南京市初二数学上学期期末试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市初二数学上学期期末试卷
一、选择题
1.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )
A .
B .
C .
D .
2.若1(2,)A y ,2(3,)B y 是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是( )
A .12y y <
B .12y y =
C .12y y >
D .不能确定
3.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )
A .3
B .4
C .3.5
D .2
4.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( ) A . B . C . D .
5.下列运算正确的是( )
A .236a a a ⋅=
B .235()a a -=-
C .109(0)a a a a ÷=≠
D .4222()()bc bc b c -÷-=-
6.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )
A .22320m mn n -++=
B .2220m mn n +-=
C .22220m mn n -+=
D .2230m mn n --= 7.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( )
A .21
B .22或27
C .27
D .21或27 8.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )
A .SSS
B .SAS
C .AAS
D .ASA 9.下列计算,正确的是( ) A .a 2﹣a=a
B .a 2•a 3=a 6
C .a 9÷a 3=a 3
D .(a 3)2=a 6 10.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )
A .AC =2CD
B .AD =2CD
C .A
D =3BD D .AB =2BC 二、填空题
11.9的平方根是_________.
12.如图,在平面直角坐标系中,点P (﹣1,a )在直线y =2x +2与直线y =2x +4之间,则a 的取值范围是_____.
13.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12
AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是_____.
14.式子21
x x -在实数范围内有意义的条件是__________. 15. 如图,在正三角形ABC 中,AD ⊥BC 于点D ,则∠BAD= °.
16.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.
17.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .
18.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.
19.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为
__________2cm .
20.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.
三、解答题
21.已知一次函数y =3x +m 的图象经过点A (1,4).
(1)求m 的值;
(2)若点B (﹣2,a )在这个函数的图象上,求点B 的坐标.
22.如图①,A 、B 两个圆柱形容器放置在同一水平桌面上,开始时容器A 中盛满水,容器B 中盛有高度为1 dm 的水,容器B 下方装有一只水龙头,容器A 向容器B 匀速注水.设时间为t (s),容器A 、B 中的水位高度A h (dm)、B h (dm)与时间t (s)之间的部分函数图像如图②所示.根据图中数据解答下列问题:
(1)容器A 向容器B 注水的速度为 dm 3/s(结果保留π),容器B 的底面直径m = dm;
(2)当容器B 注满水后,容器A 停止向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为
4
πdm 3/s.请在图②中画出容器B 中水位高度B h 与时间 (4t ≥)的函数图像,说明理由;
(3)当容器B 注满水后,容器A 继续向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为2πdm 3/s ,直至容器A 、B 水位高度相同时,立即停止放水和注水,求容器A 向容器B 全程注水时间.(提示:圆柱体积=圆柱的底面积×圆柱的高)
23.在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系. (1)在网格中画出△111A B C ,使它与△ABC 关于y 轴对称;
(2)点A 的对称点1A 的坐标为 ;
(3)求△111A B C 的面积.
24.(新知理解)
如图①,若点A 、B 在直线l 同侧,在直线l 上找一点P ,使AP BP +的值最小. 作法:作点A 关于直线l 的对称点A ',连接A B '交直线l 于点P ,则点P 即为所求. (解决问题)
如图②,AD是边长为6cm的等边三角形ABC的中线,点P、E分别在AD、AC上,+的最小值为 cm;
则PC PE
(拓展研究)
∠=∠.(保留作图痕
如图③,在四边形ABCD的对角线AC上找一点P,使APB APD
迹,并对作图方法进行说明)
25.如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.
(1)求证:BD⊥AC;
(2)求AB的长.
四、压轴题
26.在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:--++-=.
a b a b
222110
(1)直接写出A 、B 两点的坐标;
(2)将线段AB平移到CD,点A的对应点为C(-3,m),如图(1)所示.若SΔABC=16,求点D 的坐标;
(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.
求证:∠BCD=3(∠CEP-∠OPE).
27.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B
在第二象限.
(1)点 B 向 平移 单位,再向下平移 (用含 m 的式子表达)单位可以与点 A 重合; (2)若点 B 向下移动 3 个单位,则移动后的点 B 和点 A 的纵坐标相等,且有点 C (m −2,0).
①则此时点 A 、B 、C 坐标分别为 、 、 .
②将线段 AB 沿 y 轴负方向平移 n 个单位,若平移后的线段 AB 与线段 CD 有公共点,求 n 的取值范围.
③当 m <−1 式,连接 AD ,若线段 AD 沿直线 AB 方向平移得到线段 BE ,连接 DE 与直线y=−2 交于点 F ,则点 F 坐标为 .(用含 m 的式子表达)
28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义: 若1,(2),(2)b a b b a -≥⎧=<⎩
'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).
(1)①点3,1)-的限变点的坐标是________;
②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)
(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q
的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.
29.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,
如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .
(材料理解)(1)在图1中证明小明的发现.
(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).
(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.
30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .
(1)求证:AE =BD ;
(2)试探究线段AD 、BD 与CD 之间的数量关系;
(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
由题意知x 表示时间,y 表示壶底到水面的高度,然后根据x 、y 的初始位置及函数图象的性质来判断.
【详解】
由题意知:开始时,壶内盛一定量的水,所以y 的初始位置应该大于0,可以排除B 选项,
由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项, 故选A .
【点睛】
本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
2.C
解析:C
【解析】
【分析】
根据一次函数的性质,此一次函数系数k <0,y 随x 增大而减小,然后观察A 、B 两点的坐标,据此判断即可.
【详解】
解:∵一次函数1y =+的系数k <0,y 随x 增大而减小,
又∵两点的横坐标2<3,
∴12y y >
故选C.
【点睛】
本题考查了一次函数的性质,解决本题的关键是理解本题题意,熟练掌握一次函数的增减性.
3.A
解析:A
【解析】
【分析】
根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF ,∠CFE=∠BCF,即BD=DF,FE=CE ,然后利用等量代换即可求出线段CE 的长.
【详解】
解:∵∠ABC 和∠ACB 的平分线相交于点F,
∴∠DBF=∠FBC ,∠ECF=∠BCF,
∵DF//BC,交AB于点D,交AC于点E.
∴∠DFB=∠DBF,∠CFE=∠BCF,
∴BD=DF=4,FE=CE,
∴CE=DE-DF=7-4=3.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.
4.B
解析:B
【解析】
【分析】
根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.
【详解】
A、不是轴对称图形,不符合题意;
B、是轴对称图形,符合题意;
C、不是轴对称图形,不符合题意;
D、不是轴对称图形,不符合题意.
故选B.
【点睛】
考核知识点:轴对称图形识别.
5.C
解析:C
【解析】
【分析】
根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.
【详解】
A. a2⋅a3=a5,故A错误;
B. (−a2)3=−a6,故B错误;
C. a10÷a9=a(a≠0),故C正确;
D. (−bc)4÷(−bc)2=b2c2,故D错误;
故答案选C.
【点睛】
本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.
6.B
解析:B
【解析】
【分析】
作图,根据等腰三角形的性质和勾股定理可得22
+-=,整理即可求解
20
m mn n
【详解】
解:如图,
2
22
m m n m,
222
m n mn m,
22
22
+-=.
20
m mn n
故选:B.
【点睛】
考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.
7.C
解析:C
【解析】
【分析】
分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.
【详解】
当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=27.
故选C.
【点睛】
考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.
8.D
解析:D
【解析】
【分析】
图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.
【详解】
解:由图可知,三角形两角及夹边还存在,
∴根据可以根据三角形两角及夹边作出图形,
所以,依据是ASA.
故选:D.
【点睛】
本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.
9.D
解析:D
【解析】
【详解】
A、a2-a,不能合并,故A错误;
B、a2•a3=a5,故B错误;
C、a9÷a3=a6,故C错误;
D、(a3)2=a6,故D正确,
故选D.
10.B
解析:B
【解析】
【分析】
在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.
【详解】
解:∵△ABC中,∠ACB=90°,∠A=30°,
∴AB=2BC;
∵CD⊥AB,
∴AC=2CD,
∴∠B=60°,又CD⊥AB,
∴∠BCD=30°,
在Rt△BCD中,∠BCD=30°,CD3,
在Rt△ABC中,∠A=30°,AD3=3BD,
故选:B.
【点睛】
此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.
二、填空题
11.±3
【解析】
分析:根据平方根的定义解答即可.
详解:∵(±3)2=9,
∴9的平方根是±3.
故答案为±3.
点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是
解析:±3
【解析】
分析:根据平方根的定义解答即可.
详解:∵(±3)2=9,
∴9的平方根是±3.
故答案为±3.
点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
12.【解析】
【分析】
计算出当P 在直线上时a 的值,再计算出当P 在直线上时a 的值,即可得答案.
【详解】
解:当P 在直线上时,,
当P 在直线上时,,
则.
故答案为
【点睛】
此题主要考查了一次函数与
解析:0a 2<<
【解析】
【分析】
计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.
【详解】
解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,
当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,
则0a 2<<.
故答案为0a 2<<
【点睛】
此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.
13.【解析】
分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD 中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;
详解:连接AD.
∵PQ垂直平
解析:8 5
【解析】
分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;
详解:连接AD.
∵PQ垂直平分线段AB,
∴DA=DB,设DA=DB=x,
在Rt△ACD中,∠C=90°,AD2=AC2+CD2,
∴x2=32+(5﹣x)2,
解得x=17
5

∴CD=BC﹣DB=5﹣17
5
=
8
5

故答案为8
5.
点睛:本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
14.【解析】
【分析】
直接利用二次根式和分式有意义的条件分析得出答案.
【详解】
解:式子在实数范围内有意义的条件是:x-1>0,
解得:x>1.
故答案为:.
【点睛】
此题主要考查了二次根式有意
解析:1
x>
【解析】
【分析】
直接利用二次根式和分式有意义的条件分析得出答案.
【详解】
在实数范围内有意义的条件是:x-1>0,
解得:x>1.
故答案为:1
x>.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
15.30
【解析】
【分析】
根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.
【详解】
∵△ABC是等边三角形,
∴∠BAC=60°,
∵AB=AC
解析:30
【解析】
【分析】
根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD 的度数.
【详解】
∵△ABC是等边三角形,
∴∠BAC=60°,
∵AB=AC,AD⊥BC,
∴∠BAD=1
2
∠BAC=30°,
故答案为30°.16.130°或90°.【解析】
分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.
详解:∵在△ABC中,AB=AC,∠BAC=100°,
∴∠B=∠C=40°
解析:130°或90°.
【解析】
分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.
详解:∵在△ABC中,AB=AC,∠BAC=100°,
∴∠B=∠C=40°,
∵点D在BC边上,△ABD为直角三角形,
∴当∠BAD=90°时,则∠ADB=50°,
∴∠ADC=130°,
当∠ADB=90°时,则
∠ADC=90°,
故答案为130°或90°.
点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.
17.a=5
【解析】
【分析】
本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.
【详解】
解:设这个正方形的边长为a,依题意有
解析:a=5
【解析】
【分析】
本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-
a2=24,先用平方差公式化简,再求解.
【详解】
解:设这个正方形的边长为a,依题意有
(a+2)2-a2=24,
(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,
解得a=5.
【点睛】
本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.
18.65°或25°
【解析】
【分析】
分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度
解析:65°或25°
【解析】
【分析】
分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角
△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.
【详解】
解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,
∴∠C=1
2
(180°-50°)=65°;
②当ABC为钝角三角形时:∠BAC=90°+40°=130°,
∴∠C=1
2
(180°-130°)=25°;
故答案为:65°或25°.
【点睛】
此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.
19.8
【解析】
【分析】
正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.
【详解】
解:依题意有S阴影=×4×4=8cm2.
故答案为:8.
解析:8
【解析】
【分析】
正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.
【详解】
解:依题意有S阴影=1
2
×4×4=8cm2.
故答案为:8.
【点睛】
本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.
20.x<1.
【解析】
【分析】
结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.
【详解】
∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),

解析:x<1.
【解析】
【分析】
结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.
【详解】
∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),
∴当x<1时,y1>y2,
∴不等式kx﹣1<ax+3的解集为x<1.
故答案为:x<1.
【点睛】
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
三、解答题
21.(1)1;(2)(﹣2,﹣5).
【解析】
【分析】
(1)把点A(1,4)的坐标代入一次函数y=3x+m可求出m的值,
(2)确定函数的关系式,再把B的坐标代入,求出a的值,进而确定点B的坐标.
【详解】
解:(1)把点A (1,4)的坐标代入一次函数y =3x+m 得:
3×1+m =4,
解得:m =1,
(2)由(1)得:一次函数的关系式为y =3x+1.
把B (﹣2,a )代入得:a =3×(﹣2)+1=﹣5,
∴B 的坐标为(﹣2,﹣5)
【点睛】
考查一次函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.
22.(1)
34π,2;(2)见详解;(3)6s. 【解析】
【分析】
(1)通过注水速度=注水体积÷注水时间以及圆柱体积=圆柱的底面积×圆柱的高,代入公式进行计算即可;
(2)通过放水时间=放水体积÷放水速度,求出时间即可求出放水时间,然后画出图像; (3)列出容器A 和容器B 中水的高度与时间t 的关系,通过水位高度相同求解即可.
【详解】
解:(1)由图象可知,4秒时间A 容器内水的高度下降了1dm ,B 容器内水的高度上升了3dm ,B 容器增加的水的体积等于A 容器减少的水的体积,
A 容器减少的水的体积213A V sh ππ==⨯=⎝⎭
, 则注水速度为34
V t π=, B 容器流入的水的体积 2332B m V sh ππ⎛⎫==⨯= ⎪⎝⎭
, 解得m=2, 故答案为34
π;2. (2)注满后B 容器中水的总体积为:22442ππ⎛⎫⨯= ⎪⎝⎭
, ∵放水速度为4
π, ∴放空所需要的时间为:4π÷
4π=16 s . 如图所示,
(3)4秒时A容器体积为
2
3
26
2
ππ⎛
⨯=
⎝⎭
此时B容器体积为4π
根据注水速度,A容器内水的高度为
()
3
641
43
34
t
t
π
π
π
--
=-
B容器内水的高度:
()()
3
44245 49
4
t t
t π
ππ
π
+---
=-

15 39
44
t t -=-
解得t=6,
∴容器A向容器B全程注水时间t为6s.
【点睛】
此题的关键是找到题中各个量之间的关系,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,理解题意是解题的关键.
23.(1)见解析;(2)(-3,5);(3)7.
【解析】
【分析】
(1)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;
(2)根据所作图形可得A1点的坐标;
(3)根据割补法求解可得△111
A B C的面积等于矩形的面积减去三个三角形的面积.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)由图知A 1的坐标为(-3,5);
故答案是:(-3,5);
(3)△111A B C 的面积为4×4-12×2×3-12×1×4-12×2×4=7. 【点睛】
此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
24.(1)3
3;(2)作图见解析.
【解析】
试题分析:(1)作点E 关于AD 的对称点F ,连接PF ,则PE=PF ,根据两点之间线段最短以及垂线段最短,得出当CF ⊥AB 时,PC+PE=PC+PF=CF (最短),最后根据勾股定理,求得CF 的长即可得出PC+PE 的最小值;
(2)根据轴对称的性质进行作图.
方法1:作B 关于AC 的对称点E ,连接DE 并延长,交AC 于P ,连接BP ,则∠APB=∠APD .
方法2:作点D 关于AC 的对称点D',连接D'B 并延长与AC 的交于点P ,连接DP ,则∠APB=∠APD .
试题解析:(1)【解决问题】
如图②,作点E 关于AD 的对称点F ,连接PF ,则PE=PF ,
当点F ,P ,C 在一条直线上时,PC+PE=PC+PF=CF (最短),
当CF ⊥AB 时,CF 最短,此时BF=12
AB=3(cm ), ∴Rt △BCF 中,CF=2222=63=33BC BF --cm ),
∴PC+PE 的最小值为33cm ;
(2)【拓展研究】
方法1:如图③,作B 关于AC 的对称点E ,连接DE 并延长,交AC 于P ,点P 即为所求,连接BP ,则∠APB=∠APD .
方法2:如图④,作点D 关于AC 的对称点D',连接D'B 并延长与AC 的交于点P ,点P 即为所求,连接DP ,则∠APB=∠APD .
25.证明见解析;(2)AB=
256
. 【解析】
【分析】 (1)根据勾股定理逆定理判断即可;
(2)设AB =x ,则AC =x ,AD =x -3,根据AB 2=AD 2+BD 2列方程求解即可.
【详解】
(1)证明:在△BDC 中,
∵22291625CD BD BC +=+==,
∴∠BDC=90° ,即BD ⊥AC ,
(2)解:设AB =x ,则AC =x ,AD =x -3,
∵BD ⊥AC ,
∴∠ADB =90°.
在Rt△ABD 中
∴222AB BD AD =+,
即 ()22163x x =+-,
解得:256
x =,
∴AB=256. 【点睛】 本题考查了勾股定理及其逆定理的应用,直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
四、压轴题
26.(1)A (0,3),B (4,0);(2)D (1,-
265);(3)见解析 【解析】
【分析】
(1)根据非负数的性质求解;
(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;
(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;
【详解】
(1)∵222110a b a b --++-=,
∴220,2110a b a b --=+-=,
∴2202110a b a b --=⎧⎨
+-=⎩ , ∴34a b =⎧⎨=⎩
, ∴A (0,3),B (4,0);
(2)如图1中,设直线CD 交y 轴于E .
∵CD//AB ,
∴S △ACB =S △ABE ,
∴12
AE×BO=16,
∴12×AE×4=16, ∴AE=8, ∴E (0,-5),
设直线AB 的解析式为y=kx+b ,将点A (0,3),(4,0)代入解析式中得:
343
k b ⎧=-⎪⎨⎪=⎩ , ∴直线AB 的解析式为y=334x -
+, ∵AB//CD ,
∴直线CD 的解析式为y=34
x c -+, 又∵点E (0,-5)在直线CD 上, ∴c=5,即直线CD 的解析式为y=354x -
-, 又∵点C (-3,m )在直线CD 上,
∴m=115
, ∴C (-3, 115
), ∵点A (0,3)平移后的对应点为C (-3,
115), ∴直线AB 向下平移了265
个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,
∴点D 的坐标为(1,-265
); (3)如图2中,延长AB 交CE 的延长线于点M .
∵AM ∥CD ,
∴∠DCM=∠M ,
∵∠BCE=2∠ECD ,
∴∠BCD=3∠DCM=3∠M ,
∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,
∴∠BCD=3(∠CEP-∠OPE ).
【点睛】
考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.
27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m
--. 【解析】
【分析】
(1)根据平面直角坐标系中点的平移计算方法即可得解
(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做 B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.
【详解】
解:(1)根据平移规律可得:B 向左平移;
m -(m -1)=3,所以平移3个单位;
m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;
故答案为:左;3;(1-2m )
(2)①点 B 向下移动 3 个单位得:B (m ,m+1)
∵移动后的点 B 和点 A 的纵坐标相等
∴m+1=3m+3
∴m=﹣1
∴A (-4,0);B (-1,0);C (-3,0);
②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,
设 K 点坐标为(-3,a )
M 点坐标为(-1,0)
作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )
AM=3,BM=3,KC=a,KH=2
∵ABM AKM BKM S S S ∆∆∆=+
∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222
a ⨯⨯⨯=+ 解得:1a =, ∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,
∴ n ≥ 1, 当 B'在线段 CD 上时,如图 2
BB'交 x 轴于 M 点,过 B'做 B'E ⊥OD,B'M=n-3,B'E=1,OD=5,OC=3
∵ S △COD = S △OB'C + S △OB'D ∴
''222CO OD CO B M OD B E ⨯⨯⨯=+ ∴353(3)51222
n ⨯⨯-⨯=+ 解得:193
n =, 综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913
n ≤≤.
③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,
∴E点横坐标为:3
E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m
∴E(3,﹣4-2m),
设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b

3k+b=42m
b=5



﹣-


1-2m
k=
3
b=-5



⎪⎩

∴y=12m
x5
3

-,
把y=﹣2代入解析式得:﹣2=12m
x5
3

-,
x=
9
12m


∴F
9
(,2) 12m
-
-

【点睛】
本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.
28.(1)①
)3,1;②B ;(2)3s =;(3)59k ≤≤. 【解析】
【分析】
(1)利用限变点的定义直接解答即可;
(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;
(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;
(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.
【详解】
解:(1)①∵32a =, ∴11b b ==-=', ∴坐标为:(
)
3,1, 故答案为:()3,1; ②∵对于限变点来说,横坐标保持不变,
∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,

限变点(2,1)B 对应的原来点的坐标为:()2,2,
∵()2,2满足2y =,
∴这个点是B ,
故答案为:B ;
(2)∵点C 的坐标为(2,2)--,
∴OC 的关系式为:()0y x x =≤,
∵点D 的坐标为(2,2)-,
∴OD 的关系式为:()0y x x =-≥,
∴点P 满足的关系式为:()(
)00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:
当2x ≥时:1b x '=--,
当02x <<时:b x x '=-=,
当0x ≤时,b x x '==-,
图像如下:
通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,
当2x <时,0b '≥,∴0m =,
∴()033s m n =-=--=;
(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,
,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩
,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,
∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩
, 图象如下:
当x =2时,b ′取最小值,b '=2﹣4=﹣2,
当b '=5时,
x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,
当b ′=1时,
x ﹣4=1,解得:x =5,
∵ 25b '-≤≤,
∴由图象可知,k 的取值范围时:59k ≤≤.
【点睛】
本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.
29.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.
【解析】
【分析】
(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;
(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;
(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.
【详解】
(1)证明:∵∠BAC=∠DAE ,
∴∠BAC+∠CAD=∠DAE+∠CAD ,
∴∠BAD=∠CAE ,
在△ABD 和△ACE 中,
AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△ABD ≌△ACE ;
(2)如图2,
∵△ABC 和△ADE 是等边三角形, ∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°, ∴∠BAD=∠CAE ,
在△ABD 和△ACE 中,
AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△ABD ≌△ACE ,
∴BD=CE ,①正确,∠ADB=∠AEC , 记AD 与CE 的交点为G ,
∵∠AGE=∠DGO ,
∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE , ∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB 上取一点F ,使OF=OC , ∴△OCF 是等边三角形,
∴CF=OC ,∠OFC=∠OCF=60°=∠ACB , ∴∠BCF=∠ACO ,
∵AB=AC ,
∴△BCF ≌△ACO (SAS ),
∴∠AOC=∠BFC=180°-∠OFC=120°, ∴∠AOE=180°-∠AOC=60°,③正确, 连接AF ,要使OC=OE ,则有OC=12CE ,
∵BD=CE,
∴CF=OF=1
2 BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)如图3,
延长DC至P,使DP=DB,
∵∠BDC=60°,
∴△BDP是等边三角形,
∴BD=BP,∠DBP=60°,
∵∠BAC=60°=∠DBP,
∴∠ABD=∠CBP,
∵AB=CB,
∴△ABD≌△CBP(SAS),
∴∠BCP=∠A,
∵∠BCD+∠BCP=180°,
∴∠A+∠BCD=180°.
【点睛】
此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.
30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.
【解析】
【分析】
(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;
(2)利用全等三角形的性质及勾股定理即可证得结论;。

相关文档
最新文档