大学物理大题及答案
大学物理试题及答案 13篇
大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。
答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。
答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。
答案:两倍9. 加速度是速度的_____,速度是位移的_____。
答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。
答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。
12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。
求该飞船的向心加速度。
解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。
大学物理经典试题及答案
大学物理经典试题及答案一、选择题(每题2分,共10分)1. 光的波长为λ,频率为f,光速为c,则下列关系正确的是()。
A. c=λfB. c=1/(λf)C. c=λ/fD. c=f/λ答案:A2. 一个物体在水平面上以初速度v0开始做匀加速直线运动,加速度为a,经过时间t后,其速度变为()。
A. v0 + atB. v0 - atC. v0 + 2atD. v0 - 2at答案:A3. 根据牛顿第二定律,下列说法正确的是()。
A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 力的大小与物体的质量成正比D. 力的方向与物体运动的方向无关答案:B4. 一个质量为m的物体在水平面上受到一个大小为F的恒定力作用,若物体与水平面之间的动摩擦因数为μ,则物体的加速度为()。
A. F/mB. (F-μmg)/mC. (F+μmg)/mD. μg答案:B5. 根据能量守恒定律,下列说法正确的是()。
A. 能量可以被创造或消灭B. 能量在转化和转移过程中总量保持不变C. 能量的转化和转移具有方向性D. 能量的转化和转移不具有方向性答案:B二、填空题(每题2分,共10分)1. 根据麦克斯韦方程组,变化的磁场可以产生______电场。
答案:感应2. 一个物体在自由落体运动中,其加速度大小为______。
答案:g3. 根据热力学第一定律,系统内能的增加等于系统吸收的热量与外界对系统做的功之和,即△U = Q + W,其中W为______。
答案:正功4. 理想气体状态方程为PV = nRT,其中R为______常数。
答案:气体5. 根据开普勒第三定律,行星绕太阳公转的周期的平方与其轨道半长轴的立方成正比,比例常数为______。
答案:k三、简答题(每题10分,共20分)1. 简述牛顿第三定律的内容及其在日常生活中的应用。
答案:牛顿第三定律指出,对于任何两个相互作用的物体,它们之间的力是相互的,大小相等,方向相反。
大学物理考试题型及答案
大学物理考试题型及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是()。
A. 3×10^8 m/sB. 3×10^4 km/sC. 3×10^5 km/sD. 3×10^6 km/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是()。
A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是()。
A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是()。
A. E = F/qB. E = qFC. E = FqD. E = F/g答案:A5. 理想气体状态方程为()。
A. PV = nRTB. PV = P1V1C. PV^γ = constantD. PV = mRT答案:A6. 根据热力学第一定律,系统吸收的热量Q与对外做功W之间的关系是()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W/QD. ΔU = WQ答案:B7. 波长为λ的单色光照射到光栅上,产生第三级最大亮度条纹,若该光栅的刻痕间距为d,则()。
A. d sinθ = 2λB. d sinθ = λC. d sinθ = 3λD. d sinθ = 4λ答案:C8. 根据狭义相对论,随着速度v的增加,一个物体的质量m将如何变化()。
A. m 保持不变B. m 增加C. m 减少D. m 先增加后减少答案:B9. 一个电路中的总电阻R等于各部分电阻之和,这种电路被称为()。
A. 串联电路B. 并联电路C. 混联电路D. 分压电路答案:A10. 在磁场中,带电粒子的运动轨迹是圆周,其半径与电荷速度成正比,与磁场强度成反比。
这种现象称为()。
大学物理试题及答案
大学物理试题及答案一、单项选择题(每题3分,共30分)1. 光年是天文学中用来表示距离的单位,它表示的是()。
A. 时间单位B. 光在一年内传播的距离C. 光在真空中一年内传播的距离D. 光在一年内传播的距离,但与介质有关答案:C2. 根据相对论,当物体的速度接近光速时,其质量会()。
A. 保持不变B. 增加C. 减少D. 先增加后减少答案:B3. 在理想气体状态方程 PV=nRT 中,P、V、n、R、T 分别代表()。
A. 压强、体积、摩尔数、气体常数、温度B. 功率、速度、质量、加速度、时间C. 动量、位置、质量、力、时间D. 电流、电压、电荷、电阻、电势答案:A4. 根据麦克斯韦方程组,电场和磁场的关系是()。
A. 电场是磁场的源头B. 磁场是电场的源头C. 电场和磁场相互独立D. 电场和磁场相互产生答案:D5. 以下哪种现象不属于量子力学范畴()。
A. 光电效应B. 原子光谱C. 布朗运动D. 超导现象答案:C6. 根据热力学第一定律,系统内能的变化等于系统吸收的热量与对外做的功之差,即()。
A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = Q/W答案:A7. 以下哪种波是横波()。
B. 电磁波C. 光波D. 以上都是答案:D8. 根据牛顿第三定律,作用力和反作用力的关系是()。
A. 方向相同,大小相等B. 方向相反,大小相等C. 方向相同,大小不等D. 方向相反,大小不等答案:B9. 在电路中,欧姆定律描述了电压、电流和电阻之间的关系,其公式为()。
A. V = IRC. R = VID. V = RI答案:A10. 根据能量守恒定律,能量在转化和传递过程中()。
A. 可以被创造B. 可以被消灭C. 总量保持不变D. 总量不断增加答案:C二、填空题(每题4分,共20分)11. 光在真空中的传播速度是_______m/s。
答案:3×10^812. 根据普朗克关系式,E=hv,其中E代表能量,h代表普朗克常数,v代表频率,普朗克常数的值是______。
大学物理考试题库及答案
大学物理考试题库及答案一、选择题1. 下列关于经典力学的叙述,错误的是()A. 牛顿运动定律适用于所有物体B. 经典力学适用于低速、弱引力场的情况C. 经典力学无法解释原子内部的运动规律D. 经典力学可以描述物体的运动轨迹答案:A2. 下列哪个物理量是标量?()A. 力B. 速度C. 位移D. 动量答案:C3. 一个质点做直线运动,下列哪种情况下,其动能不变?()A. 加速度不变B. 力的方向不变C. 速度大小不变D. 速度方向不变答案:C4. 下列关于机械能守恒的叙述,正确的是()A. 机械能守恒意味着系统的总能量保持不变B. 机械能守恒只适用于重力做功的情况C. 机械能守恒只适用于弹性力做功的情况D. 机械能守恒适用于所有物理系统答案:A5. 一个物体在水平地面上做匀速直线运动,下列哪个因素会影响其运动状态?()A. 地面的粗糙程度B. 物体的质量C. 物体的形状D. 地面的倾斜程度答案:D二、填空题1. 牛顿第二定律的表达式为______。
答案:F=ma2. 动能的表达式为______。
答案:K=1/2mv²3. 势能的表达式为______。
答案:U=mgh4. 动量和冲量的关系为______。
答案:Ft=mv5. 简谐振动的周期与______有关。
答案:质量、弹性系数三、计算题1. 一辆质量为1000kg的汽车,以60km/h的速度行驶。
求汽车的动能。
答案:K=1/2mv²=1/2×1000×(60/3.6)²=250000J2. 一根长度为2m的轻质杆,两端分别悬挂重10kg和20kg的物体,求杆的平衡位置。
答案:设平衡位置距离10kg物体的距离为x,则有:10g×x=20g×(2-x)解得:x=1.33m3. 一质点做直线运动,其初速度为10m/s,加速度为2m/s²。
求3秒末的速度和位移。
答案:v=10+2×3=16m/ss=10×3+1/2×2×3²=39m4. 一质量为2kg的物体,在水平地面上受到一个恒力作用,从静止开始做匀加速直线运动。
大学物理力学考试题及答案
大学物理力学考试题及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是:A. F = m * aB. F = m / aC. F = a * mD. F = a + m答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的加速度为:A. 9.8 m/s²B. 19.6 m/s²C. 0 m/s²D. 1 g答案:A4. 一个物体在水平面上以10 m/s的速度做匀速直线运动,它的动量大小为:A. 10 kg·m/sB. 20 kg·m/sC. 无法确定,因为物体的质量未知D. 5 kg·m/s答案:C5. 根据能量守恒定律,一个物体的动能和势能之和:A. 随时间增加而增加B. 随时间减少而减少C. 在没有外力作用下保持不变D. 总是大于物体的动能答案:C6. 一个弹簧的劲度系数为1000 N/m,如果挂上一个1kg的物体,弹簧伸长的长度是多少?A. 0.1 mB. 1 mC. 10 mD. 无法确定,因为缺少物体的加速度答案:A7. 两个物体之间的万有引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。
这个定律是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 伽利略D. 库仑答案:A8. 一个物体在斜面上下滑,斜面倾角为30°,物体与斜面之间的摩擦系数为0.1,那么物体受到的摩擦力大小为:A. mg sin(30°)B. mg cos(30°)C. μ(mg cos(30°))D. μ(mg sin(30°))答案:D9. 一个物体在水平面上以恒定的加速度加速运动,已知它的初速度为3 m/s,末速度为15 m/s,经过的时间为4秒,那么它的加速度是多少?A. 2.25 m/s²B. 4 m/s²C. 5 m/s²D. 10 m/s²答案:B10. 一个物体在竖直上抛运动中,达到最高点时,它的加速度为:A. 0 m/s²B. g (重力加速度)C. -g (重力加速度)D. 2g (重力加速度)答案:C二、填空题(每题4分,共20分)11. 牛顿第三定律指出,作用力和反作用力大小________,方向________,作用在________的物体上。
大学物理考试题库及答案
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
大学物理习题大题答案
1.1质点延Ox轴做直线运动加速度a=-kx,k为正的常量,质点在X0处的速度是V0,求质点速度的大小V与坐标X的函数能量守恒:(m*V0^2 / 2)=(m*V^2 / 2)+(m*K*X^2 )F= ma=-mkx 。
上式解得:V=±根号(V0^2-2K*X^2)1.2飞轮半径为0.4m,自静止启动,其角加速度为0.2转每秒,求t=2s时边缘上,各点的速度、法向加速度、切向加速度、合加速度ω=ω0+a'tω0=0,t=2s,a'=0.2 × 2pi弧度/s^2=1.257弧度/s^2ω=a't=1.257弧度/s^2×2s=2.514弧度/s切向速度:v=ωr=0.4mx1.257弧度/s=1m/s法向加速度:a。
=ω^2r=(2.514弧度/s)^2 × 0.4m=2.528m/s^2切向加速度:a''=dv/dt=rdω/dt=ra'=0.4m × 1.257弧度/s^2=0.5m/s^2合加速度:a=√(a''^2+a。
^2)=2.58m/s^2合加速度与法向夹角:Q=arctan(a''/a。
)=11.2°2.2质量为m的子弹以速度v0水平射入沙土中,设子弹所受的阻力与速度成正比,系数为k,1.求子弹射入沙土后速度随时间变化的函数关系式,a = -kv/m = dv/dt dv/v = - k/m dt 两边同时定积分,得到lnv-lnv0 = kt/m v=v0*exp(-k/m * t)2.求子弹射入沙土的最大深度dv/dt=a=f/m=-kv/m v=ds/dt=ds/dv * dv/dt = -ds/dv * kv/m 整理得:kds=-mdv 同时对等号两边积分,得:ks=mv0 =》 s=mv0/k.3.1一颗子弹在枪筒离前进时所受的合力刚好为F=400-4*10的五次方/3*t,子弹从枪口射出时的速率为300m/s。
大学理论物理试题及答案
大学理论物理试题及答案一、选择题(每题2分,共10分)1. 光的波长和频率的关系是()。
A. 波长和频率成正比B. 波长和频率成反比C. 波长和频率无关D. 波长和频率相等答案:B2. 根据海森堡不确定性原理,以下说法正确的是()。
A. 粒子的位置和动量可以同时精确测量B. 粒子的位置越精确,动量越不确定C. 粒子的动量越精确,位置越不确定D. 粒子的位置和动量可以同时精确测量,但测量结果会随时间变化答案:B3. 根据狭义相对论,以下说法正确的是()。
A. 物体的质量随速度增加而增加B. 物体的长度随速度增加而增加C. 时间会随着物体速度的增加而变慢D. 所有物理定律在所有惯性参考系中都是相同的答案:C4. 在量子力学中,波函数的平方代表()。
A. 粒子的动量B. 粒子的能量C. 粒子在特定位置的概率密度D. 粒子的电荷答案:C5. 根据热力学第二定律,以下说法正确的是()。
A. 能量可以自发地从低温物体流向高温物体B. 热力学过程是可逆的C. 熵总是增加的D. 能量守恒定律不适用于热力学过程答案:C二、填空题(每题3分,共15分)6. 根据麦克斯韦方程组,电场的旋度与_________成正比。
答案:磁感应强度的时间变化率7. 在理想气体状态方程 PV = nRT 中,P 代表_______,V 代表_______,n 代表_______,R 代表_______,T 代表_______。
答案:压强;体积;摩尔数;气体常数;温度8. 根据薛定谔方程,粒子的波函数满足_______边界条件。
答案:归一化9. 在经典力学中,角动量守恒的条件是_______。
答案:外力矩为零10. 根据热力学第一定律,系统内能的变化等于_______和_______之和。
答案:系统对外界做的功;系统吸收的热量三、简答题(每题10分,共20分)11. 简述牛顿第一定律的内容及其物理意义。
答案:牛顿第一定律,也称为惯性定律,指出在没有外力作用的情况下,物体将保持静止或匀速直线运动的状态。
大学物理试题及答案
《大学物理》试题及答案一、填空题(每空1分,共22分)1.基本的自然力分为四种:即强力、、、。
2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。
3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为.4.静电场的环路定理公式为:。
5.避雷针是利用的原理来防止雷击对建筑物的破坏。
6.无限大平面附近任一点的电场强度E为7.电力线稀疏的地方,电场强度 .稠密的地方,电场强度 . 8.无限长均匀带电直导线,带电线密度+λ。
距离导线为d处的一点的电场强度为。
9.均匀带电细圆环在圆心处的场强为。
10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。
求其后它们的运动速度为________m/s。
11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆的转轴转动时,它的转动惯量为_____Kgm。
13.一电偶极子,带电量为q=2×10库仑,间距L=0。
5cm,则它的电距为________库仑米。
14.一个均匀带电球面,半径为10厘米,带电量为2×10库仑.在距球心6厘米处的电势为____________V.15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。
此时线圈所受的磁力矩最。
16.一圆形载流导线圆心处的磁感应强度为,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为,则= 。
17.半径为R的导线圆环中载有电流I,置于磁感应强度为B的均匀磁场中,若磁场方向与环面垂直,则圆环所受的合力为。
二、选择题(每题2分,共14分)1.电量为q的粒子在均匀磁场中运动,下列说法正确的是().(A)只要速度大小相同,所受的洛伦兹力就一定相同;(B)速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等;(C)质量为,电量为的粒子受洛伦兹力作用,其动能和动量都不变;(D)洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。
大学物理考试题及答案
大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。
A. 力是物体间的相互作用,具有大小和方向。
B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。
C. 力的作用效果与力的作用点有关。
D. 以上选项均正确。
答案:D2. 物体做匀速直线运动时,下列说法正确的是()。
A. 物体的速度不变。
B. 物体的加速度为零。
C. 物体所受合力为零。
D. 以上选项均正确。
答案:D3. 关于功的定义,下列说法正确的是()。
A. 功是力和力的方向的乘积。
B. 功是力和力的方向的点积。
C. 功等于力的大小乘以物体在力的方向上的位移。
D. 功是力对物体所做的功。
答案:C4. 根据牛顿第二定律,下列说法正确的是()。
A. 物体的加速度与作用力成正比。
B. 物体的加速度与物体的质量成反比。
C. 加速度的方向与作用力的方向相同。
D. 以上选项均正确。
答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。
A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。
答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。
答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。
答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。
答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。
答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。
解:首先分解力F为水平分量和垂直分量。
大学物理试题及答案
大学物理试题及答案一、选择题1、一块很长的木板,下面装有活动轮子,静止地置于光滑的水平面上,质量分别为m A 的m B 两个人A和B站在板的两头,他们由静止开始相向而行,若m A < m B,A和B 对地的速度大小相同,则木板将A)向左运动 B)静止不动 C)向右运动 D)不能确定:C2、质量为的质点在外力作用下,其运动方程为,式中A、B、ω都是正的常数,则里在 t = 0 到t = π/ (2ω) 这段时间内所作的功为1222222,, A)m(A,B)B)m(A,B)2 11222222 C)m,(A,B)D)m,(B,A)22:C3、三个容器A、B、C中装有同种理想气体,其分子数密度相 111222222 同,而方均根速率之比为: (v):(v):(v),1:2:4ABC则其压强之比为: p:p:pABCA)1:2:4B)4:2:1C)1:4:16D)1:4:8:C4、一瓶氦气和一瓶氨气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们A)温度相同,压强相同 pMmol,,B)温度、压强都不相同 RTC)温度相同,但氦气压强大于氨气的压强D)温度相同,但氦气压强小于氨气的压强:C5、轻质弹簧下挂一小盘,小盘作简谐振动,平衡位置为原点,位移向下为正,以余弦表示。
小盘处于最低位置时有一小物体落到盘上并粘住。
若以新的平衡位置为原点,设新的平衡位置相对原平衡位置向下移动的距离小于原振幅,物体与盘相碰为计时零点,那么新的位移表示式的初相在A)0~,/2B),/2~,C),~3,/2D)3,/2~2,:D6、已知某简谐振动的振动曲线如图,位移的单位为厘米,时间的单位为秒,则简谐振动的振动方程为:,,A)x,2cos(2t/3,2/3)cm ,,B)x,2cos(2t/3,2/3)cm,,C)x,2cos(4t/3,2/3)cmD)x,2cos(4,t/3,2,/3)cmx(cm)o1t(s),1,2:C7一粗细不均匀的水平圆管,粗处的半径5cm,流速1m/s,细处的半径为粗处的1/3,粗细两处的流速之比为 ( D )(A)1/1(B) 1/3(C) 1/6(D) 1/9:D8、两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过,当其中一偏振片慢慢转动180 0 时透射光强度发生的变化为:A)光强单调增加B)光强先增加,后又减小到零。
大学物理试题及参考答案
⼤学物理试题及参考答案《⼤学物理》试题及参考答案⼀、填空题(每空1分、共20分)1.某质点从静⽌出发沿半径为m R 1=的圆周运动,其⾓加速度随时间的变化规律是t t 6122-=β(SI) ,则该质点切向加速度的⼤⼩为。
2.真空中两根平⾏的⽆限长载流直导线,分别通有电流1I 和2I ,它们之间的距离为d ,则每根导线单位长度受的⼒为。
3.某电容器电容F C µ160=,当充电到100V 时,它储存的能量为____________焦⽿。
4.⼀个均匀带电球⾯,半径为10厘⽶,带电量为2×109-库仑。
在距球⼼6厘⽶处的场强为__________。
5.⼀平⾏板电容器充电后切断电源。
若使两极板间距离增加,则两极板间场强E __________,电容C__________。
(选填:增加、不变、减少)6.⼀质量为m ,电量为q 的带电粒⼦以速度v 与磁感应强度为B 的磁场成θ⾓进⼊时,其运动的轨迹为⼀条等距螺旋,其回旋半径R 为____________ ,周期T 为__________,螺距H 为__________。
7. 真空中⼀个边长为a 的正⽅体闭合⾯的中⼼,有⼀个带电量为Q 库仑的点电荷。
通过⽴⽅体每⼀个⾯的电通量为____________。
8.电⼒线稀疏的地⽅,电场强度。
稠密的地⽅,电场强度。
9. 均匀带电细圆环在圆⼼处的场强为。
10.⼀电偶极⼦,带电量为q=2×105-库仑,间距L =0.5cm ,则它的电距为________库仑⽶11.⼀空⼼圆柱体的内、外半径分别为1R ,2R ,质量为m (SI 单位).则其绕中⼼轴竖直轴的转动惯量为____________。
12.真空中的两个平⾏带电平板,板⾯⾯积均为S ,相距为d (S d ??),分别带电q + 及q -,则两板间相互作⽤⼒F 的⼤⼩为____________。
13.⼀个矩形载流线圈长为a 宽为b ,通有电流I ,处于匀强磁场B 中。
大学物理试卷带答案
第一部分 选择题与填空题 (共60分)一、单项选择题(共10小题,每题3分,共30分)1.一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为(A) t r d d (B) t rd d(C) t r d d (D) 22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ]2.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB . (C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . [ ]3.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.[ ]4.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a表示氧气分子的速率分布曲线; ()2O p v /()2H p v =4.(B) 图中a表示氧气分子的速率分布曲线; ()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线; ()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.[ ]f (v )5.1 mol 理想气体从p -V 图上初态a 分别经历如图所示的(1) 或(2)过程到达末态b .已知T a <T b ,则这两过程中气体吸收的热量Q 1和Q 2的关系是 (A) Q 1> Q 2>0. (B) Q 2> Q 1>0.(C) Q 2< Q 1<0. (D) Q 1< Q 2<0. (E) Q 1= Q 2>0.[ ]6.如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为:(A) 204y q επ. (B) 202yqεπ. (C) 302y qa επ. (D) 304y qaεπ. [ ]7. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取. (D) 电势值的正负取决于产生电场的电荷的正负. [ ]8.均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ ]9.两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ ]10.在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c .(C) (2/5) c . (D) (1/5) c . [ ]Vp O a b(1)(2) I IO x -a -q +q +a P (0,y ) y二、填空题(共10小题,每题3分,共30分)1.一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3243t t t x +-= (SI).在0到4 s 的时间间隔内, (1) 力F 的冲量大小I =__________________.(2) 力F 对质点所作的功W =________________.2.长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如图所示.有一质量为m 的子弹以水平速度0v 射入杆上A点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间杆的角速度ω =__________________________.3.2 g 氢气与2 g 氦气分别装在两个容积相同的封闭容器内,温度也相同.(氢气分子视为刚性双原子分子)(1) 氢气分子与氦气分子的平均平动动能之比He H /2w w =__________.(2) 氢气与氦气压强之比 He H 2p p == ______________________.(3) 氢气与氦气内能之比 He H /2E E = ______________________.4.1 mol 的单原子理想气体,从状态I (p 1,V 1)变化至状态II(p 2,V 2),如图所示,则此过程气体对外作的功为________________________,吸收的热量为______________________.5.热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了________________ _______________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.,V 2)6.电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为1E和2E ,空间各点总场强为E=1E +2E .现在作一封闭曲面S ,如图所示,则以下两式分别给出通过S 的电场强度通量⎰⋅S E d 1=______________________________,⎰⋅S Ed =________________________________.7.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =________________;若设a 点电势为零,则b 点电势U b =_________ .8.在如图所示的回路中,两共面半圆的半径分别为a 和b ,且有公共圆心O ,当回路中通有电流I 时,圆心O 处的磁感强度B 0 =___________________,方向___________________.9.如图,一根载流导线被弯成半径为R 的1/4圆弧,其电流方向由a →b,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________ ,方向_________________.10.狭义相对论的两条基本原理中,相对性原理说的是________________________________________________________________________________ ;光速不变原理说的是_______________________________________________________________________ .I a b OB第二部分 计算题与证明题(共4小题,每题10分,共40分)三、(本题10分)一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; (3)当物体回到原来位置时,定滑轮的角速度的大小和方向.四、(本题10分)长直导线与矩形单匝线圈共面放置,导线与线圈的长边平行.矩形线圈的边长分别为a 、b ,它到直导线的距离为c (如图).当长直导线中通有电流I = I 0sin ωt 时,求矩形线圈中的感应电动势.五、(本题10分)在实验室中测得电子的速度是0.8c ,c 为真空中的光速.假设一观察者相对实验室以0.6c 的速率运动,其方向与电子运动方向相同,试求该观察者测出的电子的动能和动量是多少?(电子的静止质量m e =9.11×10-31kg )六、(本题10分)电荷Q 均匀分布在半径为R的球体内.设无穷远处为电势零点,试证明:距离球心r (r <R)处的电势为 ()302283Rr R Q U επ-=合肥工业大学2004-2005学年第一学期《大学物理》(Ш)参考答案及评分标准第一部分 选择题与填空题 (共60分)一、选择题(本大题共10小题,每小题3分,共30分)1、D2、C3、C4、B5、A6、C7、C8、B9、B 10、B二、填空题(本大题共10小题,每小题3分,共30分)1. 16 N ·s 1分 176 J 2分2. ()lm M /3460+v 3分3. 1 1分2 1分 10/3 1分 4.))((211221V V p p -+ 1分))((21)(2312211122V V p p V p V p -++- 2分5.功变热 2分 热传导 1分6. q 1 / ε0 1分 ( q 1+q 2) / ε0 2分7. -8×10-15 J 2分 -5×104 V 1分8. )11(40ba I +μ 2分垂直纸面向里. 1分 9. BIR 2 2分 沿y 轴正向 1分10. 一切彼此相对作匀速直线运动的惯性系对于物理学定律都是等价的 1分 一切惯性系中,真空中的光速都是相等的 2分第二部分 计算题与证明题(共4小题,每题10分,共40分)三、解: (1) ∵ mg -T =ma 1分 TR =J β 2分 a =R β 1分∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 21分方向垂直纸面向外. 1分(2) ∵ βθωω2202-= 当ω=0 时, rad 612.0220==βωθ物体上升的高度h = R θ = 6.12×10-2m 2分(3) ==βθω210.0 rad/s方向垂直纸面向外. 2分四、解:若长直导线中通有变化的电流t I I ωsin 01=,由安培环路定律可得空间的磁场分布为)2/(10r I B π=μ. 3分 穿过矩形线圈的磁通为⎰⎰⋅+π==a c cr b r I S B d 12d 10μΦ aac bI +π=ln 210μ 4分由法拉第电磁感应定律可得矩形回路中的感应电动势为:t aa cb I dt d ωωμεcos ln 200+-=Φ-=π 3分a五、解:设实验室为K 系,观察者在K ′系中,电子为运动物体.则K ′对K 系的速度为u = 0.6c ,电子对K 系速度为v x = 0.8c .电子对K ′系的速度c c u u x x x 385.0)/(12=--='v v v 3分 观察者测得电子动能为J 1085.6)1)/(11(15220-⨯=-'-=c c m E x K v 4分动量为 x m p v '=2)/(1c m x xv v '-'==1.14×10-22 kg ·m/s 3分六、证:半径为r 处的电势应为以r 为半径的球面以内的电荷在该处产生的电势U 1和球面外电荷产生的电势U 2的叠加,即 U = U 1 + U 2球面内电荷产生的电势 3020330144/4R Qr r R Qr r q U i εεεπ=π=π= 4分 球面外电荷产生的电势. 在球面外取r '─→r '+d r '的薄层.其上电荷r r RQ r r R Q dq ''=''ππ=d 3d 43/42323 它对该薄层内任一点产生的电势为r r RQr q U ''π='π=d 434d d 3002εε ⎰⎰''π==R r r r R Q U U d 43d 3022ε()302283Rr R Q επ-= 4分 ()()302230223022183834R r R Q R r R Q R Qr U U U εεεπ-=π-+π=+= 2分 若根据电势定义⎰⋅l Ed 直接算出,即()302220308344R r R Q dr r Q dr R Qr l d E U RRrrεπεπεπ-=+=⋅=⎰⎰⎰∞∞ 同样给分.。
大学物理试题库(后附详细答案)
电势( )
(A)a点最大; (B)b点最大; (C)c点最大; (D)一样大。
40. 一个带正电的点电荷飞入如图所示的电场中,它在电场中的运动轨迹为 ( )
(A)沿a; (B)沿b; (C) 沿c;(D) 沿d。
41. 一个中性空腔导体,腔内有一个带正电的带电体,当另一中性导体接近空腔导体时,(1)腔内各点的场强 ( )
(D) ; (E) 。
32.两个均匀带电的同心球面,半径分别为R1、R2(R1<R2),小球带电Q,大球带电-Q,下列各图中哪一个正确表示了电场的分布 ( )
(A) (B) (C) (D)
33. 如图所示,任一闭合曲面S内有一点电荷q,O为S面上任一点,若将q由闭合曲面内的P点移到T点,且OP=OT,那么 ( )
(A) 0.41cm; (B) 0.50cm; (C) 0.73cm; (D) 1.00cm。
12. 一物体对某质点p作用的万有引力 ( )
(A)等于将该物体质量全部集中于质心处形成的一个质点对p的万有引力;
(B)等于将该物体质量全部集中于重心处形成的一个质点对p的万有引力;
(C)等于该物体上各质点对p的万有引力的矢量和;
(1) 若忽略一切摩擦,则绳中张力为 ( )
(A)mg;(B)mg/2;(C) 2mg;(D) 3mg/4。
(2) 若A与桌面间的摩擦系数为 (系统仍加速滑动),则绳中张力为 ( )
(A) ; (B) ;
(C) ;(D) 。
10. 沙子从h=0.8m高处落到以3m/s速度水平向右运动的传送带上。取g=10m/s2,则传送带给予沙子的作用力的方向 ( )
( )
(A)80J,80 ;(B)800J,40 ;(C)4000J,32 ;(D)9600J,16 。
大学物理试题及参考答案
大学物理试题及参考答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 3×10^8 m/sB. 3×10^5 km/sC. 3×10^7 m/sD. 3×10^6 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比,其数学表达式为:A. F = maB. a = F/mC. F = ma^2D. a = F^2/m3. 以下哪种波是横波?A. 声波B. 电磁波C. 光波D. 地震波4. 根据热力学第一定律,能量守恒,其数学表达式为:A. ΔU = Q + WB. ΔU = Q - WC. U = Q + WD. U = Q - W5. 以下哪种现象不属于电磁感应?A. 法拉第电磁感应定律B. 洛伦兹力C. 自感D. 互感6. 根据麦克斯韦方程组,以下哪个方程描述了变化的磁场产生电场?A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 麦克斯韦方程7. 以下哪种物质的热传导率最高?A. 木头B. 铜C. 玻璃D. 空气8. 根据量子力学,海森堡不确定性原理表明:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和动量可以同时精确测量9. 根据相对论,以下哪种效应描述了时间膨胀?A. 洛伦兹收缩B. 钟慢效应C. 质能等价D. 质量增加效应10. 以下哪种设备不是利用电磁波工作的?A. 微波炉B. 收音机C. 光纤通信D. 温度计二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等,方向相反,并且作用在不同的物体上。
2. 光的波长、频率和速度之间的关系可以用公式 c = λν 来表示。
3. 根据欧姆定律,电流 I = V/R,其中 V 代表电压,R 代表电阻。
4. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为功而不产生其他效果。
大学物理期末考试试卷(含答案)
大学物理一、单选题(本大题共8小题,每小题5分,共40分)1.下面表述正确的是[ ](A)质点作圆周运动,加速度一定与速度垂直 (B) 物体作直线运动,法向加速度必为零 (C)轨道最弯处法向加速度最大 (D)某时刻的速率为零,切向加速度必为零。
2.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f [ ](A) 恒为零 (B ) 不为零,但保持不变(C) 随F 成正比地增大. (D ) 开始随F 增大,达到某一最大值后,就保持不变 3.地球绕太阳公转,从近日点向远日点运动的过程中,下面叙述中正确的是 [ ] (A )太阳的引力做正功 (B)地球的动能在增加 (C )系统的引力势能在增加 (D) 系统的机械能在减少4.如图所示:一均匀细棒竖直放置,其下端与一固定铰链O 连接,并可绕其转动,当细棒受到扰动,在重力作用下由静止向水平位置绕O 转动,在转动过程中, 下述说法哪一种是正确的[ ](A ) 角速度从小到大,角加速度从小到大; (B) 角速度从小到大,角加速度从大到小; (C ) 角速度从大到小,角加速度从大到小; (D) 角速度从大到小,角加速度从小到大. 5.已知一高斯面所包围的体积内电量代数和iq =0,则可肯定:[ ](A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零. (C)穿过整个高斯面的电通量为零. (D)以上说法都不对。
6 有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N=2的平面圆线圈,导线长度不变,并通以同样的电流,则该线圈中心的磁感强度是原来的[ ](A )4倍 (B )2倍 (C ) 1/2 (D)1/47。
如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是[ ](A ) ad 边转入纸内,bc 边转出纸外 (B) ad 边转出纸外,bc 边转入纸内 (C ) ab 边转出纸外,cd 边转入纸内(D) ab 边转入纸内,cd 边转出纸外 8.两根无限长的平行直导线有相等的电流 , 但电流的流向相反,如右图,而电流的变化率dtdI均小于零,有一矩形线圈与两导线共面,则[ ]a bcd(A )线圈中无感应电流; (B)线圈中感应电流不确定. (C)线圈中感应电流为逆时针方向; (D )线圈中感应电流为顺时针方向;二、填空题(本大题共4小题,每小题5分,共20分)1. 一质点沿半径为0。
大学物理大一试题及答案
大学物理大一试题及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 299,792,458 m/sB. 299,792,458 km/sC. 3.0 x 10^8 m/sD. 3.0 x 10^5 km/s答案:C2. 牛顿第一定律描述的是:A. 物体的加速度与作用力成正比B. 物体的加速度与作用力成反比C. 物体在没有外力作用下保持静止或匀速直线运动D. 物体在受到外力作用下保持静止或匀速直线运动答案:C3. 以下哪个不是电磁波?A. 无线电波B. 微波C. 可见光D. 声波答案:D4. 根据热力学第一定律,系统内能的增加等于:A. 系统吸收的热量B. 系统释放的热量C. 系统吸收的热量与对外做功之和D. 系统释放的热量与对外做功之和答案:C5. 一个物体的质量为2kg,受到的重力是:A. 19.6 NB. 9.8 NC. 39.2 ND. 4.9 N答案:A6. 以下哪个是波动现象?A. 电子的轨道运动B. 光的反射C. 光的折射D. 光的干涉答案:D7. 根据库仑定律,两个点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比。
这个定律是由哪位科学家提出的?A. 牛顿B. 法拉第C. 库仑D. 麦克斯韦答案:C8. 以下哪个量不是矢量?A. 速度B. 力C. 功D. 温度答案:D9. 根据能量守恒定律,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
这个定律是:A. 热力学第一定律B. 热力学第二定律C. 能量守恒定律D. 动量守恒定律答案:C10. 光的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率成正比或反比,取决于介质答案:B二、填空题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成_________。
答案:反比2. 光年是_________的单位。
大学物理考试题目及答案
大学物理考试题目及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^5 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是什么?A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是:A. E = F/qB. E = qFD. E = F/g答案:A5. 一个理想的气体经历等压变化时,其体积与温度的关系遵循什么定律?A. 查理定律B. 盖-吕萨克定律C. 阿伏加德罗定律D. 波义耳定律答案:B6. 根据能量守恒定律,一个封闭系统的总能量是:A. 增加的B. 减少的C. 不变的D. 无法确定的答案:C7. 波长为λ的光波在介质中的折射率为n,当光波从真空进入该介质时,其波速会:A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 一个电路中的电流I与电阻R之间的关系由欧姆定律描述,该定律的数学表达式是什么?A. I = V/RB. I = VRD. I = V + R答案:A9. 根据热力学第一定律,一个系统的内能变化等于它与外界交换的热量和它对外做的功之和。
如果一个系统吸收了热量并且对外做功,那么它的内能将会:A. 增加B. 减少C. 不变D. 无法确定答案:A10. 两个点电荷之间的相互作用力遵循:A. 库仑定律B. 牛顿定律C. 高斯定律D. 毕奥-萨伐尔定律答案:A二、填空题(每题4分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,它的加速度是 _______ m/s²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理大题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN内容为:P37-7.8.14.15.19.21.25;P67-8.11.14.17;P123-11.14.15.17.19.21; P161-7.10.12.15;P236-9.10~14.16.18~23.27.28第九章 静电场9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aqa q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为rr qεe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=Lr qE 20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r LQ r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅sQ E rS E 0i2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布. 解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为re rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2=r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεσrL εL λr ελE ===9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x <<--=⋅=⎰ d 0l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 0a a x εσl E l E 电势变化曲线如图(b )所示.9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅VV d 1d 0ρεS E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰bab a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()r εR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V R r-==⎰当r ≥R 时()r RεR ρr r εR ρr V Rrln 2d 222==⎰如图所示是电势V 随空间位置r 的分布曲线.9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰 (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqUL E m 即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qUE E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.第十章 静电场中的导体与电介质10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底 板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2 ,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离: 解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3 C /m 2 ,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011空气中电场强度()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度 02='E 空气中电场强度δd UE -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.第十一章 恒定磁场11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度. 解 由上述分析得 r <R 122101ππ12πr R μr B =⋅ 21012πR IrμB =R 1 <r <R 2I μr B 022π=⋅rIμB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR ==⎰11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两 侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-21 从太阳射来的速度为0.80×108 m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v第十二章 电磁感应 电磁场和电磁波12-7 载流长直导线中的电流以tId d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势. 分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tIMd d -=ξ求解. 解1 穿过面元d S 的磁通量为x d xIS B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===ddIdx xIdΦΦμμ再由法拉第电磁感应定律,有tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20dI ΦM μ==当电流以tId d 变化时,线圈中的互感电动势为 tI d t I Md d 21ln π2d d 0)(μξ=-=题 12-7 图12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d d d ξ t B r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解第十四章 波 动 光 学14-9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =1.22×10-3 m双缝间距: d =d ′λ/Δx =1.34 ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高?分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()dk D D D h 412sin tan -=≈≈λθθ取k =1 时,得d D h 4min λ=. 14-11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况.插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…) 取k =10,得薄膜厚度e 10 =n210λ=1.4 ×10-6m . 14-16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为3.0 ×10-2m ,用λ=589.3 nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λN l =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 14 -18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环 (2) 整个油膜可看到几个完整的暗环题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =3.9,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n =1.40 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了7.0 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-⨯=-=.n N d λ 14-20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx。