初中数学 北京市中考模拟数学考试题考试卷及答案Word版
2023-2024学年北京市6月初中模拟学业水平考试数学试题+答案解析
![2023-2024学年北京市6月初中模拟学业水平考试数学试题+答案解析](https://img.taocdn.com/s3/m/b64a9dbdd05abe23482fb4daa58da0116d171f7e.png)
2023-2024学年北京市6月初中模拟学业水平考试数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数中,比的相反数大的是()A.3B.C.2D.12.中国“二十四节气”已被正式列入联合国救科文组织人类非物质文化遗产代表作品录.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A. B. C. D.3.新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长,其中159万用科学记数法表示为()A. B. C. D.4.在某月的月历中圈出相邻的3个数,其和为这3个数的位置可能是()A. B. C. D.5.一元二次方程的根的情况为()A.无实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能判定6.如图,在中,,以B为圆心,适当长为半径画弧交BA于点M,交BC于点N,分别以为圆心,大于的长为半径画弧,两弧相交于点D,射线BD交AC于点E,点F为BC的中点,连接EF,若,则的周长是()A.12B.C.D.7.《九章算术》是人类科学史上应用数学的“算经之首”,其书中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两,每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,那么下面列出的方程组中正确的是()A. B. C. D.8.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算时,如图.在中,,,延长CB使,连接AD,得,所以类比这种方法,计算的值为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
9.因式分解:_______.10.如图,数轴上点M,N表示两个连续整数,点A表示的数是,则点N表示的数是__________.11.甲口袋中装有两个相同的小球,它们上面分别写有数字1和2,乙口袋中装有三个相同的小球,它们上面分别写有数字3,4和5,从两个口袋中各随机摸一个小球,两个小球上的数字都是偶数的概率是__________.12.如图,在A、B两地间修一条笔直的公路,从A地测得公路的走向为北偏东,如果A、B两地同时开工,那么为__________时,才能使公路准确接通.13.已知点,都在反比例函数图象上,则__________.14.方程的解为__________15.如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果,小圆直径径为6cm,那么大圆半径为______________16.如图是某停车场的平面示意图,停车场外围的长为30米,宽为18米.停车场内车道的宽都相等.停车位总占地面积为288平方米.设车道的宽为x米,可列方程为__________.三、解答题:本题共12小题,共96分。
初中数学北京市中考模拟数学考试卷含答案解析(Word版)
![初中数学北京市中考模拟数学考试卷含答案解析(Word版)](https://img.taocdn.com/s3/m/682859e277232f60ddcca1f0.png)
xx 学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________.②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.试题2:在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.试题3:在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点. (1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.试题4:如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:0 1 2 3 4 5 60 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.试题5:某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)试题6:如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:;(2)若,求的半径.试题7:如图,在平面直角坐标系中,函数的图象与直线交于点.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.①当时,判断线段与的数量关系,并说明理由;②若,结合函数的图象,直接写出的取值范围.试题8:如图,在四边形中,为一条对角线,,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.试题9:关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求的取值范围.试题10:数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:,(____________+____________).易知,,_____________=______________,______________=_____________.可得.试题11:.如图,在中,,平分交于点.求证:.试题12:解不等式组:试题13:计算:试题14:下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆.请回答:该尺规作图的依据是.试题15:如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程:.试题16:如图,为的直径,为上的点,.若,则.试题17:如图,在中,分别为的中点.若,则.试题18:某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为____________.试题19:写出一个比3大且比4小的无理数:______________.试题20:下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③试题21:小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15跑过的路程大于小林前15跑过的路程D.小林在跑最后100的过程中,与小苏相遇2次试题22:下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多试题23:如果,那么代数式的值是()A. -3 B. -1 C. 1 D.3试题24:若正多边形的一个内角是150°,则该正多边形的边数是()A. 6 B. 12 C. 16 D.18试题25:下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C. D.试题26:实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.试题27:右图是某个几何题的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱试题28:若代数式有意义,则实数的取值范围是()A. B. C. D.试题29:如图所示,点到直线的距离是()A.线段的长度 B.线段的长度 C.线段的长度 D.线段的长度试题1答案:试题解析:(1),点与⊙的最小距离为,点与⊙的最小距离为1,点与⊙的最小距离为,∴⊙的关联点为和.②根据定义分析,可得当直线y=-x上的点P到原点的距离在1到3之间时符合题意;∴设点P的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=,解得,当OP=3时,由距离公式可得,OP=,,解得,∴点的横坐标的取值范围为-≤x≤-或≤x≤如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt△OCB中,由勾股定理得OC= , C点坐标为 (2,0).∴ C点的横坐标的取值范围为2≤≤2;∴综上所述点C的横坐标的取值范围为-≤≤-或≤≤.试题2答案:(1) ∠AMQ=45°+.理由如下:∵∠PAC=,△ACB是等腰直角三角形,∴∠PAB=45°-,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+ .(2)线段MB与PQ之间的数量关系:PQ= MB.理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP, ∴∠QAC=∠PAC=,∴∠QAM=+45°=∠AMQ, ∴AP=AQ=QM,在RT△APC和RT△QME中,∴RT△APC≌RT△QME, ∴PC=ME, ∴△MEB是等腰直角三角形,∴,∴PQ= MB.考点:全等三角形判定,等腰三角形性质 .试题3答案:(2).由,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ∵ ,∴+=4.令y=-1,y=-x+3,x=4. ∵,∴3<<4, 即7<<8, ∴的取值范围为:7<<8.考点:二次函数与x轴的交点问题,待定系数法求函数解析式,二次函数的对称性.试题4答案:试题解析:(1)1.6(2)如图所示:(3)作y=x与函数图象交点即为所求.2.2(答案不唯一)5答案:试题成绩人数部门甲0 0 1 11 7 1乙 1 0 0 7 10 2a.估计乙部门生产技能优秀的员工人数为400× =240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.考点:众数,中位数.试题6答案:试题解析:(1)证明:∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数试题7答案:试题解析:(1) ∵函数(x>0)的图象与直线y=x-2交于点A(3,m) ∴m=3-2=1,把A(3,1)代入得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象试题8答案:试题解析:(1)证明:∵E为AD中点,AD=2BC,∴BC=ED, ∵AD∥BC, ∴四边形ABCD是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE∴BE=ED, ∴四边形ABCD是菱形.(2)∵AD∥BC,AC平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin∠ADB=,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT△ACD中,AD=2,CD=1,AC= .考点:平行线性质,菱形判定,直角三角形斜边中线定理.试题9答案:考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.试题10答案:考点:矩形的性质,三角形面积计算.试题11答案:试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=(180°-∠A)= ×(180°-36°)=72°,又∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB∴AD=BD=BC.考点:等腰三角形性质.试题12答案:考点:解一元一次不等式组试题13答案:原式=4× +1-2+2=2+1-2+2=3 .考点:实数的运算试题14答案:到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质试题15答案:将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).【解析】试题分析:观察图形即可,将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB,注意是顺时针还是逆时针旋转.考点:几何变换的类型试题16答案:25°.考点:圆周角定理试题17答案:3.【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC的中点,∴ , ∴,∵ , .考点:相似三角形的性质.试题18答案:.考点:二元一次方程组的应用.试题19答案:(答案不唯一).【解析】试题分析:∵3<x<4, ∴ , ∴9<x<16,故答案不唯一,考点:无理数的估算.试题20答案:B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率试题21答案:D.考点:函数图象试题22答案:A.考点:折线统计图试题23答案:C.考点:代数式求值试题24答案:B.【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B.考点:多边形的内角与外角试题25答案:A.【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A。
2024年北京中考数学第三次模拟卷含答案解析
![2024年北京中考数学第三次模拟卷含答案解析](https://img.taocdn.com/s3/m/9524b10b001ca300a6c30c22590102020740f22b.png)
2024年中考第三次模拟考试数学(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104 3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<16.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A.B.C.D.7.(2分)已知关于x的一元二次方程kx2﹣(4k﹣1)x+4k﹣3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<B.k>﹣且k≠0C.k>﹣D.k<且k≠08.(2分)在Rt△ABC中,AC=BC,点D为AB中点,∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 .10.(2分)因式分解:xy3﹣25xy= .11.(2分)分式方程的解为 .12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 y2(填“>”,“=”或“<”).13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 .14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 °.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 元.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)三.解答题(共12小题,满分68分)17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知x +y =6,xy =9,求的值.20.(6分)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接DE ,DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC =60°,∠C =45°,DE =2,求BC 的长.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了. 不对呀,是144元.22.(5分)已知一次函数 y =(k ﹣2)x ﹣3k +12.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数 y =(k ﹣2)x ﹣3k +12 的函数值y 随x 的增大而减小,求k 的取值范围.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m )如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= ,b= ;(2)这两人中, 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 ;线段OP的取值范围是 ;②点O与线段DE (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2024年中考第三次模拟考试数学·全解全析第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看,是一行两个矩形.故选:B.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:35800=3.58×104.故选:D.3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°【分析】根据多边形的内角和公式为(n﹣2)180°列出方程,求出边数,再根据外角和定理求出这个多边形的一个外角.【解答】解:设这个多边形的边数为n,根据题意列方程:(n﹣2)180°=2340°,解得n=15,360°÷15=24°,故选:A.5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.6.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A .B .C .D .【分析】画树状图列出所有等可能结果,从中找到松鼠走出笼子的路线是“先经过A 门,再经过E 门”的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中松鼠走出笼子的路线是“先经过A 门,再经过E 门”的只有1种结果,所以松鼠走出笼子的路线是“先经过A 门,再经过E 门”的概率为,故选:D .7.(2分)已知关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,则实数k 的取值范围是( )A .k <B .k >﹣且k ≠0C .k >﹣D .k <且k ≠0【分析】根据方程有两个不相等的实数根,得到根的判别式大于0且二次项系数不为0,求出k 的范围即可.【解答】解:∵关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,∴Δ=(4k ﹣1)2﹣4k (4k ﹣3)>0且k ≠0,解得:k且k ≠0.故选:B .8.(2分)在Rt △ABC 中,AC =BC ,点D 为AB 中点,∠GDH =90°,∠GDH 绕点D 旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个【分析】连接CD,根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE =CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理AE2+BF2=EF2,因为S四边形CEDF=S△EDC+S△EDF,得出.【解答】解:连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,∴.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.∴∠ADE+∠EDC=90°,∵∠EDC+∠FDC=∠GDH=90°,∴∠ADE=CDF.在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,DE=DF,S△ADE=S△CDF.∵AC=BC,∴AC﹣AE=BC﹣CF,∴CE=BF.∵AC=AE+CE,∴AC=AE+BF.∵AC2+BC2=AB2,∴,∴.∵DE=DF,∠GDH=90°,∴△DEF始终为等腰直角三角形.∵CE2+CF2=EF2,∴AE2+BF2=EF2.∵S四边形CEDF=S△EDC+S△EDF,∴.∴正确的有4个.故选:D.第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 x≠3 .【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.10.(2分)因式分解:xy3﹣25xy= xy(x+5)(x﹣5) .【分析】先提公因式xy,然后根据平方差公式进行计算即可求解.【解答】解:原式=xy(y2﹣25)=xy(y+5)(y﹣5).故答案为:xy(y+5)(y﹣5).11.(2分)分式方程的解为 .【分析】去分母后化为整式方程求解,后检验即可.【解答】解:,3x=x﹣3,2x=﹣3,,经检验,是原分式方程的解.故答案为:.12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 > y2(填“>”,“=”或“<”).【分析】由k<0,双曲线在第二,四象限,根据x1<0<x2即可判断A在第二象限,B 在第四象限,从而判定y1>y2.【解答】解:∵k=﹣4<0,∴双曲线在第二,四象限,∵x2<0<x1,∴B在第二象限,A在第四象限,∴y1<y2;故答案为:<.13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 6 .【分析】由平行四边形的性质得AD∥CB,AD=CB,则AE=AD=CB,可证明△EAF∽△BCF,得==,则CF=AC=6,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∵AE=AD,∴AE=CB,∵AE∥CB,∴△EAF∽△BCF,∴==,∴CF=AC=AC=×10=6,故答案为:6.14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 59或121 °.【分析】根据切线的性质得到∠OAP=90°,∠OBP=90°,再根据四边形内角和得到∠AOB=118°,然后根据圆周角定理和圆内接四边形的性质求∠ACB的度数.【解答】解:连接OA,OB,∵PA,PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB,∴∠OAP=90°,∠OBP=90°,而∠P=62°,∴∠AOB=360°﹣90°﹣90°﹣62°=118°,当点P在劣弧AB上,则∠ACB=∠AOB=59°,当点P在优弧AB上,则∠ACB=180°﹣59°=121°.故答案为:59或121.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 98或77 元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为【解答】解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 4 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 8 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)【分析】根据题意可知,筷子的颜色共有3种,根据抽屉原理可知,先拿出3根是三种颜色,所以一次至少要拿出3+1=4(根)筷子才能保证一定有2根同色的筷子;根据题意可知,先把其中一种颜色的全部(5根)摸出,剩下的2种颜色的筷子各再摸出1根,即2根,还不能满足条件,则此时再任意拿出1根,必定会出现有2双不同色的筷子,据此解答即可.【解答】解:3+1=4(根),答:每次最少拿出4根才能保证一定有2根同色的筷子;5+2+1=8(根),答:要保证有2双不同色的筷子,每次最少拿出8根.故答案为:4,8.三.解答题(共12小题,满分68分)17.(5分)计算:.【分析】先分别按照负整数指数幂、求立方根、绝对值的化简法则及特殊角的三角函数值化简,再合并同类项及同类二次根式即可.【解答】解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)已知x+y=6,xy=9,求的值.【分析】首先化简,然后把x+y=6,xy=9代入化简后的算式计算即可.【解答】解:∵x+y=6,xy=9,∴====.20.(6分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=60°,∠C=45°,DE=2,求BC的长.【分析】(1)四边形EBGD为菱形,根据邻边相等的平行四边形是菱形即可判断;(2)过D作DM⊥BC于M,分别求出CM、BM即可;【解答】解:(1)四边形EBGD 为菱形;理由:∵EG 垂直平分BD ,∴EB =ED ,GB =GD ,∴∠EBD =∠EDB ,∵∠EBD =∠DBC ,∴∠EDF =∠GBF ,∴DE ∥BG ,同理BE ∥DG ,∴四边形BEDG 为平行四边形,又∵DE =BE ,∴四边形EBGD 为菱形;(2)如图,过D 作DM ⊥BC 于M ,由(1)知,∠DGC =∠ABC =60°,∠DBM =∠ABC =30°,DE =DG =2,∴在Rt △DMG 中,得DM =3,在Rt △DMB 中,得BM =3又∵∠C =45°,∴CM =DM =3,∴BC =3+3.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了.不对呀,是144元.【分析】设中性笔的单价是x 元,笔记本的单价是y 元,利用总价=单价×数量,可列出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设中性笔的单价是x元,笔记本的单价是y元,根据题意得:,解得:.答:中性笔的单价是2元,笔记本的单价是6元.22.(5分)已知一次函数y=(k﹣2)x﹣3k+12.(1)k为何值时,函数图象经过点(0,9)?(2)若一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求k的取值范围.【分析】(1)根据一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),列方程即可得到结论;(2)根据k﹣2<0时一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求出k的取值范围即可.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),∵(k﹣2)×0﹣3k+12=9,解得k=1,故当k=1时,函数图象经过点(0,9);(2)∵一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,∴k﹣2<0,解得k<2.故当k=1或﹣1时,一次函数y=(k﹣2)x﹣3k+12的值都是随x值的增大而减小.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= 1.68 ,b= 1.70 ;(2)这两人中, 甲 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.【分析】(1)利用众数及中位数的定义分别求得a、b的值即可;(2)根据方差的计算公式分别计算方差,再根据方差的意义判断即可;(3)看哪位运动员的成绩在1.69m以上的多即可.【解答】解:(1)∵甲的成绩中1.68出现了3次,最多,∴a=1.68,乙的中位数为b==1.70,故答案为:1.68,1.70;(2)分别计算甲、乙两人的跳高成绩的方差分别:S甲2=×[(1.71﹣1.69)2+(1.65﹣1.69)2+…+(1.67﹣1.69)2]=0.00065,S乙2=×[(1.60﹣1.69)2+(1.74﹣1.69)2+…+(1.75﹣1.69)2]=0.00255,∵S甲2<S乙2,∴甲的成绩更为稳定;故答案为:甲;(3)应该选择乙,理由如下:若1.69m才能获得冠军,那么成绩在1.69m及1.69m以上的次数乙多,所以选择乙.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.【分析】(1)根据等腰三角形的性质、平行线的性质、圆内接四边形的性质证明∠BAD=∠EAD;(2)连接AC,证明△ADB≌△ADE,得到∠ABD=∠E,根据圆周角定理得到∠ABD=∠ACD,证明△ACE∽△DAE,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】(1)证明:∵AD=ED,∴∠EAD=∠E,∵AE∥BC,∴∠E+∠BCD=180°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BAD=∠EAD;(2)解:如图,连接AC,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴∠ABD=∠E,由圆周角定理得:∠ABD=∠ACD,∴∠ACD=∠E=∠EAD,∵∠E=∠E,∴△ACE∽△DAE,∴=,即=,解得:AE=2,∴AB=AE=2.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?【分析】(1)应用待定系数法即可求出函数解析式;(2)分别求出y=3时,x的值,再比较即可得到答案.【解答】解:(1)场景A:把(0,21),(10,16),代入y=﹣0.04x2+bx+c,得:,解得,∴y=﹣0.04x2﹣0.1x+21;场景B:把(0,21),(5,16),代入y=ax+c,得:,解得,∴y=﹣x+21;场景A的函数表达式为y=﹣0.04x2﹣0.1x+21,场景B的函数表达式为y=﹣x+21;(2)当y=3时,场景A中,3=﹣0.04x2﹣0.1x+21,解得:x1=20,x2=﹣22.5(舍去),场景B中,3=﹣x+21,解得x=18,∵20>18,∴化学试剂在场景A下发挥作用的时间更长.26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.【分析】(1)将a=2代入二次函数,再将二次函数化为顶点式即可得到答案;(2)由题意可得(﹣1,y0)为抛物线顶点,从而得到抛物线的对称轴为x=﹣1,从而计算出a的值,再将A(m,n),B(2﹣m,p)代入如抛物线的解析式得到n+p=2(m﹣1)2﹣8,即可得到答案.【解答】解:(1)∵a=2,∴抛物线的解析式为y=x2−4x+5,∵y=x2−4x+5=(x−2)2+1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,1);(2)∵抛物线过点(−1,y n),且对于抛物线上任意一点(x1,y1)都有y1≥y0,∴(−1,y0)为抛物线的顶点,∴抛物线的对称轴为直线x=﹣1,∴=−1.∴a=﹣4,∴该抛物线的解析式为y=x2+2x−7,∵A(m,n),B(2﹣m,p)是抛物线上不同的两点,∴n=m2+2m−7,p=(2−m)2+2(2−m)−7.∴n+p=m2+2m﹣7+(2﹣m)2+2(2﹣m)﹣7=2(m﹣1)2﹣8,又∵m≠2﹣m,∴m≠1,∴n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 AE=CF ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.【分析】(1)如图所示,连接AD,根据等腰三角形的性质可证△AED≌△CFD(SAS),由此即可求解;(2)由(1)中△AED≌△CFD(SAS),再根据△DEF为等腰直角三角形,由此即可求解;(3)点C、E、F三点共线,分类讨论,根据(2),(3)中的结论即可求解.【解答】解:(1)AE=CF,理由如下,如图所示,连接AD,∵△ABC为等腰直角三角形,∠BAC=90°,∴∠B=∠ACB=45°,∵点D为BC中点,∴AD⊥BC,∴∠ACD=∠DAC=45°,∴AD=CD,∵△DEF为等腰直角三角形,∠EDF=90°,∴DE=DF,∠EDA+∠ADF=∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴AE=CF,故答案为:AE=CF;(2)证明:如图2所示,连接AD,由(1)可知,△AED≌△CFD(SAS),∴∠EAD=∠FCD,AE=CF,∴CE=CF+EF=AE+EF,∴CE﹣AE=CE﹣CF=EF,∵△DEF是等腰直角三角形,即DE=DF,∴EF2=DE2+DF2=2DE2,∴EF=DE=DF,∴CE﹣AE=DE;(3)解:AB=,AE=,C、E、N三点共线,①由(2)可知,CE﹣AE=DE,由(1)可知,∠EAD=∠FCD,∵∠ACD=∠ACE+∠FCD=45°,∠DCF+∠FCA+∠DAC=90°,∴∠EAD+∠FCA+∠DAC=90°,∴∠AEC=90°,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE﹣CF=,∴DE=FE=;②如图所示,由(1)可知,△ADE≌△CDN,AE=CF=,∠DAE=∠DCF,∴∠DAE+∠EAC+∠ACD=∠DCF+∠EAC+∠ACD=90°,∴△AEC是直角三角形,∴CE===,∴EF=CF﹣CE=(不符合题意舍去);③如图,∵△DEF是等腰直角三角形,∴∠F=∠DEF=45°,同法可证△ADE≌△CDF,∴∠AED=∠F=45°,∴∠AED+∠DEF=45°+45°=90°,即△ACM是直角三角形,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE+CF=,∵EF=DE,∴DE==;综上所述,DE的长为或.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 2 ;线段OP的取值范围是 ;②点O与线段DE 是 (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.【分析】(1)①根据垂线段最短以及已知条件,确定OP,DP的最大值,最小值即可解决问题;②根据限距关系的定义判断即可;(2)根据两直线平行k相等计算设FG的解析式为:y=﹣x+b,得G(0,b),F(b,0),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K 都满足限距关系,构建不等式求解即可.【解答】解:(1)①如图1中,∵点C(,0),E(0,1),∴OE=1,OC=,∴EC=2,∠ECO=30°,当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是,Rt△OPC中,OP=OC=,即OP的最小值是;如图2,当DP⊥EC时,DP的值最小,Rt△DEP中,∠OEC=60°,∴∠EDP=30°,∵DE=2,∴cos30°=,∴=,∴DP=,∴当P与E重合时,DP的值最大,DP的最大值是2,线段DP的最小值为,最大值为2;线段OP的取值范围是;故答案为:,2,;②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,故点O与线段DE满足限距关系;故答案为:是;(2)∵点C(,0),E(0,1),∴设直线CE的解析式为:y=kx+m,∴,解得,∴直线CE的解析式为:y=﹣x+1,∵FG∥EC,∴设FG的解析式为:y=﹣x+b,∴G(0,b),F(b,0),∴OG=b,OF=b,当0<b<时,如图5,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1﹣b,最大距离为1+b,∵线段FG与⊙O满足限距关系,∴1+b≥2(1﹣b),解得b≥,∴b的取值范围为≤b<;当1≤b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为b﹣1,最大距离为b+1,∵线段FG与⊙O满足限距关系,∴b+1≥2(b﹣1),而b+1≥2(b﹣1)总成立,∴b>6时,线段FG与⊙O满足限距关系,综上所述,点G的纵坐标的取值范围是:b≥2;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,两圆的距离的最小值为2r﹣6,最大值为2r+6,∵⊙H和⊙K都满足限距关系,∴2r+6≥2(2r﹣6),解得r≤9,故r的取值范围为0<r≤9.2024年中考第三次模拟考试数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678B DC A CD B D第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.x≠3.10.xy(y+5)(y﹣5).11..12.<.13.6.14.59或121.15.98或77.16.4,8.三.解答题(共12小题,满分68分)17.(5分)解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)解:∵x+y=6,xy=9,∴====.20.(6分)解:(1)四边形EBGD为菱形;理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,∴DE∥BG,同理BE∥DG,∴四边形BEDG为平行四边形,又∵DE=BE,∴四边形EBGD为菱形;。
2024年北京中考数学第二次模拟卷含答案解析
![2024年北京中考数学第二次模拟卷含答案解析](https://img.taocdn.com/s3/m/e527316e6d85ec3a87c24028915f804d2b16872b.png)
2024年中考第二次模拟考试数 学(考试时间:120分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .37.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9x 可取的一个数是 .10.将2327m n n -因式分解为 .11.方程12131x x =+-的解为 .12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母 的位置,标注字母e 的卡片写有数字 .三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪⎩.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++⎝⎭,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE的形状,并证明;(2)连接EF,若EF CD的长.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺为3m,且空白区域A B贴用纸费用分别为:A区域10元2/m,铺贴三个区域/m,B区域15元2/m,C区域20元2共花费150元,求C区域的面积.22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y 是x 的函数,并对y 随x 的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y ,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m ;此时距离A 的水平距离为___________m ;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m 时补光效果最好,若在距离A 处水平距离1.5m 的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m ?(灯的大小忽略不计)26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.2024年中考第二次模拟考试数学·全解全析第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .3【答案】B【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③==+,∴DF AC a b∵DF DE<,+<,①正确,故符合要求;∴a b c∵EAB BCD≌△△,第Ⅱ卷非选择题二、填空题(共16分,每小题2分)9x可取的一个数是.∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n -=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =+-的解为 .【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x=≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .AB是直径,CD丄AB∴=,CE DE=BD BC=60︒,∠ACDA∴∠=︒,30∴∠=∠=︒,DOE A26014.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e的卡片写有数字.【答案】B;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B与第二行中c肯定有一张为白1,若第二行中c为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B的位置,∴黑卡片数字1摆在了标注字母A的位置,;第一行中C与第二行中c肯定有一张为白2,若第二行中c为白2,则a,b只能是黑1,黑2,而A为黑1,矛盾,∴第一行中C为白2;第一行中F与第二行中c肯定有一张为白3,若第一行中F为白3,则D,E只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪.∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若EF =CD 的长.四边形DFHE 是菱形,12OH OD DH ∴==,60HDE ∠=︒ ,633OE OD ∴===21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域AB 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n 91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,其中第1个和第2个数是30名学生成绩中第∴1(9090)902n =⨯+=,∴88m =,90n =;24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;x=,求得函数值,即可解答.(3)利用待定系数法求得抛物线的解析式,令 1.5【详解】(1)解:描点,连线,函数的图象如图所示,(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫⎪⎝⎭,,代入得,18342c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF =【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线故答案为:11A B ;(2)已知()30y x b b =-+>交x 轴于点是O 的关于直线()30y x b b =-+>对称的以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点当0y =时,()030x b b =-+>,将点C 代入直线3y x b =-+中,得0解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时2024年中考第二次模拟考试数学·参考答案 第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.12345678BDBDCBDD第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9.如4等(答案不唯一,3x ≥)10.()()333n m m +-11.x =312.2-(答案不唯一)13.14.()621031x x-=1516.B ;4三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)【详解】解:原式1144=-+-+....................(2分)114=-++-....................(4分)4=.....................(5分)18.(5分)【详解】解:221352x xxx+<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x>,....................(2分)解不等式②得:5x<,....................(4分)∴不等式组的解集为35x<<.....................(5分)19.(5分)【详解】解:原式22121211(1)x x xx x x⎛⎫---=+÷⎪+++⎝⎭()()22112x x xx x-+=⋅+-....................(2分)()1x x=-+....................(3分)2x x=--,....................(4分)当1x=时,原式)1113=--+=-....................(5分)20.(5分)【详解】(1)解:四边形DFHE是菱形,理由如下:CD平分ACB∠,过点D作DE BC⊥于点E,DF AC⊥于点F,60ACB∠=︒,DF DE∴=,30FCD DCE∠=∠=︒,....................(1分)点H是CD的中点,FH CH DH∴==,EH CH DH==,FH HE∴=,30DCE∠=︒,DE CB⊥,60HDE∴∠=︒,DHE∴ 是等边三角形,DE HE DH∴==,DF DE HE FH∴===,∴四边形DFHE 是菱形;....................(2分)(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,12OF OE EF ===EF DH ⊥,....................(3分)60HDE ∠=︒,OD ∴===....................(4分)24CD DH OD ∴===....................(5分)21.(5分)【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,....................(1分)解得2x =,....................(2分)9225-⨯=,....................(3分)答:C 区域的面积是25m .....................(5分)22.(5分)【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,....................(1分)该一次函数的表达式为112y x =-+,....................(2分)令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;....................(3分)(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,....................(4分)4m ∴>-.....................(5分)23.(6分)【详解】(1)解:如图所示;....................(2分)(2)8210871095108830m ⨯+⨯+⨯==,....................(3分)∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;....................(4分)(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.....................(6分)24.(6分)【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,....................(1分)∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,....................(2分)∴ AD CD =,∴ AB AD BC CD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;....................(3分)(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD =,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.....................(4分)∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.....................(5分)∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.....................(6分)25.(6分)【详解】(1)解:描点,连线,函数的图象如图所示, ....................(1分)(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;....................(3分)(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,....................(4分)∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,....................(5分)答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .....................(6分)26.(6分)【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,。
初中数学北京市市中考模拟数学考试卷及答案 WORD
![初中数学北京市市中考模拟数学考试卷及答案 WORD](https://img.taocdn.com/s3/m/f50ed6762cc58bd63086bd1e.png)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:2的相反数是()A. 2 B.﹣2 C.﹣D.试题2:据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A. 0.3×106B. 3×105C. 3×106D. 30×104试题3:如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.试题4:如图是几何体的三视图,该几何体是()评卷人得分A.圆锥B.圆柱C.正三棱柱D.正三棱锥试题5:某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A. 18,19 B. 19,19 C. 18,19.5 D. 19,19.5试题6:园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米C. 80平方米D. 100平方米试题7:如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B. 4 C.4D. 8试题8:已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.试题9:分解因式:ax4﹣9ay2=试题10:在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.试题11:如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为.试题12:在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为.试题13:如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.试题14:计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|试题15:解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.试题16:已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.试题17:已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.试题18:列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费 27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.试题19:如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.试题20:根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 5 本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为7500 本.试题21:如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.试题22:阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.试题23:在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.试题24:正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.试题25:对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?试题1答案:B试题2答案:B试题3答案:D试题4答案:C试题5答案:A试题6答案:B试题7答案:C试题8答案:A试题9答案:a(x2﹣3y)(x2+3y).试题10答案:15试题11答案:y=,y=(0<k≤4)(答案不唯一)试题12答案:(﹣3,1)(0,4)﹣1<a<1且0<b<2解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A2014的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2试题13答案:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.试题14答案:解:原式=1﹣5﹣+=﹣4.试题15答案:解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:试题16答案:解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.试题17答案:(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.试题18答案:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元试题19答案:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.试题20答案:解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)设从2009到2013年平均增长幅度为x,列方程得,3.88×(1+x)4=4.78,1+x≈1.05,x≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2014年该小区成年国民阅读图书的总数量约为7500本.试题21答案:(1)证明:连接OC,∵C是AB的中点,AB是⊙O的直径,∴O⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∴OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.试题22答案:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.试题23答案:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.试题24答案:解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.试题25答案:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t≥1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.。
【3套试卷】北京市中考模拟考试数学精选含答案
![【3套试卷】北京市中考模拟考试数学精选含答案](https://img.taocdn.com/s3/m/65be528be009581b6ad9eb5e.png)
中考模拟考试数学试题含答案一.选择题(共8小题)1.﹣2018的绝对值是()A.±2018B.﹣2018C.D.20182.下列计算正确的是()A.3a+2b=5ab B.(a3)2=a5C.(﹣a)3÷(﹣a)=﹣a2D.3x3(﹣2x2)=﹣6x53.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.4.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°5.已知某等腰三角形的腰和底分别是一元二次方程x2﹣6x+5=0的两根,则此三角形的周长是()A.11B.7C.8D.11或76.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD =()A.B.C.D.8.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.二.填空题(共6小题)9.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.10.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.A 型机器每小时加工零件的个数.11.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s2如下表所示:甲乙丙丁94989896 s21 1.21 1.8如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是.12.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.13.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF=度.14.将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817……则2018在第行.三.解答题(共10小题)15.计算:()2﹣2﹣1×(﹣6)16.解不等式:5x+2≤3(2+x),并把解在数轴上表示出来.17.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?18.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),求点C的坐标.19.某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了名学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.22.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB 于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.23.【操作发现】(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB 上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.24.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?参考答案与试题解析一.选择题(共8小题)1.﹣2018的绝对值是()A.±2018B.﹣2018C.D.2018【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018,故选:D.2.下列计算正确的是()A.3a+2b=5ab B.(a3)2=a5C.(﹣a)3÷(﹣a)=﹣a2D.3x3(﹣2x2)=﹣6x5【分析】根据合并同类项、同底数幂的乘法和除法进行逐一计算.【解答】解:A、不是同类项,不能合并;B、是幂的乘方,应底数不变,指数相乘,所以(a3)2=a6,故B错误;C、是同底数幂的除法,应底数不变,指数相减,即(﹣a)3÷(﹣a)=(﹣a)2=a2所以不对;D、是积的乘法,将积的每个因式分别乘方,然后把所得的幂相乘.故选:D.3.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【分析】根据正六棱柱的俯视图为正六边形,即可得出结论.【解答】解:正六棱柱的俯视图为正六边形.故选:B.4.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,同旁内角互补解答.【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选:B.5.已知某等腰三角形的腰和底分别是一元二次方程x2﹣6x+5=0的两根,则此三角形的周长是()A.11B.7C.8D.11或7【分析】本题要先通过解方程求出等腰三角形的两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.【解答】解:解方程x2﹣6x+5=0,得x1=5,x2=1;∵当底为5,腰为1时,由于5﹣1>1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为5;∴三角形的周长为1+5+5=11.故选:A.6.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD =()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD 即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.8.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A.B.C.D.【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,当<t≤时以及当<t≤2时,当2<t≤2+时,当2+<t≤2+时求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,由勾股定理得,=,∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤时,s=t2﹣2t+;当<t≤2时,s=×12=;当2<t≤2+时,s=t2﹣4t+;当2+<t≤2+时,s=﹣(﹣t+2)2,∴A符合要求,故选:A.二.填空题(共6小题)9.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m 值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.10.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.A 型机器每小时加工零件的个数80.【分析】设A型机器每小时加工x个零件,则B型机器每小时加工(x﹣20)个零件,根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设A型机器每小时加工x个零件,则B型机器每小时加工(x﹣20)个零件,根据题意得:=,解得:x=80,经检验,x=80是原分式方程的根,且符合题意.答:A型机器每小时加工80个零件.故答案为:80.11.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s2如下表所示:甲乙丙丁94989896 s21 1.21 1.8如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是丙.【分析】先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【解答】解:∵乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,∵丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故答案为:丙.12.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是(﹣2,1)或(2,﹣1).【分析】利用位似图形的性质得出对应点坐标乘以或﹣,得出即可.【解答】解:∵点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A'的坐标是:(﹣2,1)或(2,﹣1).故答案为:(﹣2,1)或(2,﹣1).13.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF=120度.【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故答案为:120.14.将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817……则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.三.解答题(共10小题)15.计算:()2﹣2﹣1×(﹣6)【分析】直接利用负指数幂的性质和有理数的乘法运算法则化简得出答案.【解答】解:原式=3﹣×(﹣6)=3+3=6.16.解不等式:5x+2≤3(2+x),并把解在数轴上表示出来.【分析】去括号,移项,合并同类项,系数化成1,最后在数轴上表示出来即可.【解答】解:去括号,得:5x+2≤6+3x,移项,得:5x﹣3x≤6﹣2,合并同类项,得:2x≤4,系数化为1,得:x≤2,将解集表示在数轴上如下:17.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.18.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),求点C的坐标.【分析】解直角三角形求出AB和OA,根据旋转的性质得出OB=BD=2,∠DBO=60°,求出CD∥x轴,求出DM,即可求出答案.【解答】解:过D作DM⊥x轴于M,∵AB⊥x轴于点B,点B的坐标为(2,0),∴y=2,∴点A的坐标为(2,2),∴AB=2,OB=2,由勾股定理得,OA===4,∴∠A=30°,∠AOB=60°,∵△ABO绕点B顺时针旋转60°得到△BCD,∴DC=OA=4,OB=BD,∠DOB=60°,∴△BDO是等边三角形,∴OD=OB=2,OM=BM=OB=1,∠DBO=60°=∠BDC,∴CD∥x轴,在Rt△DMO中,由勾股定理得:DM===,∴点C的横坐标是1+4=5,纵坐标是,即点C的坐标为(5,).19.某中学为推动“时刻听党话永远跟党走”校园主题教育活动,计划开展四项活动:A:党史演讲比赛,B:党史手抄报比赛,C:党史知识竞赛,D:红色歌咏比赛.校团委对学生最喜欢的一项活动进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2两幅不完整的统计图.请结合图中信息解答下列问题:(1)本次共调查了40名学生;(2)将图1的统计图补充完整;(3)已知在被调查的最喜欢“党史知识竞赛”项目的4个学生中只有1名女生,现从这4名学生中任意抽取2名学生参加该项目比赛,请用画树状图或列表的方法,求出恰好抽到一名男生一名女生的概率.【分析】(1)根据A活动的人数及其百分比可得总人数;(2)总人数减去A、C、D的人数求出B活动的人数,据此补全统计图可得;(3)列表得出所有等可能结果,再从中找到恰好抽到一名男生一名女生的结果数,继而根据概率公式计算可得.【解答】解:(1)本次调查的学生总人数为6÷15%=40人,故答案为:40;(2)B项活动的人数为40﹣(6+4+14)=16,补全统计图如下:(3)列表如下:男男男女男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)男(男,男)(男,男)(男,女)女(女,男)(女,男)(女,男)由表可知总共有12种结果,每种结果出现的可能性相同,其中恰好抽到一名男生和一名女生的结果有6种,所以抽到一名男生和一名女生的概率是,即.20.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.21.如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【分析】(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.【解答】解:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=AC•BE=×4×2=4,即△ABC的面积为4.22.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB 于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵ED⊥EB,∴∠DEB=90°,∴BD是⊙O的直径,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴=,即=,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴=,即=,解得:AD=.23.【操作发现】(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB 重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB 上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【分析】(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF =120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.【解答】解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,∵∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,∵∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.24.如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).(1)求出这条抛物线的表达式;(2)当t=0时,求S△OBN的值;(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?【分析】(1)根据点E、F的坐标,利用待定系数法即可求出抛物线的表达式;(2)找出当t=0时,点B、N的坐标,进而可得出OB、BN的长度,再根据三角形的面积公式可求出S△OBN的值;(3)分0<t≤4和4<t≤5两种情况考虑:①当0<t≤4时(图1),找出点A、B、M、N的坐标,进而可得出AM、BN的长度,利用梯形的面积公式即可找出S关于t的函数关系式,再利用二次函数的性质即可求出S的最大值;②当4<t≤5时,找出点A、B、M、N的坐标,进而可得出AM、BN的长度,将五边形分成两个梯形,利用梯形的面积公式即可找出S关于t的函数关系式,再利用二次函数的性质即可求出S的最大值.将①②中的S的最大值进行比较,即可得出结论.【解答】解:(1)将E(5,5)、F(10,0)代入y=ax2+bx,,解得:,∴抛物线的表达式为y=﹣x2+2x.(2)当t=0时,点B的坐标为(1,0),点N的坐标为(1,),∴BN=,OB=1,∴S△OBN=BN•OB=.(3)①当0<t≤4时(图1),点A的坐标为(t,0),点B的坐标为(t+1,0),∴点M的坐标为(t,﹣t2+2t),点N的坐标为(t+1,﹣(t+1)2+2(t+1)),∴AM=﹣t2+2t,BN=﹣(t+1)2+2(t+1),∴S=(AM+BN)•AB=×1×[﹣t2+2t﹣(t+1)2+2(t+1)],=﹣t2+t+,=﹣(t﹣)2+,∵﹣<0,∴当t=4时,S取最大值,最大值为;②当4<t≤5时(图2),点A的坐标为(t,0),点B的坐标为(t+1,0),∴点M的坐标为(t,﹣t2+2t),点N的坐标为(t+1,﹣(t+1)2+2(t+1)),∴AM=﹣t2+2t,BN=﹣(t+1)2+2(t+1),∴S=(5﹣t)(﹣t2+2t+5)+(t﹣4)[5﹣(t+1)2+2(t+1)],=(t3﹣3t2+5t+25)+(﹣t3+t2+t﹣),=﹣t2+t﹣,=﹣(t﹣)2+,∵﹣<0,∴当t=时,S取最大值,最大值为.∵=<,∴当t=时,S有最大值,最大值是.中考一模数学试卷及答案 试卷内容:九年级上册---九年级下册2.4;满分120分一.选择题(共10小题,每小题3分,共30分)1.如图,在平面直角坐标系xOy 中,直线y =k 1x +2与y 轴交于点C ,与反比例函数2k y x在第一象限内的图象交于点B ,连接BO ,若S △OBC =1,tan ∠BOC =13,则k 2的值是( )A .﹣3B .1C .2D .32.若关于x 的一元二次方程(k +2)x 2﹣3x +1=0有实数根,则k 的取值范围是( )A .k <14且k ≠﹣2B .kC .k ≤14且k ≠﹣2D .k3.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2﹣10x +m =0的两个实数根,则等腰三角形底边的值是( )A .4B .25C .4或6D .24或254.如果△ABC 中,AB =AC ,BC =AB ,那么∠A 的度数是( ) A .30° B .36° C .45° D .60°5.如图,在△ABC 中,DE ∥BC ,若S △ADE :S △BDE =1:2,S △ADE =3,则S △ABC 为( )A.9B.12C.24D.276.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′与矩形OABC的相似比为12,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)7.设tan 69.83°=a,则tan 20.17°用a可表示为()A.﹣a B.1aC.3aD.a8.由于各地雾霾天气越来越严重,2018年春节前夕,安庆市政府号召市民,禁放烟花炮竹.学校向3000名学生发出“减少空气污染,少放烟花爆竹”倡议书,并围绕“A类:不放烟花爆竹;B类:少放烟花爆竹;C类:使用电子鞭炮;D 类:不会减少烟花爆竹数量”四个选项进行问卷调查(单选),并将对100名学生的调查结果绘制成统计图(如图所示).根据抽样结果,请估计全校“使用电子鞭炮”的学生有()A.900名B.1050名C.600名D.450名9.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0D.a=﹣1,b=0,c=610.如图所示,点A,B,C,D在⊙O上,CD是直径,∠ABD=75°,则∠AOC 的度数为()A.15°B.25°C.30°D.35°二.填空题(共8小题,每小题3分,共24分)11.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=.12.若,则=.13.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=BC,则cos∠B =.14.若点P(﹣m2﹣1,m﹣3)在第三象限,则反比例函数y=的图象在第象限.15.如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=2,若其与x轴的一个交点为(5,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为.17.如图,⊙M经过点A(﹣3,5),B(1,5),C(4,2),则圆心M的坐标是.18.如图,四边形ABCD内接于⊙O,∠DCB=40°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD的取值范围是.三.解答题(共8小题,19—20,每小题5分;21—22,每小题7分;23—25,每小题10分;26题12分;满分66分)19.解下列方程:(x+2)2=3x+6.20.计算:﹣2-︒﹣tan45°(1tan60)21.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?22.为迎接2019年中考,对道里区西部优质教育联盟九年级学生进行了一次数学期中模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次被调查的学生共有多少人,并将条形统计图补充完整:(2)在扇形统计图中,求出“优”所对应的圆心角度数;(3)若该联盟九年级共有1050人参加了这次数学考试,估计九年级这次考试共有多少名学生的数学成绩可以达到优秀?23.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.73232≈1.414)25.十一黄金周期间某旅游景点的日游客量y(万人)是门票价格x(元)的一次函数,其函数图象如图所示:(1)求y关于x的函数解析式;(2)经过景点工作人员统计发现:此景点日游客承载量的极限为10万人,为了确保安全“十一”黄金周期间日游客量不能多于9万人,每卖出一张门票所需成本为20元,那么要想获得日利润300万元,该日的门票价格应该定为多少元?26.如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C(0,﹣3).(1)求出该抛物线的函数关系式;(2)设抛物线y=ax2+bx+c的顶点为M:①求四边形ABMC的面积;②点D为抛物线在第四象限内图象上一个动点,是否存在点D,使得四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;(3)在抛物线y=ax2+bx+c上求点Q,使△BCQ是以BC为直角边的直角三角形.。
2024年北京市中考数学押题预测试卷
![2024年北京市中考数学押题预测试卷](https://img.taocdn.com/s3/m/c4f70f77657d27284b73f242336c1eb91a37338a.png)
2024年北京市中考数学押题预测试卷一、单选题1.下列几何体中,三视图都是圆的是( )A .B .C .D . 2.2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps ,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit )的数据. 将10000000000用科学记数法表示应为( )A .110.110⨯B .10110⨯C .11110⨯D .91010⨯ 3.如图,ABCD Y 的顶点A ,B ,C 的坐标分别是()()()0,1,2,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D . 2,14.实数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a >bB .a + b >0C .bc >0D .a <﹣c 5.已知点12(1,),(2,)P y Q y 是反比例函数3y x =图像上的两点,则( )A .120y y <<B .210y y <<C .120y y <<D .210y y << 6.如图,AB 为⊙O 的直径,弦 CD ⊥AB ,垂足为点E ,若 ⊙O 的半径为5,CD =8,则AE 的长为( )A.3 B.2 C.1 D7.小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A.13B.23C.19D.298.如图,一个亭子的地基是半径为4m的正六边形,则该正六边形地基的面积是()A.224m B.2C.248m D.2二、填空题9有意义,则a的取值范围是.10.分解因式:2818a-=.11.方程43312x x=--的解为.12.已知x2-+m=0有两个不相等的实数根,则m的取值范围是.13.某居民小区共有300户家庭,有关部门对该小区的自来水管网系统进行改造,为此该部门通过随机抽样,调查了其中20户家庭,统计了这20户家庭的月用水量,如下表:根据上述数据,估计该小区300户家庭的月总用水量约为m3.14.如图,若AD 是ABC V 的高线,DBE DAC ∠=∠,BD AD =,120AEB ∠=︒,则C ∠=.15.如图,在ABC V 中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A 得1A ∠,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,…,5A BC ∠的平分线与5A CD ∠的平分线交于点6A ,得6A ∠,则6A ∠=.16.如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出以下判断: ①AC 垂直平分BD ;②四边形ABCD 的面积S =AC •BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,四边形ABCD 的内切圆半径为227.其中正确的是.(写出所有正确判断的序号)三、解答题17.计算:112sin 605⎛⎫-+︒ ⎪⎝⎭. 18.解不等式组: 232113x x x x +≤+⎧⎪+⎨>-⎪⎩ 19.已知320x y --=,求代数式22264693x y x xy y x y-+-+-的值. 20.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,CE AB ∥,EB CD ∥,连接DE 交BC 于点O .(1)求证:四边形CDBE 是矩形;(2)如果5AC =,1tan 2ACD ∠=,求BC 的长. 21.小明对某塔进行了测量,测量方法如下,如图所示,先在点A 处放一平面镜,从A 处沿NA 方向后退1米到点B 处,恰好在平面镜中看到塔的顶部点M ,再将平面镜沿NA 方向继续向后移动15米放在D 处(即15AD =米),从点D 处向后退1.6米,到达点E 处,恰好再次在平面镜中看到塔的顶部点M 、已知小明眼睛到地面的距离 1.74CB EF ==米,请根据题中提供的相关信息,求出小雁塔的高度MN (平面镜大小忽略不计)22.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象由正比例函数y x =的图象向上平移2个单位长度得到.(1)求这个一次函数的解析式;(2)当1x >-时,对于x 的每一个值,正比例函数()0y ax a =≠的值小于一次函数()0y kx b k =+≠的值,直接写出a 的取值范围.23.为弘扬民族精神,传播传统文化,某县教育系统将组织“弘扬传统文化,永承华夏辉煌”的演讲比赛.某校各年级共推荐了19位同学参加初赛(校级演讲比赛),初赛成绩排名前10的同学进入决赛.(1)若初赛结束后,每位同学的分数互不相同.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的_____;(填:平均数或众数或中位数)(2)若初赛结束后,这19位同学的成绩如下:2号选手笑着说:“我的成绩代表着咱们这19位同学的平均水平呀!”14号选手说:“与我同分数的选手最多,我的成绩代表着咱们这19位选手的大众水平嘛!” 请问,这19位同学成绩的平均数为______,众数为______;(3)已知10号选手与15号选手经常参加此类演讲比赛,她俩想看看近期谁的成绩较好、较稳定,她俩用近三次同时参加演讲比赛的成绩计算得到平均分一样,10号选手的方差为0.5,15号选手的方差为0.38.你认为______号选手的成绩比较稳定.24.如图,AB 是O e 的直径,AC 是弦,D 是»AB 的中点,CD 与AB 交于点E ,F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O e 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,1tan 2BDC ∠=,求AG 的长. 25.如图1,排球场长为18m ,宽为9m ,网高为2.24m .队员站在底线O 点处发球,球从点O 的正上方1.9m 的C 点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m .即BA =2.88m .这时水平距离OB =7m ,以直线OB 为x 轴,直线OC 为y 轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x 轴垂直于底线),求球运动的高度y (m )与水平距离x (m )之间的函数关系式(不必写出x 取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P (如图1,点P 距底线1m ,边线0.5m ),问发球点O 1.4)26.已知二次函数()2430y ax ax a =-+≠.(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点()()()()12343,1,12,,,,,y y y y --都在该二次函数图象上,①请判断1y 与2y 的大小关系:1y 2y (用“>”“=”“<”填空);②若1y ,2y ,3y ,4y 四个函数值中有且只有一个小于零,求a 的取值范围.27.在ABC V 中,D 是BC 的中点,且90≠︒∠BAD ,将线段AB 沿AD 所在直线翻折,得到线段AB ',作CE AB ∥交直线AB '于点E .(1)如图,若AB AC >,①依题意补全图形;②用等式表示线段,,AB AE CE 之间的数量关系,并证明;(2)若AB AC <,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段,,AB AE CE 之间新的数量关系(不需证明).28.如图,(1)【提出问题】将一次函数24y x =-+的图象沿着y 轴向下平移3个单位长度,所得图象对应的函数表达式为______;(2)【初步思考】将一次函数24y x =-+的图象沿着x 轴向左平移3个单位长度,求所得图象对应的函数表达式,数学活动小组发现,图象的平移就是点的平移,因此,只需要在图象上任取两点(04)A ,,(20)B ,,将它们沿着x 轴向左平移3个单位长度,得到点A ',B '的坐标分别为______,从而求出经过点A ',B '的直线对应的函数表达式为______;(3)【深度思考】已知一次函数24y x =-+的图象与y 轴交于点A ,与x 轴交于点B . ①将一次函数24y x =-+的图象关于x 轴对称,求所得图象对应的函数表达式; ②如图①,将直线24y x =-+绕点A 逆时针旋转60o ,求所得图象对应的函数表达式; ③如图②,将直线24y x =-+绕点A 逆时针旋转45︒,求所得图象对应的函数表达式.。
初中数学北京市中考模拟数学考试题含答案(Word版)
![初中数学北京市中考模拟数学考试题含答案(Word版)](https://img.taocdn.com/s3/m/60c7415819e8b8f67c1cb9f0.png)
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列几何体中,是圆柱的为试题2:实数,,在数轴上的对应点的位置如图所示,则正确的结论是(A)(B)(C)(D)试题3:方程式的解为(A)(B)(C)(D)评卷人得分试题4:被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为(A)(B)(C)(D)试题5:若正多边形的一个外角是,则该正多边形的内角和为(A)(B)(C)(D)试题6:如果,那么代数式的值为(A)(B)(C)(D)试题7:跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:m)与水平距离(单位:m)近似满足函数关系。
下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A)10m (B)15m (C)20m (D)22.5m试题8:上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为;②当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为;③当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为;④当表示天安门的点的坐标为,表示广安门的点的坐标为时,表示左安门的点的坐标为。
上述结论中,所有正确结论的序号是(A)①②③(B)②③④(C)①④(D)①②③④二试题9:右图所示的网络是正方形网格,。
(填“>”,“=”或“<”)试题10:若在实数范围内有意义,则实数的取值范围是。
2023年北京市中考数学模拟试卷答案
![2023年北京市中考数学模拟试卷答案](https://img.taocdn.com/s3/m/f7a0e80a0622192e453610661ed9ad51f01d54b5.png)
2023年北京市中考数学模拟试卷答案2023年北京市中考数学模拟试题一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是( )A.2B.﹣2C.±2D.162.2023年某省人口数超过105 000 000,将这个数用科学记数法表示为( )A.0.105某109B.1.05某109C.1.05某108D.105某1063.下列运算正确的有( )A.5ab﹣ab=4B.3 ﹣=3C.a6÷a3=a3D. + =4.下列图形中是轴对称图形,但不是中心对称图形的是( )A. B. C. D.5.,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于( )A.2B.3C.4D.56.所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是( )A. B. C. D.7.,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于( )A.20B.15C.10D.58.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )A. B. C. D.9.,△ABC为⊙O的内接三角形,∠BOC=80°,则∠A等于( )A.80B.60C.50D.4010.,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在某轴、y轴的正半轴上,反比例函数y= (某>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=( )A. B.9 C. D.3二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2某2﹣8分解因式得:.12.在函数y= 中,自变量某的取值范围是.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为.14.如果关于某的方程某2﹣2某+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.15.不等式组的解集是.16.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.三、解答题(本题共8小题,共86分)17.计算:(﹣ )﹣1﹣| ﹣1|+2sin60°+(π﹣4)0.18.先化简﹣÷ ,再求代数式的值,其中a= ﹣3.19.,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于某轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值: )21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2023名学生,请估计该校喜爱电视剧节目的人数.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?23.,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2 ,∠CAD=30°时,求劣弧AD的长.24.已知在平面直角坐标系中,抛物线y=﹣ +b某+c与某轴相交于点A,B,与y轴相交于点C,直线y=某+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=某+4上,且△ABC与△COM相似,求点M的坐标.2023年北京市中考数学模拟试题答案一.选择题(共10小题,每小题4分,共40分.)1.4的平方根是( )A.2B.﹣2C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数某,使得某2=a,则某就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.2.2023年某省人口数超过105 000 000,将这个数用科学记数法表示为( )A.0.105某109B.1.05某109C.1.05某108D.105某106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a某10n的形式,其中1≤|a|1时,n 是正数;当原数的绝对值0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=( )A. B.9 C. D.3【考点】反比例函数系数k的几何意义.【分析】设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m, ),由此即可得出BD=3m、BE= n,再利用分割图形求面积法结合反比例函数系数k的几何意义即可得出S△ODE= k=9,解之即可得出k值.【解答】解:设点D的坐标为(m,n),则点B的坐标为(4m,n)、点E的坐标为(4m, ),∴BD=AB﹣AD=3m,BE=BC﹣CE= n.∵点D在反比例函数y= 的图象上,∴k=mn,∴S△ODE=S矩形OABC﹣S△OAD﹣S△OCE﹣S△B DE=4k﹣ k﹣ k﹣ k= k=9,∴k= .故选C.二、填空题(本题共6小题,每小题4分,共24分)11.把多项式2某2﹣8分解因式得:2(某+2)(某﹣2) .【考点】提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式分解.【解答】解:2某2﹣8=2(某2﹣4)=2(某+2)(某﹣2).故答案是:2(某+2)(某﹣2).12.在函数y= 中,自变量某的取值范围是某≠﹣2 .【考点】函数自变量的取值范围.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,某+2≠0,解得某≠﹣2.故答案为:某≠﹣2.13.某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为10% .【考点】一元二次方程的应用.【分析】等量关系为:原售价某(1﹣降低率)2=降低后的售价,依此列出方程求解即可.【解答】解:设平均每月降价的百分率为某,依题意得:1000(1﹣某)2=810,化简得:(1﹣某)2=0.81,解得某1=0.1,某2=﹣1.9(舍).所以平均每月降价的百分率为10%.故答案为10%.14.如果关于某的方程某2﹣2某+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k0,即(﹣2)2﹣4某1某k>0,然后解不等式即可.2-1-c-n-j-y【解答】解:∵关于某的方程某2﹣2某+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4某1某k>0,解得k>下一页更多“2023年北京市中考数学模拟试题答案”【解答】解:设AE=某,由折叠可知,EC=某,BE=4﹣某,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣某)2=某2,解得:某=由折叠可知∠AEF=∠CEF,∵AD∥BC,∴∠CEF=∠AFE,∴∠AEF=∠AFE,即AE=AF= ,∴S△AEF= 某AF某AB= 某某3= .故答案为: .三、解答题(本题共8小题,共86分)17.计算:(﹣ )﹣1﹣| ﹣1|+2sin60°+(π﹣4)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.2•1•c•n•j•y【解答】解:原式=2﹣ +1+2某 +1=2﹣ +1+ +1=4.18.先化简﹣÷ ,再求代数式的值,其中a= ﹣3.【考点】分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣÷=== ,当a= ﹣3时,原式= .19.,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于某轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.www-2-1-cnjy-com【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据网格特点,找出点A、B、C关于某轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)分别找出点A、B、C绕点O逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,观察可知点B所经过的路线是半径为,圆心角是90°的扇形,然后根据弧长公式进行计算即可求解.【解答】解:(1),△A1B1C1即为所求.(2),△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:= π.故点B旋转到点B2所经过的路径长是π.20.一测量爱好者,在海边测量位于正东方向的小岛高度AC,所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值: )【考点】解直角三角形的应用﹣仰角俯角问题.【分析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC中,利用三角函数即可求解.【解答】解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62某=31 ≈31某1.7=52.7≈53(米).答:小岛的高度约为53米.21.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2023名学生,请估计该校喜爱电视剧节目的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜爱电视剧的人数是69人,占总人数的23%,即可求得总人数;(2)根据总人数和喜欢娱乐节目的百分数可求的其人数,补全即可;利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%某300=60(人),补全;∵360°某12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2023某23%=460(人),∴估计该校有460人喜爱电视剧节目.22.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设B树苗的单价为某元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.【解答】解:设B树苗的单价为某元,则A树苗的单价为y元,可得:,解得:,答:B树苗的单价为300元,A树苗的单价为200元;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A种树苗至少需购进10棵.23.,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2 ,∠CAD=30°时,求劣弧AD的长.【考点】圆的综合题.【分析】(1)作AD的垂直平分线交AC于O,以AO为半径画圆O分别交AB、AC于点E、F,则⊙O即为所求;(2)连结OD,得到OD=OA,根据等腰三角形的性质得到∠OAD=∠ODA,等量代换得到∠ODA=∠CAD,根据平行线的判定定理得到OD∥AC,根据平行线的性质即可得到结论;(3)连接DE,根据圆周角定理得到∠ADE=90°,根据三角形的内角和得到∠AOD=120°,根据三角函数的定义得到AE= =4,根据弧长个公式即可得到结论.【解答】(1)解:所示,(2)证明:连结OD,则OD=OA,∴∠OAD=∠ODA,∵∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,即BC⊥OD,∴BC与⊙O相切;(3)解:连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠OAD=∠ODA=30°,∴∠AOD=120°,在Rt△ADE中,AE= = =4,∴⊙O的半径=2,∴劣弧AD的长= = π.24.已知在平面直角坐标系中,抛物线y=﹣ +b某+c与某轴相交于点A,B,与y轴相交于点C,直线y=某+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=某+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于某轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线某=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当某=0时,y=4,即C(0,4),当y=0时,某+4=0,解得某=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y= ﹣某+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴某=﹣1对称,PQ=8,﹣1﹣4=﹣5,当某=﹣5时,y= 某(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣ );﹣1+4=3,即Q(3,﹣ );P点坐标(﹣5,﹣ ),Q点坐标(3,﹣ );(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时, = ,即 = ,CM= .1 ,过M作MH⊥y轴于H,MH=CH= CM= ,当某=﹣时,y=﹣ +4= ,∴M(﹣, );当△OCM∽△CAB时, = ,即 = ,解得CM=3 ,2 ,过M作MH⊥y轴于H,MH=CH= CM=3,当某=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣, ),(﹣3,1).第 11 页共 11 页。
北京中考数学模拟试题
![北京中考数学模拟试题](https://img.taocdn.com/s3/m/d75b2e6b773231126edb6f1aff00bed5b9f373a9.png)
北京中考数学模拟试题一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个正确答案。
)1. 下列哪个选项是正确的?A. 2是偶数B. 3是偶数C. 4是奇数D. 5是奇数2. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不是3. 计算下列表达式的值:(2x+3)(2x-3)。
A. 4x^2 - 9B. 4x^2 + 9C. 9 - 4x^2D. 9 + 4x^24. 一个直角三角形的两个直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 85. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/146. 一个圆的半径是5厘米,那么它的周长是:A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米7. 如果函数f(x) = 2x + 3,那么f(-1)的值是:A. -2 + 3B. -2 - 3C. 2 + 3D. 2 - 38. 一个数列的前三项是2,4,8,那么这个数列的第四项是:A. 16B. 32C. 64D. 1289. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的面积是:A. 6√3B. 12√3C. 18√3D. 24√310. 计算下列表达式的值:(a+b)^2 - (a-b)^2。
A. 4abB. 2abC. 2a^2 - 2b^2D. 4a^2 - 4b^2二、填空题(本题共5小题,每小题4分,共20分。
)11. 一个数的立方根是2,那么这个数是______。
12. 一个等差数列的首项是1,公差是2,那么第10项是______。
13. 一个二次函数的顶点坐标是(1, -4),且开口向上,那么这个二次函数的解析式可以是y = a(x-1)^2 - 4,其中a > 0,a的值是______。
14. 一个扇形的圆心角是60°,半径是4,那么这个扇形的面积是______。
初中数学北京市中考模拟数学考试卷考试题及答案word
![初中数学北京市中考模拟数学考试卷考试题及答案word](https://img.taocdn.com/s3/m/435da45df8c75fbfc77db2f0.png)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:的相反数是()A. B. C.D.试题2:首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为()A. B. C. D.试题3:正十边形的每个外角等于()A. B. C.D.试题4:右图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱试题5:班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是()A. B. C.D.试题6:如图,直线AB,CD交于点O.射线OM平分,若,则等于()A. B. C. D.试题7:某课外小组的同学们实践活动中调查了20户家庭某月用电量,如下表所示:用电量(度)120 140 160 180 220户数 2 3 6 7 2则这户家庭用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,180试题8:小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示的方向经过B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翊跑步的时间为t(单位:秒),他与教练距离为y(单位:米),表示y 与t的函数关系的图象大致如图2,刚这个固定位置可能是图1的()A.点M B.点N C.点P D.Q试题9:分解因式:_________________.试题10:若关于x的方程有两个相等的实数根,则m的值是______.试题11:如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE 与点B在同一直线上,已知纸板的两条直角边,,测得边DF离地图的高度,,则树高_____m.试题12:在平面直角坐标系中,我们把横纵坐标都是整数点的叫做整点.已知点A(0,4),点B是x正半轴上的整点,记△AOB内部(不包括边界)的整数点个数为m,当时,点B的横坐标的所有可能值是_______;当点B的横坐标为(n 为正整数)时,____________.(用含n的代数式表示).试题13:计算:.试题14:解不等式组:.试题15:已知,求代数式的值.试题16:已知:如图,点E,A,C在同一直线上,,,.求证:.试题17:如图,在平面直角坐标系xOy中,函数的图象与一次函数的图象交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,直接写出P的坐标.试题18:列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年平均滞尘量比一片国槐树中一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.试题19:如图,在四边形ABCD中,对角线AC,BD交于点E,,,,,.求CD的长和边形ABCD的面积.试题20:已知:如图,AB是⊙O的直径,C是⊙O上一点,于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE与⊙O相切;(2)连结AD并延长交BE于点F,若,,求BF的长.试题21:近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图的一部分.开通时间开通线路运营里程(千米)1971 1号线311984 2号线23200313号线41八通线192007 5号线2820088号线 510号线25机场线282009 4号线282010房山线22大兴线22亦庄线23昌平线2115号线20北京市轨道交通已开通线路相关数据统计表(截至2010年底)请根据以上信息解答下列部问题:(1)补全条形图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?试题22:对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段,其中点A,B的对应点分别为,.如图1,若点A表示的数是,则点表示的数是_______;若点表示的数是2,则点B表示的数是______;已知线段AB上的点E经过上术操作后得到的对应点与点E重合,则点E表示的数是______;试题23:如图2,在平面直角坐标系中,对正方形ABCD及其内部的第个点进行如下操作:把每个点的横、纵坐标乘以同一个实数,将得到的点先向右平移m个单位,再向上平移n个单位(,),得到正方形及其内部的点,其中点A,B的对应点分别为,.已知正方形ABCD内部的一点F经过上述操作后得到的对应点与点F重合,求点F的坐标.试题24:已知二次函数在与的函数值相等.(1)求二次函数的解析式;(2)若一次函数的图象与二次函数的图象都经过点A(,),求m与k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象B,C间的部分(含点B和点C)向左平移n()个单位后得到的图象记为G,同时将(2)中得到的直线向上平移n个单位.请结合图象回答:平移后的直线与图象G有公共点时,n的取值范围.试题25:在△ABC中,,,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转得到线段PQ.(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且,请直接写出的范围.试题26:在平面直角坐标系中,对于任意两点与的“非常距离”,给出如下定义:若,则点与点的非常距离为;若,则点与点的非常距离为;例如:点(1,2),点(3,5),因为,所以点与点的“非常距离”为,也就是图1中线段与线段长度的较大值(点Q为垂直于y轴的直线与垂直于x轴的直线的交点).(1)已知点A(,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值.(2)已知C是直线上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应点E和点C 的坐标.试题1答案:D试题2答案:C试题3答案:B试题4答案:D试题5答案:B试题6答案:C试题7答案:A试题8答案:D试题9答案:试题10答案:试题11答案:5.5试题12答案:3,4;试题13答案:试题14答案:试题15答案:试题16答案:略试题17答案:;,试题18答案:22毫克试题19答案:2;试题20答案:证△OCE≌△OBE;试题21答案:228;1000;82.75试题22答案:0,3,;试题23答案:试题24答案:;,4;试题25答案:;;试题26答案:或;,;,1。
北京初三初中数学中考模拟带答案解析
![北京初三初中数学中考模拟带答案解析](https://img.taocdn.com/s3/m/8c51c1ee10a6f524cdbf85b7.png)
北京初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.计算:=()A.1B.3C.3D.52.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A.B.C.D.3.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )A.40°B.50°C.60°D.70°4.因式分解的结果是( )A.B.C.D.5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A.2个B.3个C.4个D.6个6.已知抛一枚均匀硬币正面朝上的概率为,下列说法不正确的是( )A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的7.如图,AB是⊙O的直径,AB=4,AC是弦,AC=,∠AOC为( )A.120°B.130°C.140°D.150°8.如图,在△ABC 中,∠ACB =90°,AC =BC =2.E 、F 分别是射线AC 、CB 上的动点,且AE =BF ,EF 与AB 交于点G ,EH ⊥AB 于点H ,设AE =x ,GH =y ,下面能够反映y 与x 之间函数关系的图象是( )二、填空题1.函数自变量的取值范围是__________.2.如图,点在双曲线上,点与点关于轴对称,则此双曲线的解析式为 .3.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.4.如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为__________;面积小于2011的阴影三角形共有__________个.三、计算题计算:.四、解答题1.(1)解不等式:;(2)解方程组2.已知:如图,点坐标为,点坐标为.(1)求过两点的直线解析式;(2)过点作直线与轴交于点,且使,求的面积.3.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.(1)求证:AC=EF;(2)求证:四边形ADFE是平行四边形.4.先化简:;若结果等于,求出相应x的值.5.在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?6.某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单位应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低x元.(1)填表(不需要化简)时间第一个月第二个月清仓时单价(元)80▲40销售量(件)200▲▲(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?7.如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F 和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.8.如图,已知,以为直径,为圆心的半圆交于点,点为弧CF的中点,连接交于点,为△ABC的角平分线,且,垂足为点.(1)求证:是半圆的切线;(2)若,,求的长.9.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=________.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图1中补全小贝同学翻折后的图形;②m的取值范围是____________.10.已知一元二次方程x2+ax+a-2=0.(1)求证:不论a为何实数,此方程总有两个不相等的实数根;(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.11.如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.(1)如图1,当∠C=45°时,请写出图中一对相等的线段;_________________(2)如图2,若BD=2,BA=,求AD的长及△ACD的面积.12.巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a 的值;(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.北京初三初中数学中考模拟答案及解析一、选择题1.计算:=()A.1B.3C.3D.5【答案】A【解析】=2-3=-1,故选A2.我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停、整改32家,每年排放的污水减少了167000吨.将167000用科学记数法表示为( )A.B.C.D.【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数, 167 000=1.67×105.故选C3.已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )A.40°B.50°C.60°D.70°【答案】C【解析】:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,∵∠D=40°,∴∠BOD=∠C+∠D=20°+40°=60°.故选C.4.因式分解的结果是( )A.B.C.D.【答案】A【解析】-9=-9==,故选A5.如图,是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数有( )A.2个B.3个C.4个D.6个【答案】C【解析】综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选C6.已知抛一枚均匀硬币正面朝上的概率为,下列说法不正确的是( )A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现下面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【答案】A【解析】A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选A.7.如图,AB是⊙O的直径,AB=4,AC是弦,AC=,∠AOC为( )A.120°B.130°C.140°D.150°【答案】A【解析】如图,作OD⊥AC,垂足为D∵AB=4∴OA=2∵AC= ∴AD=∵sin∠DOA= ∴∠DOA=60°∴∠AOC=120°.故选A.8.如图,在△ABC中,∠ACB=90°,AC=BC=2.E、F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是( )【答案】C【解析】因为在△ABC中,∠ACB=90°,AC=BC=2.E、F分别是射线AC、CB上的动点,且AE=BF,EF 与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,那么利用三角形的相似比,我们可知y=x,故选C二、填空题1.函数自变量的取值范围是__________.【答案】x≥3【解析】根据二次根式的性质,被开方数大于或等于0,可知:x-3≥0, 解得x≥32.如图,点在双曲线上,点与点关于轴对称,则此双曲线的解析式为 .【答案】【解析】:∵点P′(1,2)与点P 关于y 轴对称, 则P 的坐标是(-1,2), ∵点(-1,2)在双曲线上,则满足解析式,代入得到:2=-k ,则k=-2, 则此双曲线的解析式为.3.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.【答案】(,)【解析】:∵B (1,0),C (3,0), ∴OB=1,OC=3,∴BC=2,过点N 作EN ∥OC 交AB 于E ,过点A 作AD ⊥BC 于D ,NF ⊥BC 于F ,∴∠ENM=∠BOM ,∵OM=NM ,∠EMN=∠BMO ,∴△ENM ≌△BOM ,∴EN=OB=1, ∵△ABC 是正三角形,∴AD=,BD=BC=1,∴OD=2,∴A (2,),∴△AEN 也是正三角形,∴AN=EN=1,∴AN=CN ,∴N,∴M(,)4.如图,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ―1在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面积为__________;面积小于2011的阴影三角形共有__________个.【答案】;6【解析】解:因为A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ―1B n ―1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ―1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ―1A n B n ―1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 2B 1B 2,△A 3B 2B 3的相似比为1:2,则可得△A 1A 2B 1的面积,以后的每个阴影部分的三角形的面积构成了相似边的比为1:2:4:8:16:32… ,这样可知第六个三角形的面积为210=1024,第7个三角形的面积为212=4084则大于2011,故有6个三角形。
2024年北京市人大附中中考数学模拟试卷及答案解析
![2024年北京市人大附中中考数学模拟试卷及答案解析](https://img.taocdn.com/s3/m/87f7825791c69ec3d5bbfd0a79563c1ec5dad7cd.png)
2024年北京市人大附中中考数学模拟试卷一、选择题(共16分,每题2分)1.(2分)港珠澳大桥是世界上总体跨度最长的跨海大桥,全长55000米,其中海底隧道部分全长6700米,是世界最长的公路沉管隧道和唯一的深埋沉管隧道,也是我国第一条外海沉管隧道,将数字55000用科学记数法表示为()A.5.5×104B.55×103C.5.5×103D.0.55×105 2.(2分)下列图形中,既不是轴对称也不是中心对称图形的是()A.B.C.D.3.(2分)已知某几何体的三视图如图所示,则该几何体是()A.三棱柱B.长方体C.三棱锥D.圆锥4.(2分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a+2>0B.|a|>b C.a+b>0D.ab>05.(2分)实数a,b,c在数轴上对应点的位置如图所示,如果|a|=|b|,下列结论中错误的是()A.a+c>0B.a﹣b>0C.b+c>0D.ac<06.(2分)不透明的袋子中装有红球1个、绿球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.7.(2分)下列命题中的假命题是()A.对角线互相平分的四边形是中心对称图形B.有一个角是直角的平行四边形是轴对称图形C.对角线互相垂直的平行四边形是中心对称图形D.等边三角形既是轴对称图形,又是中心对称图形8.(2分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.0二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围是.10.(2分)在△ABC中,D,E,F分别为三边中点,若△DEF面积为2,则△ABC的面积是.11.(2分)解分式方程:=得.12.(2分)已知反比例函数与的图象如图所示,则k1、k2的大小关系是k1 k2.(填“>”,“<”或“=”)13.(2分)如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,AB,若∠OAB =35°,则∠ABP=°.14.(2分)在平面直角坐标系中,一次函数y=6x与反比例函数y=(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.15.(2分)魏晋时期,数学家刘徽利用如图所示的“青朱出入图”证明了勾股定理,其中四边形ABCD,AFIJ和BFGH都是正方形.如果图中△BCE与△FDE的面积比为,那么tan∠GFI的值为.16.(2分)有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e的卡片写有数字.三、解答题(本题共68分,第17至22题,每小题5分,第23至26题,每小题5分,第27至28题,每小题5分)17.(5分)计算:+4sin60°.18.(5分)解不等式组:,并写出它的所有非负整数解.19.(5分)先化简,再求值:(﹣)÷,其中x=+1.20.(5分)如图,在四边形ABCD中,AB∥CD,在BD上取两点E,F,使DF=BE,连接AE,CF.(1)若AE∥CF,试说明△ABE≌△CDF;(2)在(1)的条件下,连接AF,CE,试判断AF与CE有怎样的数量关系,并说明理由.21.(5分)如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE交AD于点G.当AB=2,∠ACB=30°时,求BG的长.22.(5分)疫情期间某校学生积极观看网络直播课程,为了了解全校500名学生观看网络直播课程的情况,随机抽取50名学生,对他们观看网络直播课程的节数进行收集,并对数据进行了整理、描述和分析,下面给出了部分信息.观看直播课节数的频数分布表节数x频数频率0≤x<1080.1610≤x<20100.2020≤x<3016b30≤x<40a0.24x≥4040.08总数501其中,节数在20≤x<30这一组的数据是:20202122232323232526262627282829请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)随机抽取的50名学生观看直播课节数的中位数是;(4)请估计该校学生中观看网络直播课节数不低于30次的约有人.23.(6分)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,连接CD,过点A作AG∥DC,过点C作CG∥DA,AG与CG相交于点G.(1)求证:四边形ADCG是菱形;(2)若AB=10,tan∠CAG=,求BC的长.24.(6分)如图,在矩形ABCD中,AB=6,BC=8,点A在直线l上,AD与直线l相交所得的锐角为60°.点F在直线l上,AF=8,EF⊥直线l,垂足为点F且EF=6,以EF为直径,在EF的左侧作半圆O,点M是半圆O上任一点.发现:AM的最小值为,AM的最大值为,OB与直线l的位置关系是.思考:矩形ABCD保持不动,半圆O沿直线l向左平移,当点E落在AD边上时,求半圆与矩形重合部分的周长和面积.25.(6分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校共有3000人,数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给的信息解答下列问题:(1)扇形统计图中C所对应的扇形圆心角度数为;估计全校非常了解交通法规的有人.(2)补全条形统计图;(3)学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求丙和丁两名同学同事被选中的概率.26.(6分)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx﹣m2+m﹣2(m是常数).(1)求该抛物线的顶点坐标(用含m代数式表示);(2)如果该抛物线上有且只有两个点到直线y=1的距离为1,直接写出m的取值范围;(3)如果点A(a,y1),B(a+2,y2)都在该抛物线上,当它的顶点在第四象限运动时,总有y1>y2,求a的取值范围.27.(6分)如图,在△ABC中,∠ACB=90°,AC=BC,点D在线段AB上,连接CD,AE⊥CD于点E,以点A为圆心,CD长为半径画弧,交AE于点F,连接DF.(1)依题意补全图形:①设∠BCD=α,则∠DFA的度数为;(用含α的式子表示)②求证:DF∥BC;(2)探究DF、AF、BC之间的数量关系并证明.28.(8分)在平面直角坐标系xOy中,对于点A和线段MN,如果点A,O,M,N按逆时针方向排列构成菱形AOMN,且∠AOM=α,则称线段MN是点A的“α﹣相关线段”.例如,图1中线段MN是点A的“30°﹣相关线段”.(1)已知点A的坐标是(2,0).①在图2中画出点A的“30°﹣相关线段”MN,并直接写出点M和点N的坐标;②若点A的“α﹣相关线段”经过点,求α的值.(2)若存在α,β(α≠β)使得点P的“α﹣相关线段”和“β﹣相关线段”都经过点(0,4),记,求t的取值范围.2024年北京市人大附中中考数学模拟试卷参考答案与试题解析一、选择题(共16分,每题2分)1.【分析】用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.【解答】解:55000=5.5×104.故选:A.【点评】本题主要考查了科学记数法以及有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.2.【分析】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合,根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、绕某一点旋转180°后,不能够与原图形重合,不是中心对称图形;沿一条直线折叠,直线两旁的部分能够互相重合,是轴对称图形,故此选项不符合题意;B、绕某一点旋转180°后,能够与原图形重合,是中心对称图形;沿一条直线折叠,直线两旁的部分能够互相重合,不是轴对称图形,故此选项不符合题意;C、绕某一点旋转180°后,能够与原图形重合,是中心对称图形;沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故此选项不符合题意;D、绕某一点旋转180°后,不能够与原图形重合,不是中心对称图形;沿一条直线折叠,直线两旁的部分不能够互相重合,不是轴对称图形,故此选项符合题意;故选:D.【点评】本题考查了中心对称图形与轴对称图形的知识,把一个图形绕某一点旋转180°后,能够与原图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,熟练掌握轴对称图形与中心对称图形的概念,是解题的关键.3.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:根据几何体的三视图可知,则该几何体是三棱柱.故选:A.【点评】本题考查了由三视图判断几何体,由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.4.【分析】由题图知:﹣3<a<﹣2,0<b<1,进而解决此题.【解答】解:由题知:﹣3<a<﹣2,0<b<1.∴a+2<0,|a|>b,a+b<0,ab<0.∴选项B符合题意.故选:B.【点评】本题主要考查数轴上的点表示的实数以及绝对值,熟练掌握数轴上的点表示的实数以及绝对值是解决本题的关键.5.【分析】利用|a|=|b|,可知a与b互为相反数,从而a<0,b>0,c>0,|c|>|b|=|a|,进一步判断即可.【解答】解:∵|a|=|b|,且根据a,b在数轴上位置,∴a与b互为相反数,∴a<0,b>0,c>0,且|c|>|b|=|a|,A、a+c,异号两数和,取绝对值大的数的符号,故a+c>0,是正确的;B、a﹣b,左边的数减去右边的数,是小于0的.故a﹣b>0,是错误的;C、b+c,两个正数相加,得正数,故b+c>0,是正确的;D、ac,异号两数积,同号得正,异号得负,故ac<0,是正确的;故选:B.【点评】本题考查的是有理数的简单运算,解题的关键是两个数的绝对值相等,这两个数相等或互为相反数.本题得看位置知两数互为相反数.6.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到白球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球都是的白色的结果共有2种,所以两次都摸到白球的概率是=,故选:D.【点评】此题主要考查了利用树状图法求概率,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=是解题关键.7.【分析】根据轴对称图形、中心对称图形的概念以及平行四边形、矩形、菱形的判定定理判断即可.【解答】解:A、对角线互相平分的四边形是平行四边形,是中心对称图形,故本选项命题是真命题,不符合题意;B、有一个角是直角的平行四边形是矩形,是轴对称图形,故本选项命题是真命题,不符合题意;C、对角线互相垂直的平行四边形是菱形,是中心对称图形,故本选项命题是真命题,不符合题意;D、等边三角形既是轴对称图形,但不是中心对称图形,故本选项命题是假命题,符合题意;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.【分析】四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.二、填空题(本题共16分,每小题2分)9.【分析】根据二次根式有意义的条件列不等式求解.【解答】解:由题意可得:1﹣x≥0,解得:x≤1,故答案为:x≤1.【点评】本题考查二次根式有意义的条件,掌握二次根式有意义的条件(被开方数为非负数)是解题关键.10.【分析】由于D,E,F分别为三边中点,可得△DEF与△ABC的对应边的比为,即其面积比为,进而可得结论.【解答】解:如图,∵D,E,F分别为三边中点,即=,=2,∴==,而S△DEF=8.∴S△ABC故答案为8.【点评】本题主要考查了三角形中位线的性质以及三角形对应边与对应面积的关系,能够掌握并熟练求解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12.【分析】,“图象离坐标轴越远,|k|越大”.【解答】解:如图,因为反比例函数的图象离坐标轴比反比例函数的图象离坐标轴远,所以k2、>k1.故答案为:<.【点评】本题考查了反比例函数图象和反比例系数k的关系,“图象离坐标轴越远,|k|越大”.13.【分析】根据切线的性质得PA=PB,OA⊥PA,则∠OAP=90°,可得∠BAP=55°,从而得到∠ABP的度数.【解答】解:∵PA,PB是⊙O的两条切线,∴PA=PB,OA⊥PA,∵∠OAB=35°,∴∠BAP=90°﹣∠OAB=55°,∵PA=PB,∴∠ABP=∠BAP=55.故答案为:55.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了切线长定理和等腰三角形的性质,熟练掌握切线的性质是解题的关键.14.【分析】根据正比例函数的图象、反比例函数图象的性质得出交点A与交点B关于原点对称,进而得出其纵坐标互为相反数,得出答案.【解答】解:由正比例函数y=2x与反比例函数y=(k>0)的图象和性质可知,其交点A(x1,y1)与B(x2,y2)关于原点对称,∴y1+y2=0,故答案为:0.【点评】本题考查一次函数、反比例函数图象的交点,理解正比例函数、反比例函数图象的对称性是正确判断的前提.15.【分析】证明△BCE∽△FDE,可得,而△BCE与△FDE的面积比为,即得,设BC=4t=AD=AB,则DF=3t,在Rt△AFB中,有tan∠BFA==,又∠GFI=90°﹣∠AFG=∠FBA,从而推导出tan∠GFI=tan∠BFA=.【解答】解:∵ABCD都是正方形,∴∠FDC=90°=∠BCD,∵∠FED=∠CEB,∴△BCE∽△FDE,∴,∵△BCE与△FDE的面积比为,∴,设BC=4t=AD=AB,则DF=3t,∴AF=AD+DF=7t,在Rt△AFB中,tan∠BFA===,由“青朱出入图”可知:∠GFI=90°﹣∠AFG=∠FBA,∴tan∠GFI=tan∠BFA=.故答案为:.【点评】本题考查相似三角形的判定与性质,解题的关键是掌握正方形性质和相似三角形的判定定理.16.【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【解答】解:第一行中B与第二行中c肯定有一张为白1,若第二行中c为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B的位置,∴黑卡片数字1摆在了标注字母A的位置,;第一行中C与第二行中c肯定有一张为白2,若第二行中c为白2,则a,b只能是黑1,黑2,而A为黑1,矛盾,∴第一行中C为白2;第一行中F与第二行中c肯定有一张为白3,若第一行中F为白3,则D,E只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c为白3,∴第二行中a为黑2,b为黑3;第一行中F与第二行中e肯定有一张为白4,若第一行中F为白4,则D,E只能是黑3,黑4,与b为黑3矛盾,∴第二行中e为白4.故答案为:B;4.【点评】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(本题共68分,第17至22题,每小题5分,第23至26题,每小题5分,第27至28题,每小题5分)17.【分析】先把60°的正弦值代入算式,再根据负整数指数幂的性质、零指数幂的性质和绝对值的性质计算乘方和去绝对值符号,然后进行计算即可.【解答】解:原式=4﹣1+2﹣+4×==.【点评】本题主要考查了实数的运算,解题关键是熟练掌握负整数指数幂的性质、零指数幂的性质、绝对值的性质和特殊角的三角函数值.18.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:解不等式①得:x≥﹣2,解不等式②得:x<,所以不等式组的解集为:,所以不等式组的所有非负整数解为:0,1,2,3.【点评】本题考查了一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.19.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=+1时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)由“ASA”可证△ABE≌△CDF;(2)由全等三角形的性质可得AB=CD,由“SAS”可证△ABE≌△CDF,可得结论.【解答】(1)证明:∵AB∥CD,∴∠ABD=∠CDF,∵AE∥CF,∴∠AEB=∠CFD,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:AF=CE,理由如下:如图:∵△ABE≌△CDF,∴AB=CD,AE=CF,在△ABF和△CDE中,,∴△ABE≌△CDF(SAS),∴AF=CE.【点评】本题考查了全等三角形的判定和性质,平行线的性质,掌握全等三角形的判定方法是解题的关键.21.【分析】(1)根据矩形的性质得到∠ADC=90°,求得AE=AC,EF=CF,根据平行线的性质得到∠EAD=∠AFC,求得AE=EF=AC=CF,于是得到结论;(2)如图,根据矩形的性质得到∠ABC=∠BCE=90°,CD=AB,根据直角三角形的性质得到BC=2,CE=4,由勾股定理得到BE==2,根据全等三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE,∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD,∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF,∴AE=EF=AC=CF,∴四边形ACFE是菱形;(2)解:如图,∵四边形ABCD是矩形,∴∠ABC=∠BCE=90°,CD=AB,∵AB=2,CD=DE,∴BC=2,CE=4,∴BE==2,∵AB=CD=DE,∠BAE=∠EDG=90°,∠AGB=∠DGE,∴△ABG≌△DEG(AAS),∴BG=EG,∴BG=BE=.【点评】本题考查了菱形的判定,矩形的性质,全等三角形的判定和性质,勾股定理,线段垂直平分线的性质,正确的识别图形是解题的关键.22.【分析】(1)根据频数分布表即可求出a,b;(2)结合(1)根据频数分布表即可补全频数分布直方图;(3)根据节数在20≤x<30这一组的数据是:20202122232323232526 262627282829即可得观看直播课节数的中位数;(4)利用样本估计总体的方法即可估计该校学生中观看网络直播课节数不低于30次的人数.【解答】解:(1)a=50﹣8﹣10﹣16﹣4=12,b=1﹣0.16﹣0.20﹣0.24﹣0.08=0.32;故答案为:12,0.32;(2)补全的频数分布直方图如下:(3)∵节数在20≤x<30这一组的数据是:20202122232323232526262627282829∴随机抽取的50名学生观看直播课节数的中位数是(23+25)÷2=24,故答案为:24;(4)500×(0.24+0.08)=160(人).答:估计该校学生中观看网络直播课节数不低于30次的约有160人.故答案为:160.【点评】本题考查了频数分布直方图、用样本估计总体、频数分布表、中位数,解决本题的关键是综合掌握以上知识.23.【分析】(1)根据直角三角形的性质和菱形的判定定理即可得到结论;(2)根据平行线的性质得到∠BAC=∠ACG,设BC=3x,AC=4x,根据勾股定理即可得到结论.【解答】(1)证明:∵AG∥DC,CG∥DA,∴四边形ADCG是平行四边形,∵在Rt△ABC中,∠ACB=90°,D为AB边的中点,∴AD=CD=AB,∴四边形ADCG是菱形;(2)解:∵CG∥DA,∴∠BAC=∠ACG,∴tan∠CAG=tan∠BAC==,∴设BC=3x,AC=4x,∴AB=5x=10,∴x=2,∴BC=3x=6.【点评】本题考查了菱形的判定,三角函数的定义,直角三角形的性质,熟练掌握菱形的判定定理是解题的关键.24.【分析】发现:先依据勾股定理求得AO的长,然后由圆的性质可得到OM=3,当点M 在AO上时,AM有最小值,当点M与点E重合时,AM有最大值,然后过点B作BG⊥l,垂足为G,接下来求得BG的长,从而可证明四边形OBGF为平行四边形,于是可得到OB与直线l的位置关系.思考:连接OG,过点O作OH⊥EG,依据垂径定理可知GE=2HE,然后在△EOH中,依据特殊锐角三角函数值可求得HE的长,从而得到EG的长,接下来求得∠EOG得度数,依据扇形的面积公式即可得到结论.【解答】解:发现:由题意可知OM=OF=3,AF=8,EF⊥l,∴OA===.当点M在线段OA上时,AM有最小值,最小值为﹣3.当点M与点E重合时,AM有最大值,最大值==10.如图1所示:过点B作BG⊥l,垂足为G.∵∠DAF=60°,∠BAD=90°,∴∠BAG=30°.∴GB=AB=3.∴OF=BG=3,又∵GB∥OF,∴四边形OBGF为平行四边形,∴OB∥FG,即OB∥l.故答案为:﹣3;10;平行.思考:如图2所示:连接OG,过点O作OH⊥EG.∵∠DAF=60°,EF⊥AF,∴∠AEF=30°.∴∠GOE=120°.∴GE=2EH=2××3=3.∴半圆与矩形重合部分的周长=+3=2π+3;S重合部分=S扇形GOE﹣S△GOE=.【点评】本题主要考查的是切线的性质和判定、特殊锐角三角函数值的应用、切线长定理,依据题意画出符合题意的图形是解题的关键.25.【分析】(1)由A的人数及其所占百分比可得总人数,用360°乘以C人数所占比例,由总人数可求全校非常了解交通法规的人数即可得;(2)总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此补全图形即可得;(3)画树状图列出所有等可能结果,再利用概率公式计算可得.【解答】解:(1)本次调查的学生总人数为24÷40%=60(人),∴扇形统计图中C所对应扇形的圆心角度数是360°×=90°,全校非常了解交通法规的有:3000×40%=1200(人),故答案为:90°,1200;(2)D类别人数为60×5%=3,则B类别人数为60﹣(24+15+3)=18,补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中丙和丁两名学生同时被选中的结果数为2,所以丙和丁两名学生同时被选中的概率为=.【点评】本题主要考查条形统计图以及列表法与树状图法等知识;条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数.26.【分析】(1)将抛物线解析式化为顶点式求解.(2)由抛物线开口向下可得抛物线顶点在直线y=2与直线y=0之间,从而列不等式求解.(3)由顶点在第四象限可得m的取值范围,由抛物线开口向下,y1>y2,可得a与m之间的关系,进而求解.【解答】解:(1)∵y=﹣x2+2mx﹣m2+m﹣2=﹣(x﹣m)2+m﹣2,∴抛物线顶点坐标为(m,m﹣2).(2)∵抛物线开口向下,∴当抛物线与直线y=0有两个交点且与直线y=2无交点时满足题意,∵抛物线顶点坐标为(m,m﹣2),∴0<m﹣2<2,解得2<m<4.(3)∵抛物线顶点(m,m﹣2)在第四象限,∴,解得0<m<2,∵抛物线开口向下,∴x≥m时,y随x增大而减小,∴点A,B在对称轴右侧时,满足题意,即a≥m,当点A在对称轴左侧时,设点A(a,y1)关于对称轴对称点A'坐标为(2m﹣a,y1),∴点B在A'右侧时,满足题意,即2m﹣a<a+2,解得a>m﹣1,∴a>m﹣1,∵0<m<2,∴a≥1.【点评】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.27.【分析】(1)①根据题意画出图形,连接CF并延长交AB于点G,首先根据题意证明出△ABC是等腰直角三角形,然后证明出△CAF≌△BCD(SAS),进而得到△AGC是等腰直角三角形,然后证明出△AGF≌△CGD(HL),得到FG=GD,∠AFG=∠CDG=∠BCD+∠B=α+45°,然后利用∠DFA=∠AFG+∠GFD求解即可;②由①得到∠FDG=45°,∠B=45°,然后利用同位角相等,两直线平行证明即可;(2)根据勾股定理和等腰直角三角形的性质得到,,然后利用勾股定理得到AG2+GF2=AF2,然后代入求解即可.【解答】(1)①解:如图所示,连接CF并延长交AB于点G,∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠CAB=∠B=45°,∵∠ACB=90°,∴∠ACE+∠BCD=90°,∵AE⊥CD,∴∠ACE+∠CAE=90°,∴∠CAE=∠BCD=α,∵AC=BC,AF=CD,∴△CAF≌△BCD(SAS),∴∠ACF=∠B=45°,∵∠CAB=45°,∴∠AGC=∠CGD=90°,∴△AGC是等腰直角三角形,∴AG=CG,又∵AF=CD,∴△AGF≌△CGD(HL),∴FG=GD,∠AFG=∠CDG=∠BCD+∠B=α+45°,∵∠FGD=90°,∴∠GFD=∠GDF=45°,∴∠DFA=∠AFG+∠GFD=α+45°+45°=α+90°,故答案为:α+90°;②证明:由①可得,∠FDG=45°,∵∠B=45°,∴∠B=∠FDG,∴DF∥BC;(2)解:BC2+DF2=2AF2.理由如下:∵△AGC是等腰直角三角形,∴AG2+CG2=AC2,AG=CG,∴2AG2=AC2,∴整理得,∵AB=AC,∴,∵△FGD是等腰直角三角形,∴同理可得,∵∠AGF=90°,∴AG2+GF2=AF2,∴,整理得AC2+FD2=2AF2,∴BC2+DF2=2AF2.【点评】此题考查了全等三角形的性质和判定,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.28.【分析】(1)①如图所示,以点O为旋转中心,将线段AO顺时针旋转30°,得到线段OM,过点M作x轴的垂线段,交x轴于点F,沿x正方向作线段MN,使得MN∥x 轴,MN=OA,连接AN,线段MN即为所求.②因为点O到点的距离=,OA=2,所以点只能为点M或点N.(2)以点O圆心,以PO的长度为半径作⊙O,过点(0,4)作直线l,交⊙O于点M、点M′,将圆⊙O沿直线l移动,将圆心O移动至⊙O上的点P,点M、点M′的对应点分别为点N、点N′,当点M与点M′重合,且坐标为(0,4)时,PO=4,当点N 与点N′重合,且坐标为(0,4)时,.【解答】解:(1)①如图2.1所示,以点O为旋转中心,将线段OA顺时针旋转30°,得到线段OM,过点M作x轴的垂线段,交x轴于点F,沿x正方向作线段MN,使得MN∥x轴,MN=OA,连接AN,线段MN即为所求.MF=OM sin∠AOM=2×sin30°=1,.点M的坐标为,点N的坐标为.②∵点O到点的距离=,OA=2,∴点只能为点M或点N.当点M为时,如图2.2所示,根据题意可知,∴∠AOM=α=60°.当点N为时,如图2.3所示,设MN与y轴交于点F.。
(北京卷)中考数学模拟考试(含答案)
![(北京卷)中考数学模拟考试(含答案)](https://img.taocdn.com/s3/m/46ef05d34128915f804d2b160b4e767f5acf80b6.png)
中考数学模拟考试(北京卷)考 生 须知1. 本试卷共两部分,28道题。
满分100分。
考试时间120分钟。
2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3. 试题一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)。
1.如图是某几何体的三视图,该几何体是( )A .圆柱B .球C .三棱柱D .长方体2.备受关注的北京环球度假区宣布将于2021年9月1日正式开启试运行.根据规划,北京环球影城建成后一期预计年接待游客超过1000万人次,将1000万用科学记数法表示为( ) A .40.110⨯B .31.010⨯C .61.010⨯D .71.010⨯3.如图所示,直线//m n ,163∠=︒,234∠=︒,则BAC ∠的大小是( )A .73oB .83oC .77oD .87o4.如图,ABC ∆经过旋转或轴对称得到△AB C '',其中ABC ∆绕点A 逆时针旋转60︒的是( )A .B .C .D .5.实数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a b c >>B .||||b a >C .0b c +<D .0ab >6.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A .16B .18C .110D .1127.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是( )A.B.C.D.8.如图,线段10AB=,点C、D在AB上,1==.已知点P从点C出发,以每秒1个单位长度的AC BD速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60︒的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是()A.B.C.D.二、填空题(共8小题,满分16分,每小题2分)95x x的取值范围是.10.因式分解:221-+=.x x11.如图,在O内接四边形ABCD中,若100∠=︒.ABC∠=︒,则ADC12.方程22142xx x -=--的解是 . 13.如图,正比例函数1y k x =和反比例函数2k y x=图象相交于A 、B 两点,若点A 的坐标是(3,2),则点B 的坐标是 .14.看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .马匹 姓名下等马中等马上等马齐王 6 8 10田忌 5 7 915.如图,在直角坐标系中,以点(3,1)A 为端点的四条射线AB ,AC ,AD ,AE 分别过点(1,1)B ,点(1,3)C ,点(4,4)D ,点(5,2)E ,则BAC ∠ DAE ∠(填“>”、“ =”、“ <”中的一个).16.以初速度v (单位:/)m s 从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h (单位:)m 与小球的运动时间t (单位:)s 之间的关系式是24.9h vt t =-.现将某弹性小球从地面竖直向上抛出,初速度为1v ,经过时间1t 落回地面,运动过程中小球的最大高度为1h (如图1);小球落地后,竖直向上弹起,初速度为2v ,经过时间2t 落回地面,运动过程中小球的最大高度为2h (如图2).若122h h =,则12:t t = .三、解答题(共68分,第17-20题,每题5分,第21-22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程。
北京初三初中数学中考模拟带答案解析
![北京初三初中数学中考模拟带答案解析](https://img.taocdn.com/s3/m/fd54ecd7af45b307e9719736.png)
北京初三初中数学中考模拟班级:___________ 姓名:___________ 分数:___________一、选择题1.-6的倒数是A.6B.C.D.2.PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为A.B.C.D.3.右图所示的是一个几何体的三视图,则这个几何体是A.球B.圆锥C.圆柱D.三棱柱4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是A.8B.6C.5D.35.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为A.B.C.D.6.已知圆锥侧面展开图的扇形半径为2cm,面积是,则扇形的弧长和圆心角的度数分别为A.B.C.D.7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:设甲、乙两人射击成绩的平均数依次为、,射击成绩的方差依次为、,则下列判断中正确的是A.,B.,C., D.,8.如图,在平行四边形ABCD中,AC=12,BD=8,P是AC上的一个动点,过点P作EF∥BD,与平行四边形的两条边分别交于点E、F.设CP=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是二、填空题1.在函数中,自变量的取值范围是.2.分解因式:.3.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C 处测得建筑物AB的顶点A的仰角为,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为,则建筑物AB的高度是 m.4.如图,将边长为2的正方形纸片ABCD折叠,使点B 落在CD上,落点记为E(不与点C,D重合),点A落在点F处,折痕MN交AD于点M,交BC于点N.若,则BN的长是,的值等于;若(,且为整数),则的值等于(用含的式子表示).三、计算题计算:.四、解答题1.已知关于x的一元二次方程有两个相等的实数根,求m的值及方程的根.2.已知,求的值.3.已知:如图,在△ABC中,∠ABC=90º,BD⊥AC于点D,点E在BC的延长线上,且BE=AB,过点E作EF⊥BE,与BD的延长线交于点F.求证:BC="EF" .4.如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足PA=2OA,直接写出点的坐标.5.为帮助地震灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.6.如图,在四边形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC与BD交于点E,AD=6,CE=,,求BC、DE的长及四边形ABCD的面积.7.如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC .(1)求证:CD是⊙O的切线;(2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB =2,求 OE和CF的长.8.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.表1 阅读课外书籍人数分组统计表分组阅读课外书籍时间n(小时)人数请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E组人数在这次调查中所占的百分比是多少?(2)求出表1中a的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.9.如图1,矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.在图2、图3中,四边形ABCD为矩形,且,.(1)在图2、图3中,点E、F分别在BC、CD边上,图2中的四边形EFGH是利用正方形网格在图上画出的矩形ABCD的反射四边形.请你利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH;(2)图2、图3中矩形ABCD的反射四边形EFGH的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的周长各是多少;(3)图2、图3中矩形ABCD的反射四边形EFGH的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的面积各是多少.10.在平面直角坐标系xOy中,抛物线经过原点O,点B(-2,n)在这条抛物线上.(1)求抛物线的解析式;(2)将直线沿y轴向下平移b个单位后得到直线l,若直线l经过B点,求n、b的值;(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.11.已知:在△AOB与△COD中,OA=OB,OC=OD,.(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是,位置关系是;(2)如图2,将图1中的△COD绕点逆时针旋转,旋转角为 ().连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点 O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.12.如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)求直线AC的解析式;(2)当t为何值时,△CQE的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?北京初三初中数学中考模拟答案及解析一、选择题1.-6的倒数是A.6B.C.D.【答案】D【解析】倒数的定义:乘积为1的两个数互为倒数;注意0没有倒数.-6的倒数是-,故选D.【考点】倒数的定义点评:本题属于基础应用题,只需学生熟练掌握倒数的定义,即可完成.2.PM2.5是大气中粒径小于等于2.5微米的颗粒物,称为细颗粒物,是表征环境空气质量的主要污染物指标.2.5微米等于0.0000025米,把0.0000025用科学记数法表示为A.B.C.D.【答案】C【解析】科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.0000025=,故选C.【考点】科学记数法的表示方法点评:本题属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.3.右图所示的是一个几何体的三视图,则这个几何体是A.球B.圆锥C.圆柱D.三棱柱【答案】B【解析】根据这个几何体的三视图的特征即可作出判断.由图可得这个几何体是圆锥,故选B.【考点】根据三视图判断几何体的形状点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.4.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是A.8B.6C.5D.3【答案】A【解析】设这个多边形的边数是n,根据多边形的内角和与外角和定理即可列方程求解.设这个多边形的边数是n,由题意得,解得则这个多边形的边数是8故选A.【考点】多边形的内角和与外角和定理点评:本题属于基础应用题,只需学生熟练掌握多边形的内角和与外角和定理,即可完成.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为A.B.C.D.【答案】C【解析】概率的求法:概率=所求情况数与总情况数的比值.由题意得摸到红球的概率为,故选C.【考点】概率的求法点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.6.已知圆锥侧面展开图的扇形半径为2cm,面积是,则扇形的弧长和圆心角的度数分别为A.B.C.D.【答案】A【解析】设扇形的弧长为,圆心角的度数为n°,先根据扇形的面积公式求得扇形的弧长,再根据弧长公式求解即可.设扇形的弧长为,圆心角的度数为n°,由题意得,解得,解得故选A.【考点】扇形的面积公式,弧长公式点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.7.甲、乙两人进行射击比赛,他们5次射击的成绩(单位:环)如下表所示:、,射击成绩的方差依次为、,则下列判断中正确的是A.,B.,C., D.,【答案】B【解析】先根据平均数、方差的计算公式求解,再比较即可作出判断.由题意得,则,所以,故选B.【考点】统计的应用点评:统计的应用是初中数学的重点,是中考常见题,熟练掌握各种统计量的计算方法是解题的关键.8.如图,在平行四边形ABCD中,AC=12,BD=8,P是AC上的一个动点,过点P作EF∥BD,与平行四边形的两条边分别交于点E、F.设CP=x,EF=y,则下列图象中,能表示y与x的函数关系的图象大致是【答案】D【解析】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.设AC与BD交于O点,当P在CO上时,∵EF∥BD∴即∴;当P在OA上时,有即,∴.故选D.【考点】相似三角形的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.二、填空题1.在函数中,自变量的取值范围是.【答案】【解析】二次根式有意义的条件:二次根号下的数为非负数时,二次根式才有意义.由题意得,解得.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.2.分解因式:.【答案】【解析】先提取公因式a,再根据平方差公式分解因式即可..【考点】因式分解点评:解答此类因式分解的问题要先分析是否可以提取公因式,再分析是否可以采用公式法.3.某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB的高度.如图,他们先在点C 处测得建筑物AB的顶点A的仰角为,然后向建筑物AB前进20m到达点D处,又测得点 A的仰角为,则建筑物AB的高度是 m.【答案】【解析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC-BD=60构造方程关系式,进而可解,即可求出答案.在Rt△ABC中,,∴,即.在Rt△ABD中,,∴,即.∵BC=CD+BD,∴解得∴.∴建筑物AB的高度是.【考点】解直角三角形点评:此类问题要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.4.如图,将边长为2的正方形纸片ABCD折叠,使点B 落在CD上,落点记为E(不与点C,D重合),点A落在点F处,折痕MN交AD于点M,交BC于点N.若,则BN的长是,的值等于;若(,且为整数),则的值等于(用含的式子表示).【答案】,,【解析】连接BM,EM,BE,由题设,得四边形ABNM和四边形FENM关于直线MN对称,即可到得MN垂直平分BE,则BM=EM,BN=EN.根据正方形的性质可得∠A=∠D=∠C=90°,设AB=BC=CD=DA=2,由可得CE=DE=1,设BN=x,则NE=x,NC=2-x,在Rt△CNE中,根据勾股定理即可列方程求得x的值,从而得到BN的长,在Rt△ABM和在Rt△DEM中,根据勾股定理可得AM2+AB2=BM2,DM2+DE2=EM2,则AM2+AB2=DM2+DE2.设AM=y,则DM=2-y,即可列方程求得的值;当四边形ABCD为正方形时,连接BE,,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n-x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,则NH=EC=1,AM=BH=BN-NH=,从而可以求得结果.连接BM,EM,BE由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,BN=EN.∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.设BN=x,则NE=x,NC=2-x.在Rt△CNE中,NE2=CN2+CE2.∴x2=(2-x)2+12,解得,即在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=y,则DM=2-y,∴y2+22=(2-y)2+12,解得,即∴当四边形ABCD为正方形时,连接BE,,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n-x)2+12,x=;作MH ⊥BC 于H ,则MH=BC ,又点B ,E 关于MN 对称,则MN ⊥BE ,∠EBC+∠BNM=90°; 而∠NMH+∠BNM=90°,故∠EBC=∠NMH ,则△EBC ≌△NMH , ∴NH=EC=1,AM=BH=BN-NH=则:.【考点】折叠的性质,正方形和矩形的性质,勾股定理点评:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、计算题计算:.【答案】【解析】先根据二次根式的性质、特殊角的锐角三角函数值、有理数的乘方法则化简,再合并同类二次根式即可. 原式==.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.四、解答题1.已知关于x 的一元二次方程有两个相等的实数根,求m 的值及方程的根. 【答案】m=12,x 1=x 2=3.【解析】根据方程有两个相等的实数根可得△,即可得到关于m 的方程,从而求得m 的值,最后再代入原方程求解即可.由题意可知D=0,即(-6)2-4(m-3)=0,解得m=12 当m=12时,原方程化为x 2-6x+9=0,解得x 1=x 2=3 所以原方程的根为x 1=x 2=3.【考点】一元二次方程根的判别式点评:解题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根. 2.已知,求的值.【答案】【解析】先根据分式的基本性质约分,再算同分母分式的加减,然后由得到,最后代入.原式===当时,,原式==.【考点】分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.3.已知:如图,在△ABC 中,∠ABC=90º,BD ⊥AC 于点D ,点E 在BC 的延长线上,且BE=AB ,过点E 作EF⊥BE,与BD的延长线交于点F.求证:BC="EF" .【答案】根据同角的余角相等可得,再结合∠ABC=90º,BD⊥AC,且BE=AB,即可根据“AAS”证得,问题得证.【解析】∵,,∴∴.又∵,∴.∴在和中,∴∴.【考点】全等三角形的判定和性质点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.如图,在平面直角坐标系xOy中,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足PA=2OA,直接写出点的坐标.【答案】(1);(2)P (3,9) 或P (-1,-3) .【解析】(1)由点A(1,m)在一次函数y=3x的图象上可求得m的值,即可得到点A的坐标,再由点A在反比例函数的图象上即可根据待定系数法求得结果;(2)根据函数图象上的点的坐标的特征结合PA=2OA求解即可.(1)∵点A(1,m)在一次函数y=3x的图象上,∴m=3∴点A的坐标为(1,3).∵点A(1,3)在反比例函数的图象上,∴∴反比例函数的解析式为;(2)点P的坐标为P (3,9) 或P (-1,-3) .【考点】待定系数法求函数关系式,函数图象上的点的坐标的特征点评:待定系数法求函数关系式是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5.为帮助地震灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.【答案】200人【解析】设该校第二次有x人捐款,则第一次有(x–50)人捐款,根据“第一次捐款总额为9000元,第二次捐款总额为12000元,且两次人均捐款额相等”即可列方程求解.设该校第二次有x人捐款,则第一次有(x–50)人捐款,由题意得.解得x=200.经检验,x=200是所列方程的解,并且符合实际问题的意义答:该校第二次有200人捐款.【考点】分式方程的应用点评:解题的关键是读懂题意,找到等量关系,正确列方程求解,注意解分式方程最后要写检验.6.如图,在四边形ABCD中,∠DAB=60º,AC平分∠DAB,BC⊥AC,AC与BD交于点E,AD=6,CE=,,求BC、DE的长及四边形ABCD的面积.【答案】4,,【解析】过点D作DF⊥AC于F,先根据角平分线的性质求得∠DAC=∠BAC=30°,根据垂直的定义可得∠AFD=∠ACB=90°,再根据含30°角的直角三角形的性质即可求得DF的长,根据即可求得BC、EF的长,然后根据勾股定理可以求得DE的长,最后由即可求得结果.过点D作DF⊥AC于F∵∠DAB=60º,AC平分∠DAB,∴∠DAC=∠BAC=30°.∵,∴∠AFD=∠ACB=90°.∴,BC=CE==4.∴..∴.∴【考点】角平分线的性质,勾股定理,含30°角的直角三角形的性质,锐角三角函数的定义点评:此类问题知识点较多,综合性较强,在中考中比较常见,一般难度不大,需熟练掌握.7.如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC .(1)求证:CD是⊙O的切线;(2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB =2,求 OE和CF的长.【答案】(1)连结OD,根据圆周角定理可得∠ADB=90°,即可求得∠ABD=60°,从而可以求得∠BDC=,即可证得△ODB是等边三角形,则可得∠ODC=90°,问题得证;(2),【解析】(1)连结OD,根据圆周角定理可得∠ADB=90°,即可求得∠ABD=60°,从而可以求得∠BDC=,即可证得△ODB是等边三角形,则可得∠ODC=90°,问题得证;(2)根据平行线的性质可得∠OED=90°,根据垂径定理可得,根据勾股定理可求得OE的长,然后根据∠DOC、∠DOF的正切函数即可求得CD、DF的长,从而可以求得结果.(1)连结OD∵AB是⊙O的直径,∴∠ADB=90°.∵∠A=30°,∴∠ABD=60°.∵∠ABD=2∠BDC,∴∠BDC=.∵OD=OB,∴△ODB是等边三角形.∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC=90°.∴CD是⊙O的切线;(2)∵OF∥AD,∠ADB=90°,∴∠OED=90°∵BD=OB=2,∴.∴.∵OD=OB=2,∠DOC=60°,∠DOF=30°,∴,.∴.【考点】圆周角定理,等边三角形的判定和性质,切线的判定,平行线的性质,垂径定理,勾股定理,锐角三角函数的定义点评:此类问题知识点较多,综合性较强,在中考中比较常见,一般难度不大,需熟练掌握.8.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.表1 阅读课外书籍人数分组统计表请你根据以上信息解答下列问题:(1)这次共调查了学生多少人?E组人数在这次调查中所占的百分比是多少?(2)求出表1中a的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.【答案】(1)50人,%;(2)15,如下图;(3)54人【解析】(1)先根据B组的人数和对应的百分比求得共调查的学生人数,即可求得F组对应的百分比,从而可以求得E组人数在这次调查中所占的百分比;(2)用C组对应的百分比再乘以(1)中求得的总人数即可得到结果;(3)先求得时间不少于12小时的学生所占的百分比,再乘以300即可得到结果.(1)这次共调查了学生10÷20%=50人则F组人数在这次调查中所占的百分比=5÷50=10%所以E组人数在这次调查中所占的百分比是1-6%-20%-30%-26%-10%=%;(2)由题意得(3)由题意得人答:该年级在这月里阅读课外书籍的时间不少于12小时的学生约有54人.【考点】统计图的应用点评:统计图的应用初中数学的重点,是中考必考题,一般难度不大,需熟练掌握.9.如图1,矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.在图2、图3中,四边形ABCD为矩形,且,.(1)在图2、图3中,点E、F分别在BC、CD边上,图2中的四边形EFGH是利用正方形网格在图上画出的矩形ABCD的反射四边形.请你利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH;(2)图2、图3中矩形ABCD的反射四边形EFGH的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的周长各是多少;(3)图2、图3中矩形ABCD的反射四边形EFGH的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的面积各是多少.【答案】(1)如下图;(2)定值是;(3)不是定值,分别是16、12【解析】(1)仔细分析题意,读懂题中“反射四边形”的特征即可作出图形;(2)根据题中“反射四边形”的特征结合格点图形的特征、勾股定理即可求得结果;(3)根据题中“反射四边形”的特征结合格点图形的特征、图形的面积公式即可求得结果(1)如图所示:(2)图2、图3中矩形ABCD 的反射四边形EFGH 的周长是定值,定值是;(3)图2、图3中矩形ABCD 的反射四边形EFGH 的面积不是定值,它们的面积分别是16、12.【考点】应用与设计作图点评:作图题是初中数学学习中的重要题型,在中考中比较常见,一般难度不大,需熟练掌握.10.在平面直角坐标系xOy 中,抛物线经过原点O , 点B(-2,n)在这条抛物线上.(1)求抛物线的解析式;(2)将直线沿y 轴向下平移b 个单位后得到直线l , 若直线l 经过B 点,求n 、b 的值;(3)在(2)的条件下,设抛物线的对称轴与x 轴交于点C ,直线l 与y 轴交于点D ,且与抛物线的对称轴交于点E.若P 是抛物线上一点,且PB=PE ,求P 点的坐标.【答案】(1);(2)3,1;(3)(,)或(,).【解析】(1)根据拋物线经过原点即可求得m 的值,再结合二次项系数不为0即可得到结果;(2)由点B(-2,n)在拋物线上可求得n 的值,即得B 点的坐标,根据平移的规律可得直线l 的解析式为,由直线l 经过B 点即可求得结果; (3)拋物线的对称轴为直线x=2,则对称轴与x 轴的交点C 的坐标为(2,0),直线l 与y 轴、直线x=2的交点坐标分别为 D(0,-1)、E(2,-5).过点B 作BG ⊥直线x=2于G ,与y 轴交于F.则BG=4.在Rt △BGC 中,根据勾股定理可求得CB 的长,过点E 作EH ⊥y 轴于H.则点H 的坐标为 (0,-5).证得△DFB ≌△DHE ,即可得到点P 在直线CD 上,即有符合条件的点P 是直线CD 与该抛物线的交点.设直线CD 的解析式为y="kx+a." 将D(0,-1)、C(2,0)代入即可求得直线CD 的解析式,从而求得结果.(1)∵拋物线经过原点,∴m 2-6m+8=0.解得m 1=2,m 2=4.由题意知m¹4,∴m=2∴拋物线的解析式为;(2)∵点B(-2,n)在拋物线上,∴n=3.∴B点的坐标为(–2,3) .∵直线l的解析式为,直线l经过B点,∴.∴;(3)∵拋物线的对称轴为直线x=2,直线l的解析式为y=-2x-1,∴拋物线的对称轴与x轴的交点C的坐标为(2,0),直线l与y轴、直线x=2的交点坐标分别为 D(0,-1)、E(2,-5).过点B作BG⊥直线x=2于G,与y轴交于F.则BG=4.在Rt△BGC中,.∵CE=5,∴CB=CE.过点E作EH⊥y轴于H.则点H的坐标为 (0,-5).∵点F、D的坐标为F(0,3)、D(0,-1),∴FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.∴△DFB≌△DHE .∴DB="DE."∵PB=PE,∴点P在直线CD上.∴符合条件的点P是直线CD与该抛物线的交点.设直线CD的解析式为y="kx+a."将D(0,-1)、C(2,0)代入,得解得∴直线CD的解析式为.设点P的坐标为(x,),∴=.解得,.∴,.∴点P的坐标为(,)或(,).【考点】二次函数的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.11.已知:在△AOB与△COD中,OA=OB,OC=OD,.(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是,位置关系是;(2)如图2,将图1中的△COD绕点逆时针旋转,旋转角为 ().连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的△COD绕点 O逆时针旋转到使△COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.【答案】(1)AD=2OM,;(2)成立;(3)没有【解析】(1)根据直角三角形斜边的中线等于斜边的一半再结合全等三角形的性质求解即可;(2)延长BO到F,使FO=BO,连结CF,由题意可得MO为的中位线,根据三角形的中位线的性质可得FC=2OM,证得△AOD≌△FOC,可得FC=AD,=,再结合+=90°,即可得到+ =90°,从而可以证得结论;(3)延长DC交AB于E,连结ME,过点E作于N,由OA=OB,OC=OD,,可得,即得AE=DE,BE=CE,∠AED=90°,则有DN=AN,即得AD=2NE,再根据M为BC的中点可得,即可得到四边形ONEM是矩形,从而可以证得结论.(1)线段AD与OM之间的数量关系是AD=2OM,位置关系是;(2)(1)的两个结论仍然成立.如图2,延长BO到F,使FO=BO,连结CF.∵M为BC中点,O为BF中点,∴MO为的中位线.∴FC=2OM∵∠AOB=∠AOF=∠COD=90°,∴∠AOD=∠FOC .∵AO=FO,CO=DO,∴△AOD≌△FOC.∴FC="AD."∴AD=2OM∵MO为的中位线,∴MO∥CF .∴∠MOB=∠F.又∵≌,∴=.∵+=90°∴+=90°即;(3)(1)中线段AD与OM之间的数量关系没有发生变化.延长DC交AB于E,连结ME,过点E作于N.∵OA=OB,OC=OD,,∴.∴AE=DE,BE=CE,∠AED=90°.∴DN="AN."∴AD=2NE.∵M为BC的中点,∴.∴四边形ONEM是矩形.∴NE=OM.∴AD=2OM.【考点】旋转问题的综合题点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.12.如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)求直线AC的解析式;(2)当t为何值时,△CQE的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?【答案】(1);(2)2,1;(3)或。
北京市中考数学模拟试卷-(含答案)
![北京市中考数学模拟试卷-(含答案)](https://img.taocdn.com/s3/m/9644061aa1c7aa00b42acb14.png)
北京市中考数学模拟试卷一、选择题(本大题共8小题,共16.0分)1.如图是某几何体的三视图,该几何体是()A. 圆柱B. 圆椎C. 三棱柱D. 长方体【答案】D【解析】解:该几何体是长方体,故选:D.根据三视图可得到所求的几何体是柱体,可得几何体的名称.考查由三视图判断几何体;用到的知识点为:若三视图里有两个是长方形,那么该几何体是柱体2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A. 0.36×105B. 3.6×105C. 3.6×104D. 36×103【答案】C【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.如图,AB和CD相交于点O,则下列结论正确的是()A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故C错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.根据对顶角定义和外角的性质逐个判断即可.本题主要考查了对顶角的定义和外角的性质,能熟记对顶角的定义是解此题的关键.4.下列图形中,既是中心对称图形也是轴对称图形的是()A. B.C. D.【答案】D【解析】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.5.正五边形的外角和为()A. 180°B. 360°C. 540°D. 720°【答案】B【解析】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.根据多边形的外角和等于360°,即可求解.本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.6.实数a在数轴上的对应点的位置如图所示,若实数b满足−a<b<a,则b的值可以是()A. 2B. −1C. −2D. −3【答案】B【解析】解:因为1<a<2,所以−2<−a<−1,因为−a<b<a,所以b只能是−1.故选:B.先判断b的范围,再确定符合条件的数即可.本题考查了数轴上的点和实数的对应关系.解决本题的关键是根据数轴上的点确定数的范围.7.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A. 14B. 13C. 12D. 23【答案】C 【解析】【分析】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意列出表格,然后由表格求得所有等可能的结果与两次记录的数字之和为3的情况,再利用概率公式即可求得答案.【解答】解:列表如下:12123234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为24=12,故选:C.8.有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】解:设容器内的水面高度为h,注水时间为t,根据题意得:ℎ=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故选:B.根据题意可得容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系式,进而判断出相应函数类型.本题主要考查了一次函数的应用,观察图象提供的信息,再分析高度、时间和容积的关系即可找到解题关键.二、填空题(本大题共8小题,共16.0分)有意义,则实数x的取值范围是______.9.若代数式1x−7【答案】x≠7【解析】【分析】此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.直接利用分式有意义的条件分析得出答案.【解答】解:若代数式1有意义,x−7则x−7≠0,解得:x≠7.故答案为:x≠7.10.已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是______.【答案】1【解析】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴△=22−4×1×k=0,解得:k=1.故答案为:1.根据方程的系数结合根的判别式△=0,即可得出关于k的一元一次方程,解之即可得出k值.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.11.写出比√2大且比√15小的整数______.【答案】2或3【解析】解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3。
2023-2024学年北京市第二中九年级中考模拟数学试题+答案解析
![2023-2024学年北京市第二中九年级中考模拟数学试题+答案解析](https://img.taocdn.com/s3/m/997ff6700622192e453610661ed9ad51f01d54ee.png)
2023-2024学年北京市第二中九年级中考模拟数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形是中心对称图形的是()A. B. C. D.2.将抛物线先向右平移2个单位,再向上平移3个单位后,得到新抛物线的表达式是()A. B.C. D.3.已知的半径为r ,点P 到圆心的距离为如果,那么点P ()A.在圆外B.在圆外或圆上C.在圆内或圆上D.在圆内4.一个多边形的内角和等于,则它是() A.五边形 B.七边形 C.九边形D.十边形5.正比例函数和反比例函数是常数且在同一平面直角坐标系中的图象可能是A. B.C. D.6.若,则的结果是()A.7B.9C.D.117.如图是30名学生A,B两门课程成绩的统计图,若记这30名学生A课程成绩的方差为,B课程成绩的方差为,则,的大小关系为()A. B. C. D.不确定8.如图①,底面积为的空圆柱容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度与注水时间之间的关系如图②.若“几何体”的下方圆柱的底面积为,求“几何体”上方圆柱体的底面积为A.24B.12C.18D.21二、填空题:本题共8小题,每小题3分,共24分。
9.分解因式:__________10.如图,身高为米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得米,米,则旗杆CD的高度是__________米.11.若分式的值为正数,则x满足__________12.请写出一个解为,的二元一次方程组,这个方程组可以是__________.13.若点P是角平分线的交点,且,,则点P到边AB的距离是__________.14.如图,在中,AB的垂直平分线DE交AC于点E,,,若,则CE 的长度为__________.15.正六边形内接于圆,则它的边所对的圆周角的度数为__________.16.某超市现有n个人在收银台排队等候结账.设结账人数按固定的速度增加,收银员结账的速度也是固定的.若同时开放2个收银台,需要20分钟可使排队等候人数为0;若同时开放3个收银台,需要12分钟可使排队等候人数为为减少顾客等待结账的时间,需要6分钟内使排队等候人数为0,则需要至少同时开放__________个收银台.三、解答题:本题共12小题,共96分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。
将1 40 000用科学记数法表示应为A.14×104 B.1.4×105 C.1.4×106 D.0.14×106试题2:实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A.a B.b C.c D.d试题3:一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A. B. C. D.试题4:剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为评卷人得分试题5:如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为A.26° B.36°C.46° D.56°试题6:如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为A.0.5km B.0.6kmC.0.9km D.1.2km试题7:某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21 B.21,21.5C.21,22 D.22,22试题8:右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是A.景仁宫(4,2)B.养心殿(-2,3)C.保和殿(1,0)D.武英殿(-3.5,-4)试题9:一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡试题10:一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。
为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为A.A→O→B B.B→A→C C.B→O→C D.C→B→O试题11:分解因式:5x2-10x2=5x=_________.试题12:右图是由射线AB,BC,CD,DE,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.试题13:《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
它的代数成就主要包括开放术、正负术和方程术。
其中,方程术是《九章算术》最高的数学成就。
《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。
问每头牛、每只羊各值金多少两”设每头牛值金x,每只羊各值金y两,可列方程组为_____________.试题14:关于x的一元二次方程a x2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=______,b=______.试题15:北京市2009-2014年轨道交通日均客运量统计如图所示。
根据统计图中提供信息,预估2015年北京市轨道交通日均客运量约________万人次,你的预估理由是___________.试题16:阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:尺规作图:作一条线段的垂直平分线.已知:线段AB.老师说:“小芸的作法正确.”请回答:小芸的作图依据是_________________________.试题17:计算:。
试题18:已知. 求代数式的值。
试题19:解不等式组,并写出它的所有非负整数解。
试题20:如图,在中,,AD是BC边上的中线,于点E。
求证:。
如图,(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点;(2)作直线CD试题21:为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用。
到2013年底,全市已有公租自行车25000辆,租赁点600个,预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍。
预计到2015年底,全市将有租赁点多少个?试题22:在Y ABCD中,过点D作于点E ,点F 在边CD上,,连接AF,BF。
(1)求证:四边形BFDE是矩形;(2)若,,,求证:AF平分。
试题23:在平面直角坐标系中,直线与双曲线的一个交点为,与x轴、y轴分别交于点A,B。
(1)求m的值;(2)若,求k的值。
试题24:如图,AB 是的直径,过点B 作的切线BM,弦,交AB于点F,且,链接AC,AD,延长AD 交BM地点E。
(1)求证:是等边三角形。
(2)链接OE,若,求OE的长。
试题25:阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次,其中玉渊潭公园的樱花,北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次,17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高。
2014年清明小长假,天气晴好,北京晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增加了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次。
2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9万人次。
根据以上材料回答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为___________万人次。
(2)选择统计表或统计图,将2013-2015年玉渊潭公园、颐和园和北京动物园的游客接待量表示出来。
试题26:有这样一个问题:探究函数的图象与性质。
小东根据学习函数的经验,对函数的图象与性质进行了探究。
下面是小东的探究过程,请补充完成:(1)函数的自变量x的取值范围是___________;(2)下表是y与x的几组对应值。
x… 1 2 3 …y…m…求m的值;(3)如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,格局描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):________________。
试题27:在平面直角坐标系中,过点且平行于x 轴的直线,与直线交于点A,点A关于直线的对称点为B,抛物线经过点A,B。
(1)求点A,B的坐标;(2)求抛物线的表达式及顶点坐标;(3)若抛物线与线段AB恰有一个公共点,结合函数的图象,求a的取值范围。
试题28:在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移,使点D移动到点C,得到,过点Q作于H,连接AH,PH。
(1)若点P在线段CD上,如图1。
①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且,正方形ABCD的边长为1,请写出求DP长的思路。
(可以不写出计算结果)试题29:在平面直角坐标系中,的半径为r,P是与圆心C不重合的点,点P关于的反称点的定义如下:若在射线CP上存在一点,满足,则称为点P关于的反称点,下图为点P及其关于的反称点的示意图。
(1)当的半径为1时。
①分别判断点,,关于的反称点是否存在,若存在?求其坐标;②点P 在直线上,若点P关于的反称点存在,且点不在x轴上,求点P的横坐标的取值范围;(2)当的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点A,B,若线段AB上存在点P ,使得点P关于的反称点在的内部,求圆心C的横坐标的取值范围。
试题1答案:B试题2答案:A试题3答案:B试题4答案:D试题5答案:B试题6答案:D试题7答案: C试题8答案: B试题9答案: C试题10答案: C试题11答案:试题12答案:试题13答案:试题14答案:试题15答案:试题16答案:试题17答案:试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:试题26答案:试题27答案:试题28答案:试题29答案:。