说法较能反映整体实际.【点评】本题考查了平均数的计算方法,从不同的方面得到的平均数的意义不同.。

平均数(加权平均数)经典练习题汇编

平均数(加权平均数)经典练习题汇编

基础知识2平均数1.平均数的概念及意义(1)概念: . (2)意义: . 2.算术平均数及意义(1)概念: . (2)公式: . (3)使用条件:当所给数据1x ,2x ,…,n x 中各数据的重要程度相同时使用. 3.加权平均数及意义(1)概念: . (2)权的意义:权就是权重即数据的重要程度.(3)使用条件:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.(4)常见的权:数值、百分数、比值、频数等. 【题型1】算术平均数的计算1.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,4.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是 分.2.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是 人.3.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是 米.4.某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为 分.5.某班50名学生平均身高168cm ,其中30名男生平均身高170cm ,则20名女生的平均身高为 cm .6.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.7.若一组数据同时减去80,所得新的数据的平均数为2.3,•那么原数据的平均数 . 【题型2】加权平均数的计算与应用1.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为分,三项成绩中的成绩对学期成绩的影响最大.2.评定学生的学科期末成绩由期膜考分数, 平时成绩, 课堂参与分数三部分组成, 并按3:2:5的比例确定. 已知小明的数学期末考80分, 平时成绩90分, 课堂参与85分, 则他的数学期末成绩为 .3.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:(分数均为整数,满分为100分)这次数学竞赛的平均成绩是_________ 分.4.某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,统计人员将上述数据整理后,列出了频数分布表如下:根据以上信息回答下列问题:(1)频数分布表中的A=______;(2)这40名女学生的平均身高是______cm(精确到0.1cm).5.某瓜农采用大棚栽培技术种植了1亩地的两种西瓜,共产出了约600个西瓜.在西瓜上市前,该瓜农随机摘下了10个成熟的西瓜称重:西瓜质量/千克 5.5 5.4 5.0 4.9 4.6 4.3西瓜数量/个 1 2 3 2 1 1计算这10个西瓜的平均质量,并估计这1亩地的西瓜产量是多少千克.6.某公司招聘收银员一名,对三名申请人进行了三项素质测试.(1)若计算机、商品知识、语言三项测试成绩一样重要,那么谁将被录取?(2)若计算机、商品知识、语言三项测试成绩分别赋予权重4:4:2,谁将被录用.7.杨老师计算学生的学期总评成绩按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.请你通过计算回答,小东和小华的学期总评成绩谁较高?8.A,B,C三名大学生竞选学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:2:2的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.【题型3】平均数的计算1.若8个数的平均数是12,4个数的平均为18,则这12个数的平均数为 .2.一组数据中有3个7,4个11和3个9,那么它们的平均数是.3.已知7,4,5和x的平均数是5,则x=.4.一组数据中有3个6、4个-1,2个-2、1个0和3个x,其平均数为x,那么x=______.5.如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是.6.已知一组数据a1,a2,a3,a4,a5的平均数为8,则另一组数a1+10,a2-10,a3+10,a4-10,a5+10的平均数为 .7.m个x1,n个x2和r个x3,由这些数据组成一组数据的平均数是.8.从一组数据中取出a个x1,b个x2,c个x3组成一组新数据,新数据的平均数为.【题型4】算术平均数与加权平均数的综合应用1.汶川大地震发生后,某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”的活动.活动结束后,生活委员小林将捐款情况进行了统计,并绘制成如右的统计图.(1)求这40名同学捐款的平均数;(2)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?2.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.数据如下表所示:(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.风景区是怎样计算的?(2)游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反应整体实际?景点 A B C D E原价(元)10 10 15 20 25现价(元)[ 5 5 15 25 30日平均人数1 123 2(千人)3.甲、乙两支仪仗队队员的身高如下:甲队:178 177 179 178 177 178 177 179 178 179;乙队:178 179 176 178 180 178 176 178 177 180.(1)将下表填完整:身高(厘米) 176 177 178 179 180甲队(人数) 3 4 0乙队(人数) 2 1 1(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.4.某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创造能力、解题技巧、阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么?(2)这1000名学生平均每人获得几个项目优秀?(3)若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?5.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表,根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只推荐1人)如图,每得一票记作1分.(1)请算出三人的民主评议得分;(2)按测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?6.为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1,图2.根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.。

加权平均数经典例题

加权平均数经典例题

某班级在一次考试中,语文成绩平均分为80分,数学成绩平均分为90分,若语文和数学的权重分别为0.4和0.6,则该班级的加权平均分为多少?A. 84分B. 85分C. 86分(正确答案)D. 87分一家餐厅对顾客满意度进行调查,结果显示,食物满意度评分为4.5分,服务满意度评分为4.8分,环境满意度评分为4.2分,若食物、服务、环境的权重分别为0.3、0.5、0.2,则该餐厅的综合满意度评分为多少?A. 4.44分B. 4.50分C. 4.55分(正确答案)D. 4.60分某公司员工的月薪由基本工资和绩效奖金组成,基本工资平均为3000元,绩效奖金平均为2000元,若基本工资和绩效奖金的权重分别为0.6和0.4,则该公司员工的月平均工资为多少?A. 2800元B. 2900元C. 3000元D. 3100元(正确答案)一个投资组合由两种股票构成,股票A的收益率为10%,股票B的收益率为15%,若股票A 和股票B的投资比例分别为60%和40%,则该投资组合的预期收益率为多少?A. 11%B. 12%(正确答案)C. 13%D. 14%某学校对学生的学习成绩进行综合评价,其中平时成绩占40%,期中考试成绩占30%,期末考试成绩占30%,若某学生的平时成绩为85分,期中考试成绩为90分,期末考试成绩为80分,则该学生的综合成绩为多少?A. 84.5分B. 85分(正确答案)C. 85.5分D. 86分一家电商网站对商品进行评分,其中用户评价占60%,专家评价占40%,若某商品的用户评价得分为4.6分,专家评价得分为4.8分,则该商品的最终得分为多少?A. 4.64分B. 4.68分D. 4.72分(正确答案)某地区对空气质量进行评价,其中PM2.5浓度占50%,PM10浓度占30%,臭氧浓度占20%,若某天的PM2.5浓度为50微克/立方米,PM10浓度为80微克/立方米,臭氧浓度为100微克/立方米,则该天的空气质量指数为多少?A. 70B. 72C. 74(正确答案)D. 76一个篮球运动员的赛季表现由得分、助攻和篮板三项指标综合评定,其中得分的权重为0.5,助攻的权重为0.3,篮板的权重为0.2,若该运动员赛季场均得分为20分,场均助攻为5次,场均篮板为8个,则该运动员的赛季综合表现评分为多少?A. 15.4分B. 16.0分C. 16.6分(正确答案)D. 17.2分某公司对员工的绩效考核由工作态度、工作能力和工作成果三项组成,其中工作态度的权重为0.25,工作能力的权重为0.35,工作成果的权重为0.4,若某员工的工作态度得分为85分,工作能力得分为90分,工作成果得分为80分,则该员工的绩效考核总得分为多少?A. 84.25分B. 85.00分C. 85.75分(正确答案)D. 86.50分。

平均数与加权平均数

平均数与加权平均数

平均数与加权平均数1.数据2、3、4、1、5的平均数是____,这个平均数叫做__________平均数.2.一次数学测验中,有三位同学的成绩分别是75分,80分,85分,那么在这次测验中这三个同学的平均分是多少?3.八年级某班共有4个学习小组,在一次英语考试中参考人数和成绩如下:求该班在这次英语考试中的平均成绩?下述计算方法是否合理?若不合理,请写出正确的计算方法。

x =0.25(80+81+75+83)=79.754.如果数据2,3,x ,5的平均数是4,那么x 等于( ).A. 3 B. 4 C. 5 D. 65.某中学举行歌咏比赛,六位评委对某位选手的打分为:77、82、78、95、83、75,去掉一个最高分和一个最低分后的平均分是 分6.若10名学生平均身高为1.65米,其中2名学生平均身高为1.75米,则余下8名学生的平均身高是______米7.有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( )A . (22)x yx ymx nymx ny B C D m n m n ++++++ 8.x 1,x 2,x 3,……,x 10的平均数是5,x 11,x 12,x 13,……,x 20的平均数是3,则x 1,x 2,x 3,……,x 20的平均数是( ) A .5 B .4 C .3 D .89.小亮同学上学期数学期中成绩为70分,期末成绩为90分,他的学期总评成绩为 分;若总评成绩是按照“期中成绩占40%,期末成绩占60%”的百分比来计算,他的总评成绩为 分;可以看出,两项成绩中 成绩对学期成绩的影响大.10.在某个班的学生中,14岁的有5人,15岁的有30人,16岁的有5人,问:这个班学生的平均年龄是多少岁?11.小明和小颖本学期数学平时成绩、期中成绩、期末成绩分别如下:假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?12.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面的表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如下表所示:试判断谁会被公司录取,为什么?13.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

平均数与加权平均数习题练习

平均数与加权平均数习题练习
算术平均数反映一组数据总体的平均大小情况. 加权平均数反映一组数据中按各数据占有的不同 权重时总体的平均大小情况.
3. 区别:
算术平均数中各数据都是同等的重要, 没有相互间差异; 加权平均 数中各数据都有各自不同的权重地位,彼此之间存在差异性的区别.
2021/11/14
3
一 基础知识训练
1.如果一组数据5,x,3,4的平均数是5,那么x=____8___.
2.某班共有学生50人,平均身高为168cm,其中30名男生平均身高为 170cm, 则20名女生的平均身高为__16_5_c_m___.
3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的 13人,80•分的17人,70分的12人,60分的2人,50分的3人,全班 数学考试的平均成绩是__7_9_分___.( 结果保留到个位)
2021/11/14
8
2021/11/14
9
2021/11/14
(精确到0.01)
(精确到整数)
(精确到整数)
10
2021/11/14
11
2021/11/14
12
导学案练案课后作业方案
30℅
2021/11/14
甲68票、乙60票、丙56票
13 乙
2021/11/14
14
2021/11/14
71
平均分为_______分.
2021/11/14
5
二 创新能力应用
C
B
2021/11/14
C
6
C
2021/11/14
B
3.7 3.7 96
7
13 某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n•个球的人 数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进 球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多 少人?

平均数专项练习题求一组数的加权平均数

平均数专项练习题求一组数的加权平均数

平均数专项练习题求一组数的加权平均数在统计学中,平均数是常用的一种衡量数据集中趋势的指标。

而加权平均数则是一种在计算平均数时,通过对每个数值赋予不同的权重,以反映其在数据集中的重要性或影响力。

本文将介绍一些关于求一组数的加权平均数的专项练习题,并提供解答。

练习题一:某班级有5位学生,他们的考试成绩如下:80,85,90,95,98。

其中,80的权重为1,85的权重为2,90的权重为3,95的权重为4,98的权重为5。

求该班级学生的加权平均数。

解答:加权平均数的计算公式为:加权平均数= ∑(数值 ×权重) / ∑权重根据给定的数据和权重,我们可以得到计算过程如下:(80 × 1 + 85 × 2 + 90 × 3 + 95 × 4 + 98 × 5) / (1 + 2 + 3 + 4 + 5)= (80 + 170 + 270 + 380 + 490) / 15= 1390 / 15≈ 92.667因此,该班级学生的加权平均数约为92.667。

练习题二:某公司有三个部门A、B和C,它们的销售额分别为200万、300万和400万,而利润率分别为8%、10%和12%。

求该公司总的加权平均利润率。

解答:首先,我们需要计算每个部门的利润。

利润 = 销售额 ×利润率。

部门A的利润 = 200万 × 8% = 16万;部门B的利润 = 300万 × 10% = 30万;部门C的利润 = 400万 × 12% = 48万。

然后,我们可以计算总的加权平均利润率。

总加权平均利润率 = ∑(利润 ×销售额) / ∑销售额。

总加权平均利润率 = (16万 × 200万 + 30万 × 300万 + 48万 × 400万) / (200万 + 300万 + 400万)= (3200万 + 9000万 + 19200万) / 900万= 31400万 / 900万≈ 34.889%。

【初中数学】人教版八年级下册第1课时 加权平均数(练习题)

【初中数学】人教版八年级下册第1课时 加权平均数(练习题)

人教版八年级下册第1课时加权平均数(179)1.一次考试中,甲组12人的平均分数为70分,乙组8人的平均分数为80分,那么这两组20人的平均分数为.2.某班有学生52人,期末数学考试平均成绩是72分,有两名同学下学期要转学,已知他俩的成绩分别为70分和80分,求他俩转学后该班的数学平均分.3.某公司招聘一名工作人员,对甲、乙两名应聘者进行笔试与面试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩.从他们的成绩看,谁将被录取?4.学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5:3∶2计算,则总分变化情况是()A.小丽成绩增加的多B.小亮成绩增加的多C.两人成绩均不变化D.变化情况无法确定5.如图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为个.6.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分(单位:分)如下表:(1)根据三项得分的平均数,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.7.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:演讲答辩得分表(单位:分)民主测评统计表规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1−a)+民主测评分×a(0.5⩽a⩽0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?8.7名学生的体重(单位:kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.479.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元10.某校调査了20名男生某一周参加篮球运动的次数,调査结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3B.3.5C.4D.4.511.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为()A.9.56分B.9.57分C.9.58分D.9.59分12.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是分.13.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是.参考答案1.【答案】:74分=74(分),【解析】:这两组20人的平均分数=12×70+8×8012+8故答案为74分.2.【答案】:52×72=3744(分),3744−70−80=71.88(分).50答:他俩转学后该班的数学平均分是71.88分【解析】:先算出52个人的总分数,再求出50人的总分数,最后除以总人数50=88.2,3.【答案】:甲的平均成绩为87×6+90×46+4=87.4,乙的平均成绩为91×6+82×46+4因为甲的平均成绩大于乙的平均成绩,所以甲会被录取【解析】:先分别算出甲、乙的平均成绩,平均成绩较高者将被录取4.【答案】:B【解析】:当写作能力、普通话水平、计算机水平这三项的总分按3∶5∶2计算时,=74.7(分),小亮的成绩是90×3+75×5+51×23+5+2=74.4(分),小丽的成绩是60×3+84×5+72×23+5+2当写作能力、普通话水平、计算机水平这三项的总分按5∶3∶2计算时,=77.7(分),小亮的成绩是90×5+75×3+51×25+3+2=69.6(分),小丽的成绩是60×5+84×3+72×25+3+2故写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,小亮的成绩变化是77.7−74.7=3(分),小丽的成绩变化是69.6−74.4=−4.8(分),故小亮成绩增加的多5.【答案】:175.5【解析】:22%×180+27%×170+26%×175+25%×178=175.5(个)6(1)【答案】x ¯甲=83+79+903=84(分); x ¯乙=85+80+753=80(分); x ¯丙=80+90+733=81(分).∴排名顺序为甲、丙、乙【解析】:代入求平均数公式求出三人的平均成绩,比较得出的结果(2)【答案】由题意可知,只有甲不符合规定.∵x′¯乙=85×60%+80×30%+75×10%=82.5(分),x′¯丙=80×60%+90×30%+73×10%=82.3(分), ∴乙将被录用【解析】:由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出总分,比较得出结果7(1)【答案】甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1−0.6)+87×0.6=36.8+52.2=89(分)【解析】:由题意可知:分別计算出甲的演讲答辩得分以及甲的民主测评得分,再将a =0.6代入公式计算可以求得甲的综合得分(2)【答案】∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1−a)+88a .由(1)知甲的综合得分=92(1−a)+87a .当92(1−a)+87a >89(1−a)+88a 时,a <0.75,又∵0.5⩽a ⩽0.8,∴当0.5⩽a<0.75时,甲的综合得分高;当92(1−a)+87a<89(1−a)+88a时,a>0.75,又∵0.5⩽a⩽0.8,∴当0.75<a⩽0.8时,乙的综合得分高【解析】:同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,得出乙的综合得分,再与甲的综合得分比较,得出两位同学哪一位当选为班长8.【答案】:C【解析】:平均数为(40+42+43+45+47+47+58)÷7=322÷7=469.【答案】:C【解析】:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选 C10.【答案】:C【解析】:根据题意得:(2×2+2×3+10×4+6×5)÷20=4,即平均数为4.故选 C11.【答案】:C【解析】:去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小=9.58(分).故选C明的最后得分=9.5+9.7+9.8+9.4+9.5512.【答案】:88=88(分)【解析】:90×3+90×3+85×43+3+413.【答案】:3【解析】:设成绩为9环的人数为x,则(3×7+4×8+9x)÷(3+4+x)=8,解得x=3。

算术平均数与加权平均数

算术平均数与加权平均数

……
因此,……
• 例3:某公司对应聘者A、B、C、D进行面试,并按三个方 面给应聘者打分,最后打分结果如表21.1.2所示.如果 你是人事主管,会录用哪一位应聘者?
表21.1.2四位应聘者的面试成绩 满分 专业知识 20 A 14 B 18 C 17 D 16
工作经验
仪表形象
20
20
18
12
16
11
解: 11位先生的总体重=80×11=880(千克). 2位女士的总体重=70×2=140(千克). 13位乘客的总体重=880+140=1020(千克). ∵总体重超过了电梯的最大载重, ∴他们不能一起安全地搭乘.
一个已知两个平均数再求总平均数的问题,解这类问题一般不 能采取“相加除以2”的平均化策略,因为两个方面的权重常常 不相等 (P5习题1(2)题)
图 2.1.1 植树人数统计图
你发现植树总量、植树量的平 均数和人数这三者之间的数量关 系了吗?
植树总量=植树量的平均数×人数
• 例2:丁丁所在的初二(1)班共有学生40 人.图21.1.2是该校初二年级各班学生人 数分布情况. (1) 请计算该校初二年级每班平均人数;
解:(1)、 40÷20%=200(人), 200÷5=40(人), ∴ 该校初二年级每班平均40人. (2)、(2)班: 200×23%=46(人); (3)班: 200×22%=44(人); (4)班: 200×17%=34(人); (5)班: 200×18%=36(人). 如图:
某省 2005 年上半年每月进出口总额统计图
课题引入
• 老师在计算学生每学期的总评成绩时,不是简单 地将一个学生的平时成绩与考试成绩相加除以2, 作为该学生的总评成绩,而是按照“平时成绩占 40%,考试成绩占60%”的比例计算(如图21.1.4)。

算术平均数与加权平均

算术平均数与加权平均
算数平均数与加权平均数情境Leabharlann :有两个杯子,一个杯子里有5支筷子,
另一个杯子里有3支筷子,怎样通过杯子间的 筷子移动,使两个杯子里的筷子一样多呢?
这实际上就是求3和5的平均数是多少,列算 式为:(3+5)÷2=4
求平均数的实质就是“移多补少”。
情境2:如果放3支筷子的杯子有2个,放5支筷子的 杯子也有2个时,怎样通过杯子间的筷子移动可以使 各杯子里的筷子一样多?
很显然,如果两个班的人数相同,就可以通过算数平均 数解决,平均分是92分;如果(1)班人数多,那么91 分的权重大,最后的平均分会低于92分;如果(2)班 的人数多,那么93分的权重大,最后的平均分会高于 92分。
应用2
某人爬山,上山的速度为3千米/小时,原路 返回时的速度为5千米/小时,求此人往返的 平均速度。
很显然,这时候再列算式(3+5)÷2=4就不对了。 正确的列式为:(3X2+5)÷3
=11÷3 ≈3.67
情境4的另一种解法
现在有两种杯子,一种放有3支筷子,另一 种放有5支筷子,所以3和5对最后的平均数 都有影响。但是放有3支筷子杯子有两个, 放有5支筷子的杯子只有1个,所以3和5对 最后平均数的影响力是不同的。
怎样界定“3”和“5”的影响力呢?一共有三个杯子,放 3支筷子的杯子有两个,所以“3”的影响力为 ,放
有5支筷子的杯子有1个,所以“5”的影响力为 .所以最后
的平均数为:
小结:1.像解法二这样,需要考虑的“影响力” 称为权重,考虑了权重的平均数称为加权平均 数。
2.算数平均数与加权平均数的联系:(1)算 数平均数是加权平均数的权重相等时的一 种特殊情况;(2)由于平均数是“移多补 少”的结果,所以无论算数平均数还是加 权平均数的计算结果都必须在极值(最大 值和最小值)之间。

初二数学平均数与加权平均数同步练习题及参考答案

初二数学平均数与加权平均数同步练习题及参考答案

初二数学平均数与加权平均数同步练习题及参考答案平均数与加权平均数1.一般地,如果有n个数,那么 _______________,叫做这几个数的平均数。

2.如果数据2,3,x,4的平均数是3,那么x等于____________。

3.数据5,3,2,1,4,的平均数是____________。

4.已知1,2,3,,,的平均数是8,那么,,的平均数是____________。

5.某次考试,5名学生的平均分是83,除学生甲外,其余4名学生的平均分是80,则学生甲的得分是__________。

6.某校几名学生参加今年全国初中数学竞赛,其中8名男同学的平均成绩为85分,4名女同学的平均成绩为76分,则该校12名同学的平均成绩为___________。

7.已知一跳高运动员在1次大型运动会上成绩的平均数为2.35米,若选派参加亚运会,可以预料,他的成绩大约为______米。

8.经随机调查某校初三30名学生每天完成家庭作业时间为3小时,由可估计该校家庭作业约为___________小时。

9.数据a,a,b,c,a,c,d的平均数是 ( )A. B.C. D.10.某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是( )A.84B.86C.88D.9011.已知数据的平均数是,那么的平均数是 ( )A. B.2 C.2 +1 D.12.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是 ( )A. B. C. D.13.已知一组数据23.02,22.99,22.98,23.01,a的平均数为23.01。

求a的值。

14.已知数据,,的平均数是10,求数据的平均数。

15.一组数1,2,3,x,y,z的平均数是4(1)求x,y,z三数的平均数。

(2)求4x+5,4y+6,4z+7的平均数。

16.从甲、乙、丙三个厂家生产的同一产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下:(单位:年) 甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12试计算三个厂这三批灯泡的平均寿命并比较哪个厂生产的产品寿命最长。

20.1 平均数 加权平均数 专题练习题(含答案)

20.1 平均数 加权平均数 专题练习题(含答案)

20.1平均数加权平均数专题练习题1.数据3,2,2,3,2中2的权数为________.2.一组数据由100个数组成,x的权数为0.35,则x出现________次.3.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克糖果混在一起,则售价应定为每千克( )A.6.7元 B.6.8元C.7.5元D.8.6元4.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( ) A.41度B.42度C.45.5度D.46度5.为了调查某一路口某时段的汽车流量,某同学观察记录了15天,其中2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天在该时段通过该路口的汽车平均辆数为( )A.146辆 B.150辆 C.153辆 D.600辆6.学校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平时成绩三部分组成,各部分所占比例分别是60%,20%,20%,小明本学期数学学科三部分成绩分别是90分,80分,85分,则小明的期末数学总评成绩为( ) A.84分 B.85分 C.86分 D.87分7.某校八(1)班一次数学考试的成绩为:100分的3人,90分的13人,80分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是________.(结果保留到个位)8.某次射击训练中,一小组的成绩如下表所示:环数6789人数132若该小组的平均成绩为7.7环,则成绩为8环的人数是________.9.某校测量了七(1)班学生的身高(精确到1cm),得到如图所示的频数分布直方图(每组含最小值,不含最大值),根据图中信息,计算出该班学生的平均身高大约是______cm.10.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用,三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用?说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.11.在一组数据中出现x 1,x 2,x 3,x 4,且x 1,x 2,x 3的权数为,,,则x 4的权数为( )315215615A .15B .4C.D.4151412.在一次“爱心互助”捐款活动中,某班甲组8名同学捐款的金额(单位:元)如下表所示:金额(元)56710人数2321这8名同学捐款的平均金额为( )A .3.5元B .6元C .6.5元D .7元13.某班学生在一次测验中平均成绩为80分,其中男生平均成绩为82分,女生平均成绩为77分,则该班男、女生人数之比为( )A .1∶2B .2∶1C .3∶2D .2∶314.x 1,x 2,x 3,…,x 10的平均数是5,x 11,x 12,x 13,…,x 20的平均数是3,则x 1,x 2,x 3,…,x 20的平均数是( )A .5B .4C .3D .815.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩,孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是________分.16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是________小时.17.勤劳是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时,每组含最大值,不含最小值),所得数据统计如下表:由此可估计王刚同学所在学校的同学寒假在家做家务的平均时间是________小时.18.为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表:月用水量/吨1013141718户 数22321(1)计算这10户的平均月用水量;(2)如果该小区有500户,根据上面的计算结果,估计该小区居民每月用水多少吨?19.小明家买了一辆小轿车,小明连续记录了一周每天行驶的路程:请你用学过的统计知识解决下面的问题:(1)小明家的轿车每月(按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升6.64元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元(精确到百位).20.小林在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得104分,第二单元得96分,第三单元得112分;期中考试得102分;期末考试得110分.如果按照平时、期中、期末各占10%,30%,60%计算,那么小林该学期数学书面测验的总评成绩为多少分?参考答案1. 0.62. 353. B4. C5. C6. D7. 798. 4人9. 16210. (1)x甲=73分,x乙=72分,x丙=74分,丙将被录用 (2)x甲=76.3分,x乙=72.2,x丙=72.8,甲将被录用11. C12. C13. C14. B15. 8816. 5.317. 4418. (1)14吨 (2)7000吨19. (1)1050千米 (2)6700元20. 107分。

计算算数平均数和加权调和平均数的例题

计算算数平均数和加权调和平均数的例题

计算算数平均数和加权调和平均数的例题篇一:算数平均数和加权调和平均数的基本概念和计算方法如下:算数平均数(又称普通平均数或中位数)是指将一组数按大小顺序排列后,取中间数并除以数的大小得到的平均值。

例如,如果共有n个数字,其中i个数大于j个数,那么算数平均数为:n/2(a1 + an)其中a1和an分别是这n个数的平均值。

加权平均数是在算数平均数的基础上,对数的大小进行加权的平均值。

具体计算方法为:w/(n-1)(a1 + an)其中w表示数的大小的权重,a1和an分别是这n个数的加权平均值。

下面是一些计算算数平均数和加权平均数的例题:例题1:计算4个数的平均数4个数分别是2、3、4、5,它们的平均值为:4/2(2+3+4+5)例题2:计算6个数的平均数6个数分别是1、2、3、4、5、6,它们的平均值为:6/2(1+2+3+4+5+6)例题3:计算2个数和4个数的平均数2个数分别是1和2,4个数分别是3、4、5、6,它们的平均值为:2/2(1+2+3+4+5+6) + 4/2(3+4+5+6)拓展:除了算数平均数和加权平均数,还可以使用符号平均数(又称标准平均数或众数)和中位数等概念和方法进行数据分析。

符号平均数是指将一组数按大小顺序排列后,取中间数并加1得到的平均值。

例如,如果共有n个数字,其中i个数大于j个数,那么符号平均数为:n/2(a1 + an)其中a1和an分别是这n个数的符号平均值。

中位数是指将一组数按大小顺序排列后,取中间数并除以数的大小得到的平均值,它是算数平均数和加权平均数的一个中间点,具有较强的稳健性。

如果n个数的分布是对称的,那么中位数就是算数平均数和加权平均数的平均值。

篇二:算数平均数和加权调和平均数的基本概念和计算方法如下:算数平均数(Mean):将一组数按大小排列后,求出其中的平均值,用符号“≈”表示。

例如,5、6、7、8这组数的平均数可以写作≈ 6。

计算公式为:算数平均数 = (n1 + n2 + ... + wn) / n其中,n为样本大小,Wi为样本中第i个元素的值。

八年级数学下册20.1平均数3.加权平均数练习(含答案)

八年级数学下册20.1平均数3.加权平均数练习(含答案)

3.加权平均数1.(易错题)某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)( B )(A)83.1分(B)83.2分(C)83.4分(D)83.5分某次射击(A)5人(B)6人(C)4人(D)7人3.在中国好声音选秀节目中,四位参赛选手的各项得分如下表(每项按10分制),如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高进入下一轮比赛人气指数(A)小赵(B)小王 (C)小李 (D)小黄4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩2的权重,根据四人各自的平均成绩,公司将录取( B )(A)甲(B)乙 (C)丙 (D)丁5.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆.那么这15天在该时段通过该路口的汽车平均辆数为153辆.6.(2018宜宾)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分如图是某校八年级学生为灾区捐款情况的条形图和扇形统计图若该校八年级学生有800人,则八年级捐款总数为7 600 元.8.八年级某班40名学生参加“环保知识竞赛”的得分如下表:如果该班学生得分的平均成绩是2.5分,求表中的人数x,y分别是多少?解:根据题意,得解得x=7,y=4.故x,y分别是7,4.9.甲、乙两名大学生竞选班长,现对甲、乙两名候选人从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:上?(2)如果将笔试、口试和得票按2∶1∶2来计算各人的成绩,那么又是谁会竞选上?解:(1)甲的成绩为85×20%+83×30%+90×50%=86.9(分),乙的成绩为80×20%+85×30%+92×50%=87.5(分),因为87.5>86.9,所以乙会竞选上.(2)甲的成绩为=86.6(分),乙的成绩为=85.8(分),因为86.6>85.8,所以甲会竞选上.10.(分类讨论)甲、乙两同学相约到一家商店去买若干次白糖,两个人买糖方式不同:甲每次总是买1千克的糖,乙每次总是买一元钱白糖,而白糖的价格是变动的,若两人买2次白糖,试问这两位同学买白糖的方式谁比较合算?小明是这样解答的:设两次买白糖的价格分别是x1,x2则甲的平均单价是,乙也是,所以两人买白糖的方式一样合算,你认为小明的解答正确吗?如果不正确应如何改正.解:不正确.设甲平均每千克白糖单价为a=;乙平均每千克白糖单价为b==,因为a≠b,所以a-b=-=>0,即a>b,所以乙买白糖的方式合算.11.(拓展探究)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?解:(1)甲、乙、丙的民主评议得分分别为200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的测试平均成绩为≈72.67(分);乙的测试平均成绩为≈76.67(分);丙的测试平均成绩为=76.00(分).因为76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分); 乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.。

《加权平均数》专题练习及答案解析

《加权平均数》专题练习及答案解析

加权平均数专题练习一、选择题(本大题共10小题,共50.0分)1.已知数据x1,x2,x3,⋯,x n的平均数为m,则数据5x1,5x2,5x3,⋯,5x n的平均数为()A. mB. 5mC. m5D. 10m2.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中随机选取20名同学统计了各自家庭一个月节约水情况.见表:请你估计这400名同学的家庭一个月节约用水的总量大约是()A. 130m3B. 135m3C. 6.5m3D. 260m33.对一组数据进行了整理,结果如下表:则这组数据的平均数约是()A. 10 B. 11 C. 12 D. 164.已知一组数据x1,x2,⋯,x n的平均数x=2,则数据3x1+2,3x2+2,⋯,3x n+2的平均数是()A. 8B. 6C. 4D. 25.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A. −3.5 B. 3 C. 0.5 D. −36.某校评选先进班集体,从“学习”“卫生”“纪律”“活动参与”四个方面考核打分,各项满分均为100分,所占比例如下表:八年级2班这四项的得分依次为80,90,84,70,则该班这四项的综合得分为()A. 81.5B. 82.5C. 84D. 867.一辆货车送货上山,并按原路下山.上山速度为akm/ℎ,下山速度为bkm/ℎ.则货车上、下山的平均速度为()km/ℎ.A. 12(a+b) B. aba+bC. a+b2abD. 2aba+b8.某公司招聘职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行测试.测试结果如下表(满分均为10分):如果将学历、经验和工作态度三项得分按1:2:2的比例确定各人的最终得分,并以此为依据确定录取者,那么将被录取的是()A. 甲 B. 乙 C. 丙 D. 丁9.某校评选先进班集体,从“学习”“卫生”“纪律”“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40%25%25%10%八年级(2)班各项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A. 81.5B. 82.5C. 84D. 8610.已知小华上学期语文、数学、英语三科的平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他以下哪个分数是他的数学成绩吗?()A. 93分B. 95分C. 94分D. 96分二、解答题(本大题共5小题,共50.0分)11.水果店一周内某种水果每天的销量(单位:kg)如下:周一周二周三周四周五周六周日45444842575566请计算该种水果本周每天销量的平均数.12.一个班有50名学生,一次考试成绩(单位:分)的分布情况如下表所示:成绩组中值频数49.5~59.5459.5~69.5869.5~79.51479.5~89.51889.5~99.56(1)填写表中“组中值”一栏的空白;(2)求该班本次考试的平均成绩.13.洋洋九年级上学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3课题练习成绩/分106102115109112110(1)计算洋洋该学期的数学平时平均成绩.(2)如果学期总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.14.某单位需招聘一名技术员,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的成绩如表所示.根据录用程序,该单位又组织了100名评议人员对三人进行投票测评,三人得票率如图所示,每票1分(没有弃权票,每人只能投1票).测试成绩/分测试项目甲乙丙笔试808595面试987573(1)请算出三人的民主评议得分.(2)该单位将笔试、面试、民主评议三项得分按2:2:1的比确定综合成绩,谁将被录用⋅请说明理由.15.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的价格为9元/千克,乙种糖果的价格为10元/千克,丙种糖果的价格为12元/千克.(1)若甲、乙、丙三种糖果的质量按2:5:3的比混合,则混合后得到的什锦糖果的价格定为每千克多少元才能保证获得的利润不变⋅(2)若甲、乙、丙三种糖果的质量按6:3:1的比混合,则混合后得到的什锦糖果的价格定为每千克多少元才能保证获得的利润不变⋅答案和解析1.【答案】B【解析】略2.【答案】A【解析】略3.【答案】B【解析】解:[12×(0+10)×8+12×(10+20)×12]÷20=(40+180)÷20=11.故选B.本题考查了加权平均数:若n个数x1,x2,x3,…,x k的权分别是f1,f2,f3,…,f k,则(x1f1+x2f2+⋯+x k f k)÷n 叫做这n个数的加权平均数.也考查了频数分布表.利用组中值表示每组的平均数,然后根据加权平均数的计算方法求解4.【答案】A【解析】∵一组数据x1,x2⋯,x n的平均数x=2,∴x1+x2+⋯+x n=2n,∴数据3x1+2,3x2+2,⋯,3x n+2的平均数=1n (3x1+2+3x2+2+⋯+3x n+2)=1n[3(x1+x2+⋯+x n)+2n]=1n (3×2n+2n)=1n×8n=8,故选A.5.【答案】D【解析】因为(105−15)÷30=90÷30=3,所以求出的平均数与实际平均数的差是−3.6.【答案】B【解析】80×40%+90×25%+84×25%+70×10%=82.5分,故八年级2班这四项的综合得分为82.5分,故选B.7.【答案】D【解析】根据平均数的定义,上、下山的平均速度应为.8.【答案】C【解析】甲的最终得分为为7×1+8×2+9×25=8.2(分),乙的最终得分为9×1+8×2+7×25=7.8(分),丙的最终得分为7×1+9×2+9×25=8.6(分),丁的最终得分为8×1+8×2+8×25=8.0(分)∵8.6>8.2>8.0>7.8,∴丙将被录取,故选C.9.【答案】B【解析】略10.【答案】A【解析】设数学成绩为x分,则(88+95+x)÷3=92,解得x=93,故数学成绩为93分.11.【答案】解:该种水果本周每天销量的平均数为(45+44+48+42+57+55+66)÷7=51(kg).【解析】略12.【答案】解:(1)54.5;64.5;74.5;84.5;94.5;(2)54.5×4+64.5×8+74.5×14+84.5×18+94.5×64+8+14+18+6=77.3(分),该班本次考试的平均成绩为77.3分.【解析】【分析】本题考查组中值和加权平均数的计算,要熟记计算公式;利用表格获取信息时,必须认真观察、分析、研究表格,才能作出正确的判断和解决问题.(1)求出组中值,上限与下限之间的中点数值称为组中值;(2)根据加权平均数的公式计算求值即可.【解答】解::(1)组中值:12(49.5+59.5)=54.5,12(59.5+69.5)=64.5,12(69.5+79.5)=74.5,12(79.5+89.5)=84.5,1(89.5+99.5)=94.5,2故答案为54.5;64.5;74.5;84.5;94.5;(2)见答案.=108(分).13.【答案】解:(1)洋洋该学期的数学平时平均成绩为:x平时=106+102+115+1094(2)洋洋该学期的数学总评成绩为:108×10%+112×30%+110×60%=110.4(分).【解析】略14.【答案】解:(1)甲民主评议得分为100×25%=25(分);乙民主评议得分为100×40%=40(分);丙民主评议得分为100×35%=35(分).(2)甲将被录用.=76.2(分);理由:甲的综合成绩为2×80+2×98+1×252+2+1=72(分);乙的综合成绩为2×85+2×75+1×402+2+1=74.2(分).丙的综合成绩为2×95+2×73+1×352+2+1∵甲的综合成绩最好,∴甲将被录用.【解析】略=10.4(元),15.【答案】解:(1)9×2+10×5+12×32+5+3∴混合后得到的什锦糖果的价格定为每千克10.4元才能保证获得的利润不变.(2)9×6+10×3+12×1=9.6(元),6+3+1∴混合后得到的什锦糖果的价格定为每千克9.6元才能保证获得的利润不变.【解析】略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的 13人,80•分的17人,70分的12人,60分的2人,50分的3人,全班 数学考试的平均成绩是__7_9_分___.( 结果保留到个位:77、82、78、 95、83、75去掉一个最高分和一个最低分后的平均分是___8_0____ 分.
(精确到0.01)
(精确到整数)
(精确到整数)
导学案练案课后作业方案
30℅
甲68票、乙60票、丙56票 乙
3. 区别:
算术平均数中各数据都是同等的重要, 没有相互间差异; 加权平均 数中各数据都有各自不同的权重地位,彼此之间存在差异性的区别.
一 基础知识训练
1.如果一组数据5,x,3,4的平均数是5,那么x=____8___.
2.某班共有学生50人,平均身高为168cm,其中30名男生平均身高为 170cm, 则20名女生的平均身高为__16_5_c_m___.
平均数与加权平均数习题课
教学目标:
1 进一步巩固用算术平均数和加权平均数做题的技能
2 会用方程、几何的思想来解关于平均数的题
本节课用到的基本理论知识
1. 平均数计算:
算术平均数=各数据的和÷数据的个数 加权平均数=(各数据×该数据的权重)的和
2. 平均数的意义:
算术平均数反映一组数据总体的平均大小情况. 加权平均数反映一组数据中按各数据占有的不同 权重时总体的平均大小情况.
5.(2005,宁波市)在航天知识竞赛中,包括甲同学在内的6•名同学 的平均分为7 4分,其中甲同学考了89分,则除甲以外的5名同学的
71
平均分为_______分.
二 创新能力应用
C C
B
C B
3.7 3.7 96
13 某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n•个球的人 数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进 球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多 少人?
相关文档
最新文档