频数分布表和频数分布直方图(1)教学提纲

合集下载

7.4频数分布表和频数分布直方图

7.4频数分布表和频数分布直方图

(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60

()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次


七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图

数 10

频数(率)分布直方图教案

频数(率)分布直方图教案

教学过程一、复习预习Ⅰ.提出问题,创设情境收集数据、整理数据、描述数据是统计的一般过程。

我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。

Ⅱ.导入新课频数分布直方图问题:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。

为此收集到这63名同学的身高(单位:㎝)如下:15 81581616815915915115815916 815815415815416915815815815 91671715316161591591614 916316316217216115315616216 216315716216216115715716415 515616516615615416616416515 6157153165159157155164156选择身高在哪个范围的学生参加呢?为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。

为此我们把这些数据适当分组来进行整理。

1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23。

说明身高的变化范围是23㎝.2、决定组距与组数把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。

作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。

232733最大值-最小值==组距将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173.注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组,一般数据越多分的组数也越多。

3、频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。

用表格整理可得频数分布表:频数分布表身高分组 划记 频数 149≤x <152 2 152≤x <155 正一 6 155≤x <158 正正 12 158≤x <161 正正正 19 161≤x <164 正正 10164≤x <167正8167≤x <1704 170≤x <1732从表格中你能看出应从哪个范围内选队员吗?可以看出,身高在155≤x <158,158≤x <161,161≤x <164三个组的人数最多,一共有12+19+10=41人,因此,可以从身高在155~164㎝(不含164㎝)的学生中选队员。

频数分布图与直方图教案

频数分布图与直方图教案

频数分布图与直方图教案教案标题:频数分布图与直方图教案一、教学目标:1. 了解频数分布图和直方图的定义和作用;2. 能够根据给定数据绘制频数分布图和直方图;3. 掌握如何解读频数分布图和直方图。

二、教学准备:1. 教学工具:黑板、白板、投影仪;2. 学生用品:纸张、铅笔、直尺;3. 教学资源:相关数据表格。

三、教学过程:步骤一:导入1. 介绍频数分布图和直方图的概念,并提出学生可能已经接触过的相关内容;2. 引导学生思考频数分布图和直方图在统计学中的重要性和作用。

步骤二:讲解1. 解释频数分布图和直方图的定义,频数分布图是以数据值为横轴、频数为纵轴的统计图形,直方图是将数据分成若干等距的组并表示各组频数的图形;2. 清晰说明频数分布图和直方图的绘制步骤和技巧,如数据的分组、确定组距等。

步骤三:示范1. 通过简单的实例展示绘制频数分布图和直方图的过程;2. 鼓励学生积极参与,并在黑板上协助绘制示范图。

步骤四:练习1. 提供一组数据,要求学生按照所学方法绘制频数分布图和直方图;2. 学生完成后互相交流和比较结果,讨论可能存在的差异并解释原因。

步骤五:解读与讨论1. 引导学生解读频数分布图和直方图,分析其特征和意义;2. 提出一些问题,让学生根据图形进行分析和推理,如找出众数、判断数据的分布趋势等。

步骤六:拓展与应用1. 给出多个数据集,要求学生根据问题绘制相应的频数分布图和直方图;2. 学生可以选择自己感兴趣的主题,收集相关数据进行图形展示和分析。

四、教学总结:1. 综合总结频数分布图和直方图的定义、绘制步骤和解读方法;2. 强调学生在实际生活和学习中使用频数分布图和直方图的重要性;3. 鼓励学生继续提高绘制和解读频数分布图和直方图的能力。

五、教学延伸:1. 鼓励学生使用电子表格软件进行数据处理和图形绘制;2. 引导学生学习其他统计图表,如饼图、折线图等;3. 提供更多实际问题,引导学生将统计图形应用于解决问题。

鲁教版九年级数学上册频数分布表和频数分布直方图

鲁教版九年级数学上册频数分布表和频数分布直方图

频数分布表和频数分布直方图教学目标1.了解频数分布表和频数分布直方图的意义。

2.体验频数分布表和频数分布直方图对一组数据的处理.3.了解频数折线图。

教学过程一、问题引入1.什么是频数?2.问题:某班一次数学测验成绩如下:63,84,91,53,69,81,61,69,91,78,75,8l,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,21,82,87,75,87,95,53,65,74,77。

用所学的知识来直观、清楚地反映大部分同学处于哪个分数段及成绩的整体分布情况感到困难。

那么,我们今天就一起来学习:频数分布表和频数分布直方图。

1.频数分布表先将成绩按10分的距离分段,统计每个分数段学生出现的频率,填人下表。

这就是频数分布表。

说明:(1)以多大的距离来分段,根据考察对象的需求来定。

(2)为避免一些分数不知在哪个分数段,可使分点比数据多一位小数,并且把起点稍微减小一点。

(3)每段距离相等。

2.频数分布直方图根据上表,老师示X绘制直方图,如图所示。

从图中可以清楚地看出79.5分到89.5分这个分数段的学生数最多,90分以上的同学较少,不及格的学生数最少。

这就是频数分布直方图。

3.频数折线图将每个小长方形上面一条边的中点顺次连结起来,可以得到如图所示的折线。

这就是频数折线图。

三、做一做心脏的跳动是人类存活的标志。

成年人的心跳速度(心率)约为60~100次/分;运动员的心率一般较慢,只有50~60次/分;新生儿的心率则很快,可以达到140~160次/分;婴儿的心率则为110~140次/分;14岁以后,儿童的心率逐渐接近成年人。

(1)请每位同学测量一下自己的心率,你平均每分钟心跳多少次?(2)把全班同学的数据汇总起来,制成频数分布直方图。

(3)从图上看,处于哪个心率段的同学最多?这一个频数分布图有什么特点?四、小结请学生简述本节课所学的主要内容。

最新七年级数学频数分布表和频数分布直方图教学提纲精品课件

最新七年级数学频数分布表和频数分布直方图教学提纲精品课件

()
C
A、条形统计图 B、折线统计图
C、扇形统计图 D、统计表
第四页,共28页。
考考你 从下面(xià mian)三位候选人 中选举1位作为“环保卫士”:
A 姚明
B科比 C詹姆斯
选举方案:(1)请你写上你推荐的候选人的代号; (2)组长收齐选票;(3)选三名同学进行唱票、 监票和记录统计(tǒngjì);(4)得票最多的当选 “环保卫士”.
161具1体62操(数作据:详见书P146) (1)计算最大值与最小值的差, 确定(quèdìng)统计范围; (2)决定组数与组距;
第十五页,共在100个 以内时,通常按照(ànzhào)数据的多少分 成5~12组.
2.在实际分组中,往往要有一个尝试的过 程,最后选择一个比较合适的组数.
1在5这3 组16数4据1中6516136厘2米1的67频1数5(1pín16s1hù) 1是6多2 少(数?据详见书P146) 频率(pínlǜ)呢?
第十三页,共28页。
小明抽样测量了南外七年级50名同学 (tóng xué)的身高,结果如下(单位: cm): 150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167
出现的点数分别(fēnbié)为6、3、1、
2、3、4、3、5、3、4。在这10次
中“4”出现的2频数是___,3出现0频.4率
2是、某,人调查25个人对某种商品
(shāngpǐn)是否满意,结果有15人满
意,有5人不满意,有5人不好说,则
满意0的.6 频率为

7.4频数分布表和频数分布直方图

7.4频数分布表和频数分布直方图

吴塘初级中学学案设计时间: 2014 年 12 月 30 日学案设计人:姜胜学案序列号:根据频数分布表,用横轴表示各分组数据,纵轴表示各组数据的频数,绘制条形统计图:直观地呈现频数的和.像这样的条形统计图称为。

注:(1)、用频数分布表整理数据的步骤:1.计算最大值与最小值的差;2.决定组距与组数;3.决定分点; 4.列频数分布表.(2)条形统计图与频数分布直方图之间的区别与联系条形统计图与频数分布直方图都能从不同的角度直观、形象地描述、分析数据.它们具有各自的特点.条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量特征.频数分布直方图用横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.频数分布直方图是特殊的条形统计图,条形统计图各个“条形”之间都有间隙,频数分布直方图各个“条形”之间没有间隙.三、例题精讲例为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参赛,为了了解此次竞赛的成绩,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计.请你根据尚未完成的频数分布表和频数分布直方图(如图①),解答下列问题.(1)补全频数分布表;(2)补全频数分布直方图;(3)在全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的学生约有多少人?课后作业7.4频数分布表和频数分布直方图课后练习1.已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可以分成( ) A.10组B.9组C.8组D.7组2.某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;若某一小组的频数为4,则该小组的频率为_______;若视力在0.95~1.15这一小组的频率为0.3,则可估计该校九年级学生视力在0.95~1.15范围内的人数约为________.3.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图.请根据频数分布直方图计算,仰卧起坐的次数在15~20次之间的频率是( )A.0.1 B.0.17 C.0.33 D.0.44.某校七年级(3)班有50名学生,他们的上学方式为步行、骑车、乘车,根据表中可得( ) A.a=18,d=24% B.a=18,d=40% C.a=12,b=24% D.a=12,b=40%5.八年级(1)班全体学生参加了学校举办的安全知识竞赛.如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数).若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班总人数的百分比是_______.6.时代中学举行了一次科普知识竞赛,满分为100分,学生的最低得分为31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.若参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为_______.7.随着车辆的增加,交通违规的现象越来越严重,交警对在某雷达测速区监测到的一组汽车的速度数据进行整理,得到其频数及频率如下表:注:30~40为速度大于30千米/时而小于40千米/时,其他类同.(1)请你把表中的数据填写完整; (2)补全如图所示的频数分布直方图; (3)如果汽车速度不低于60千米/时即为违章,那么违章车辆一共有多少辆? 8.勤劳是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整小时数),所得数据统计如下表:(1)抽取的样本容量是_______;(2)根据表中的数据补全频数分布直方图;(3)若该校有学生1260名,则大约有多少名学生寒 假在家做家务的时间在40.5~100.5小时之间?9.为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量 , 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)人数(个)181512 9 6 3图11根据以上图表,回答下列问题:(1)M=______,m=_______,N=______,n=________;(2)补全频数分布直方图。

京改版数学八年级下册 17.3 频数分布表与频数分布图 教案

京改版数学八年级下册 17.3 频数分布表与频数分布图 教案

17.3 频数分布表与频数分布图3分钟一、情景导入:观察图片,请你描述一下两个班的身高情况7班8班我通过全面调查得到两个班同学的身高数据,发现两个班的平均身高基本相等,引出数据分布的不同,从而引出课题。

7班学生身高统计:平均身高:164.38班学生身高统计:学生观察图片,进行描述。

7班学生身高差异小,看起来比较整齐。

8班学生的身高差异比较大,成阶梯状。

引入技能板书技能平均身高:164.7 12分钟二、新课讲授阅读材料,请你根据7班学生身高数据填空。

1.找到最大值______,最小值______,计算极差_________注:极差=最大值-最小值2.确定组数为:5,计算组距为:______ (结果取整数)注:组距=3.制作表格,整理数据教师订正答案。

教师提问:1.我们计算的组距为5.2,取整数时是取5还是取6?为什么?若学生不明白为什么取6,可以引导学生,请你按照5这个间隔把每组的身高段写出来。

2.若给你组距,你怎么求组数呢?3.身高段两端的数值是“组限”,它们与组距的关系是什么?4.你能找到各组频数与总数的关系吗?各组学生根据题意填空。

1.177.1151.1262.63.162≤x<168正 5学生回答:1.取6学生自己写出分组情况,判断应该选择6这个整数。

2.组数=3.上限—下限=组距教学组织技能演示技能讲解技能提问技能频率的和是多少呢?5.归纳出制作频数分布表的步骤。

教师引导学生归纳步骤:(1)找到极值,计算极差(2)确定组数,计算组距(3)制作表格,划记整理4.频数的和等于总数;频率的和为1.学生根据自己理解表述制作频数分布表的步骤。

15分钟三、运用新知小组合作,利用所学知识根据8班同学的身高数据制作频数分布表(要求组距为6)。

我们已经将两个班的频数分布表都制作完成了。

请你观察这两个表,分别描述一下数据分布的情况。

教师小结:这样的分布情况出现了照片中看起来比较整齐的现象。

小组合作,制作表格将制作的频数分布表进行展示。

《频数分布表和频数分布直方图》word教案 (公开课获奖)2022苏教版 (3)

《频数分布表和频数分布直方图》word教案 (公开课获奖)2022苏教版 (3)

7.4 频数分布表和频数分布直方图学习目标:1.了解频数分布的意义,会绘制频数分布表和频数分布直方图;2.通过经历调查、统计、研讨等活动,开展学生实践能力与合作意识;3.通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.重点、难点:了解频数分布的意义,会得出一组数据的频数分布表和频数分布直方图.决定组距与组数,数据分布规律。

一.【预学指导】七年级学生的身高在什么范围内?整体情况如何?首先,抽样测量某中学七年级40名同学的身高,结果如下(单位:cm):144 148 159 156 157 163 156 164 156 159169 163 156 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 162 172 156 165 157 161问:①上述共有______个数据;②这些数据中最小值是________,最大值是_______,它们相差________;③研究这些数据,大局部数据大概在怎样的范围?怎么分析?二.【问题探究】问题1:某中学为了了解八年级学生身高的范围和整体分布情况,抽样调查了八年级50名同学的身高,结果如下〔单位:cm〕:150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162怎样描述、分析这50名学生身高的分布情况?1. 组距:每组两个端点之间的距离;注意:为了使每个数据都落在相应的组内,可取比数据多一位小数来分组,并把第1组的起点略微减小一点,把上述数据“划记〞到相应的组中,得到相应数据出现的频数.2. 频数分布图(左以下图);频数分布直方图(右以下图).3.频数折线图.将每个小长方形上面一条边的中点顺次用折线连接起来的频数分布直方图.问题2:问题讨论.1、用频数分布表整理数据的步骤如何?2、绘制频数分布表时,如何分组?3、根据上面的频数分布表、频数分布直方图,你能获得哪些信息?对该校八年级学生身高的整体分布情况能做出怎样的估计?4、条形统计图、频数分布直方图,从不同的角度直观、形象地描述、分析数据.请比拟它们各自的特点.三.【拓展提升】1.根据某班40名同学的体重频数分布直方图,答复以下问题:〔1〕体重在哪个范围内的人数最多?〔2〕体重超过的同学占全班同学的百分之几?2.100个数据的分组及各组的频数如下:59.5~61.5 2 61.5~63.5 563.5~65.5 9 65.5~67.5 1567.5~69.5 21 69.5~71.5 1971.5~73.5 13 73.5~75.5 975.5~77.5 5 77.5~79.5 22试画出这组数据的频数分布直方图.四.【课堂小结】1.频数分布表和频数分布直方图的作用是什么?2.频数分布直方图的特点是什么?五.【反应练习】1.一组数据有80个,其中最大值为140,最小值为40,取组距为10,那么可以分成( )A.10组 B.9组 C.8组 D.7组2.在对n个数据整理时,把这些数据分成7组,那么各组的频数之和、频率之和为( )A.n和1 B.n和n C.1和n D.1和13. 某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;假设某一小组的频数为4,那么该小组的频率为_______;假设~这一小组的频率为,那么可估计该校九年级学生视力~范围内的人数约为________.4.某校八年级学生进行体育测试,八年级(2)班男生的立定跳远成绩绘制成如图l2—23所示的频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答以下问题.(1)该班有多少名男生?(2)假设立定跳远的成绩在米以上(包括米)为合格,那么该班的这项测试合格率是多少?9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.〔2〕从不同的表示中你发现了什么?〔3〕通过下面两个计算我们来进一步的探讨:〔2a2b〕〔3ab2〕=[2 ×3]•〔a2•a〕〔b•b2〕=6a3b3系数相乘相同字母相同字母〔4ab2〕〔5b〕=[4×5]•〔b2•b〕•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ). 注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕练习1:判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2.练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc . 注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算.练习3:计算:〔1〕(a 2)2·(-2ab ) ;〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ; 〔3〕(-5a n +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。

频数分布表和频率分布直方图PPT教学课件

频数分布表和频率分布直方图PPT教学课件

INPUT “n=”;n flag=1 IF n>2 THEN
d=2 WHILE d<=n-1 AND flag=1 IF n MOD d=0 THEN flag=0 ELSE d=d+1 END IF WEND END IF
IF flag=1 THEN PRINT “Yes” ELSE PRINT “No” END
频数
8
6
4
2
0 22.5 24.5 26.5 28.5 30.5 32.5 数据
1、一个样本含有20个数据:35,31,33,35,37,39, 35,38,40,39,36,34,35,37,36,32,34,35,36,34. 在列频数分布表时,如果组距为2, 那么应分成___组,32.5~34.5这组的频数为_____
15
试及格人数。
10 10 5
0
28 14
0~35 36~47 48~59 60~71 72~83 84~95 96~107 108~120
分数
小结
通过本节学习,我们了解了频数分布的意义及 获得一组数据的频数分布的一般步骤: (1)计算极差; (2) 决定组距和组数; (3) 决定分点; (4) 列出频数分布表; (5)画出频数分布直方图和频数折线图。
SGN(X)= 0 当x=0
-1 当x<0
RND(X) 产生(0,1)区间的一个随机数
任意给定一个大于1的整数n,判 断n流程图是否为质数,画出它的流 程图,并编写程序.
课本P.5, P.22
开始
输入n

n>2?

d=2 d整除n? 是

d=d+1
是 d<=n-1?

频数分布表和频数分布直方图

频数分布表和频数分布直方图

频数分布表和频数分布直方图(1)教学目标知识目标1•掌握频数、频率的概念.2•会求一组数据的频数与频率.能力目标1•通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2•培养学生利用图表获取信息的能力/吏学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.情感与价值观目标培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.■教学重点频臺与频数的概念,选择数据表示方式.教学难点各洛统计图表的绘制,识别各种图表所含的信息,各自优缺点.教学方法合作探讨法教具准备投影片教学过程一、导入新课$上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性•使所抽取的样本尽可能准确地反映总体的真实情况•本节课我们继续学习统讣初步中反映数据出现频繁程度的两个量频数与频率.二、讲授新课1•例题讲解我们不仅要学好基础知识,还要强健自己的体呱长大后才能更好地工作•同学们,你们平时最喜爱的体育运动是什么乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毬子……・你最喜爱的体育明星是谁下面是小亮调查的七(1)班50位同学喜欢的足球明星,结果如下:(投影片)A BC D A B AC 呂 d A C 呂 C A A 呂 CA A EA C D A A C DB A.CD A A AC D A C& AAC C (-?D AA CA 代表贝兗汶姆 昌代我费戈 C 代表罗纳尔多 D 代表巴乔根据上面结果,你能很快说出该班同学最喜欢的足球明星吗他的数据表示 方式是什么这些数据没有经过统计、整理,必须把A 、B 、C 、D 的个数全部数清,才 能比较出哪位球星是该班同学最喜欢的•数据越多越不方便,所以我认为小亮的 数据表示方式不太好. (你能设计出一个比较好的表示方式吗小组相互交流,共同探讨. 我们小组用如下方式表示:(二)此种表示方式的优点是什么简单明了,一眼可以看岀哪个最多、哪个最少. 我们小组采用如下方式表示数据.此种表示方式的优点是什么直观,一目了然•不仅可以很快判断出哪个最多,哪个最少,还可比较出 差别是否悬殊很大.从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们 出现的频繁程度不同•我们称每个对象出现的次数为频数(absolute,frequency )・ 而每个对象出现的次数与总次数的比值为频率(relative frequency )・ 分别计算A 、B 、C 、D 的频数与频率. A 的频数为23, A 的频率为兰.50 B 的频数为& B 的频率为殳.25 C 的频数为13, C 的频率为 D 的频数为6, D 的频率为箱.三、课堂练习1. 设汁一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢 分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原 因.(课后完成)[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图•可不可以用频率分布来表示,2•议一议:(投影片)小明、小亮从同一本书中分别随机抽取了 6页,在统计了 1页、2页.3页、 4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率, 并绘制了下图[师]随着统计页数的增加,这两个字岀现的频率是如何变化的[生]频率在至之间变化的字是“的”字•“了”字的频率在至之间变化.的”字 0.10 0. 09 0. 08 0. 07 0. 06 0. 05讹0. 02 0.01卄了”字1 2 3 4 5 6图5-1[师]你认为该书中“的”和“了”两个字使用的频率哪个高[生]我认为是“的"字.3•做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量•结果如下.(单位:厘米)(投影片)158167154■159166169159156166162159156166164160157156160157161158158153158164158163158153157162162159154165166157151146151158160165158163162161154163165162162159157159149164168159153[师]我们知道,这组数据的平均数,反映了这些学生的平均身高•但是,有时只知道这一点还不够,还希望知道身高在哪个范11内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范用内所占的比的大小.(学生填下表)落在各个小组内的数据的个数叫做频数. 小结:整理数据时,可以按照下面的步骤进行.1••计算最大值与最小值的差.2.决定组距与组数.3.决定分点4 •列频率分布表.下节课我们将继续学习对各种数据的统讣表的处理.四、课时小结本节课主要学习了如下内容.1・频数与频率两个基本概念.2 •会求一组数据的频数与频率,并会选择合理的表示方式来表示数据•例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.五、课后作业习题六、活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情•提出问题、探讨解决问题的方法•写一些实习作业,逐步掌握统讣里的实习作业的问题如何表述,完成的步骤、实习报告的写法. 例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象•在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的佔讣更加精确,所确定的抽取样本的对象力求具有代表性•例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校•可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)讣算和分析数据,写出书面报告•为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误•为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.板书设计频数分布表与频数分布直方图(2)教学目标知识目标1•如何收集与处理数据.2•会绘制频数分布直方图与频数分布折线图.3•了解频数分布的意义,会得出一组数据的频数分布.能力H标[•初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2•通过经历调查、统讣、研讨等活动,发展学生实践能力与合作意识. 情感与价值观目标通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1•决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1•首先通过确定调查H的,确定调查对象.2•收集有关数据.3•选择合理的数据表示方式统计数据.4•根据所收集的数据进行数据计算•根据特征数字,估讣总体情况,设计可行的计划与方案,并不断实施与改进方案.大家能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少首先应开展调查•统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.二、讲授新课(出示投影片)这是小丽统讣的最近一个星期李大爷平均每天能卖出的久B、C、D、E五个牌子雪糕的数量.雪糕A 数量131频数131频率B182182C6868D3939E9898合计518518根据上表绘制一张频数分布直方图.(如下)(投影片)根据小丽的统计结果,请你为李大爷设讣一个进货方案.A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些. A多进多少B多进多少D进多少如何通过比例确定A占总数的25%, B占总数的35%, C占总数的13%, D占总数的8%, E占总数的19%.如何确定进货的总数,还应考虑哪些因素还应考虑当天气温情况,天气凉,气温低时少进货•天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化•不能每天都进518支雪糕.2•做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高, 结果(单位cm)•如下:(投影片)141165144171145145158150157150154168168155155169157157157158149150150160152152159152159144154155157145160160160158162155162163155163148163168155145172(表一)填写下表,并将上述数据用适当的统计图表示出来.(表二)同学们想一想,你同父母一起去商丿占买衣服时,衣服上的号码都有哪些,标志是什么我看到有些衣服上标有M、S、L. XL、XXL等号码•但我不清楚代表的具体范用・适合什么人穿•但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察・S代表最小号,身髙在150-155 cm的人适合穿S 号・M号适合身高在155-160 cm的人群着装……•厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范圉分组批量生产.如何确定组距与组数呢分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关•在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数•看看这个组数是否大致符合确定组数的经验法则•在尝试中,往往要比较相应于儿个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm 以下145T49 cm 150754 cm3 6 9155^159 cm 160764 cm 165769 cm16 9 5170 cm以上2小亮是怎么做的先分组,再得到相应各组的学生人数. 根据上表绘制统计图(如下)(投影片)半收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取 点、连线,得到如下的频数分布折线图.(投影片)比较一下各种统计图各自的优缺点. 表一是没有经过整理的数据•数据多,而且数量表示上不简单、不直观•各个 数据所占人数多少也没有直接给岀,还需要计算.表二,优点:数量表示上确切•即准确表示出各个数据所占的人数•缺点:不 能直观反映数据的总体规律•数据也较多.图5 — 3、图5 — 4能直观形象地将数据表示出来,而且能刻画岀数据的总体 规律•中间人数较集中,两边较少.小结•我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的 数据•常用表格与图表两种方式•何时用哪种方式,应根据我们研究问题的侧重点 来定•具体问题具体分析•不要生搬硬套,应多总结、提炼硏究问题的思想和方法. 不要一味去模仿•只要多动脑去思考•我相信同学们会创新岀更好的方法.三、课堂练习-~1•储蓄所太多必将增加银行支出,太少乂难以满足顾客的需求.为此,银行在 某逆蓄所抽样调查了 50名顾客,他们的等待时间(进入银行到接受受理的时间 间隔,单位mi 门)如下:1520 18 3 25 34 6 024 23 30 35 42 37 24 21 1 14 12 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 25 14 22 31 42 34 26 14 25 40 14 24 11(1) 将数据适当分组,并绘制相应的频数分布直方图.(2) 这50名顾客的平均等待时间是多少根据这个数据,你认为应该给银行 提什么建议分析:①先计算最大值与最小值的差•在上面的数据中,最大值为42,最 小值为16-9//\\.9_--、7715 10馳分布臓图学生人数 20身高图5 —450. A42-0=42.®决定组距与组数•③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.四、课时小结本节课学习了如下内容.1•如何整理所收集的数据.2•将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3•各种统计图、表的优缺点.4•根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作•例如频率分布直方图, 以及它的意义.五、课后作业习题六、活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么2 •分组时应注意哪些问题。

《频数分布表与直方图》word版 公开课一等奖教案

《频数分布表与直方图》word版 公开课一等奖教案

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最|新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最|终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!教学目标 (1 ).掌握频数、频率的概念.(2 ).会求一组数据的频数与频率.重点难点频率与频数的概念 ,选择数据表示方式 .各种统计图表的绘制 ,识别各种图表所含的信息 ,各自优缺点.教学内容师生活动一:感悟新知1.频数与频率1.频数:在一组数据中 ,每个数据出现的次数叫作频数 .2.频率:每个数据出现的次数与总次数的比值称为频率 .3.为了直观、形象的反映所要考察对象的频数情况 ,常常借助图表来表示;4.频数与频率之间的关系是:频数总次数=频率 .由此关系可导出另一些关系式:频数频率=总次数 ,频数=频率×总次数 .二:探索新知一起探究:绘制频数分布直方图1.绘制频数分布直方图的步骤:(1 )确定统计量的范围 ,计算出最|大值与最|小值的差 ,也即极差;(2 )决定组数和组距 ,合理分组;(3 )确定分点;(4 )列频数分布表;(5 )绘制频数分布直方图.频数分布直方图以图形面积的形式反映了数据落在各个小组内的频率大小;各小长方形面积之和为1 .2.频数折线图:如果将每个小长方形上面一条边的中点顺次连接起来 ,就可以得到频数折线图 .说明:(1 )分组的组数一般没有严格的界定 ,可以根据实际情况进行合理分组 .(2 )组距是指每个小组的两个端点之间的距离 .在实践中 ,通常要求各组的组距相等 .三、整理归纳1.频数:在一组数据中 ,每个数据出现的次数叫作频数 .2.频率:每个数据出现的次数与总次数的比值称为频率 .3.为了直观、形象的反映所要考察对象的频数情况 ,常常借助图表来表示;4.频数与频率之间的关系是:频数总次数=频率 .由此关系可导出另一些关系式:频数频率=总次数 ,频数=频率×总次数 .四、达标测评某班的一次数学测验成绩 ,经分组整理后 ,各分数段的人数如以下图所示(总分值为100分 ,每组数据含左端点 ,不含右端点 ).请观察统计图 ,填空并答复以下问题:(1 )这个班有________名学生;(2 )成绩在___________分数段的人数最|多、最|集中 ,占全班总人数的比值是____________;(3 )成绩在60分以上 (含60分 )为及格 ,这次测验全班的及格率是________________课后作业课本23页习题2题 ,3题.师生反思、总结:本课教学反思本节课主要采用过程教案法训练学生的听说读写.过程教案法的理论根底是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为.它包括写前阶段,写作阶段和写后修改编辑阶段.在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务.课堂是写作车间, 学生与教师, 学生与学生彼此交流, 提出反应或修改意见, 学生不断进行写作, 修改和再写作.在应用过程教案法对学生进行写作训练时, 学生从没有想法到有想法, 从不会构思到会构思, 从不会修改到会修改, 这一过程有利于培养学生的写作能力和自主学习能力.学生由于能得到教师的及时帮助和指导,所以,即使是英语根底薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。

频数分布表和频率分布直方图课件

频数分布表和频率分布直方图课件
医学数据分析
在医学领域,频数分布表和频率分布直方图可以用于分析病例数据 、药物疗效等,为医学研究和临床诊断提供支持。
05
制作频数分布表和频率分布直方图 的注意事项
数据来源的可靠性
确保数据来源可靠
在制作频数分布表和频率分布直 方图时,应确保所使用数据的来 源可靠,避免使用不准确或过时
的数据。
验证数据准确性
作用
方便地展示数据的分布情况,帮助我们了解数据的集中趋势、离散程度以及分布形态等特征,为进一步的数据 分析提供基础。
制作步骤
01
02
03
04
收集数据
首先需要收集需要分析的数据 。
数据分组
将数据按照一定的分类标准进 行分组,分组的方法可以根据
实际需求进行选择。
统计频数
统计每组数据的数量,即频数 。
制作表格
应用场景
频数分布表
适用于需要详细了解数据各组频数的场景,如人口普查、销 售数据统计等。
频率分布直方图
适用于需要直观展示数据分布的场景,如市场调研、产品质 量检测等。
实例对比
频数分布表
一个班级的考试成绩统计,可以得出各分数段的学生人数。
频率分布直方图
同个班级的考试成绩分布图,可以直观地看出成绩的集中区域和离散程度。
数据收集
收集需要分析的数据,并进行必要的整理 和筛选,确保数据的质量和准确性。
添加图表元素
在直方图中添加必要的图表元素,如坐标 轴、标题、图例等,以便更好地解释和展 示数据。
数据分组
将数据按照一定的规则进行分组,分组的 方法可以根据实际需求选择,常见的分组 方式有等距分组和等频分组等。
绘制直方图
根据频数和频率数据,绘制条形图来表示 每个数据组的分布情况,பைடு நூலகம்形图的高度代 表频率,宽度代表组距。

频数分布表和频数分布直方图PPT课件

频数分布表和频数分布直方图PPT课件

新知导入 课程,画出频数直方图. 解:(1)计算最大值与最小值的差: 在样本数据中,最大值是7. 4,最小值是4.0,它们的差是 7.4-4.0=3.4. (2)决定组距与组数: 因为最大值与最小值的差是3.4. 如果取组距为0.3,那么由于
提 示: 为了使每个数据都能分到
某个组内,在组距不变的情 况下,我们把边界值取的比 实际数据多一位小数.
新知导入 课程讲授 随堂练习 课堂小结
频数分布表
4、列频数分布表:
身高分组 146.5~149.5 149.5~152.5 152.5~155.5 155.5~158.5 158.5~161.5 161.5~164.5 164.5~167.5 167.5~170.5 170.5~173.5
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
3
新知导入 课程讲授 随堂练习 课堂小结
1.一个样本有100个数据,最大值为7.4,最小值为4.0,如果取组距
为0.3,那么这组数据可分成( B )
A.11组
B.12组
C.13组
D.以上答案均不对
新知导入 课程讲授 随堂练习 课堂小结
2.如图所示是某班45名同学爱心捐款额的频数直方图(每组含前一
个边界值,不含后一个边界值),则捐款人数最多的一组是( C
) A.5~10元 B.10~15元 C.15~20元 D.20~25元
新知导入 课程讲授 随堂练习 课堂小结
3.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的 频数分布直方图(满分为30分,成绩均为整数).若将不低于23分 的成绩评为合格,则该班此次成绩达到合格的同学占全班总人数 的百分比是___9_2_%___.

频数分布表与频数分布直方图

频数分布表与频数分布直方图
随着可视化技术的不断创新和发展,未来的频数分布直方图将更加生动、直观和交互性更强,能够更好地满足用户对 数据可视化的需求。
大数据整合与共享
未来将有更多的数据整合和共享平台出现,频数分布表与频数分布直方图将作为重要的数据分析工具, 为全球范围内的数据共享和分析提供支持。
谢谢
THANKS
频数分布直方图的优点
可以直观地看出数据的分布趋势和异常值,便于进行定性分析;通过颜色的深浅、柱子的高低可以快 速判断数据的集中和离散程度。缺点:无法详细记录每个数据值的频数,定量分析时需要结合其他工 具或方法。
04 频数分布表与频数分布直方图的应用
CHAPTER
在统计学中的应用
描述数据分布特征
频数分布表和直方图可以清晰地展示数据的 分布情况,帮助我们了解数据集中和离散的 程度。
数据探索和可视化
通过频数分布直方图,我们可以直观地了解数据 的分布情况,进一步探索数据之间的关系和规律。
3
对比不同数据集
通过比较不同数据集的频数分布表和直方图,我 们可以发现它们之间的差异和相似之处,进而进 行数据分析和解释。
在实际生活中的应用
人口普查数据统计
在人口普查中,频数分布表和直 方图被广泛应用于展示不同地区、
03 频数分布表与频数分布直方图的比较
CHAPTER
特点比较
频数分布表
以表格形式展示数据的频数分布情况 ,可以清晰地看出数据的数量和分布 特征。
频数分布直方图
以图形方式展示数据的频数分布情况 ,可以直观地看出数据的分布趋势和 异常值。
应用场景比较
频数分布表
适用于需要详细了解数据分布情况,进行定量分析的场景。例如,在市场调研中,可以使用频数分布表来分析不 同年龄段、性别等人群的数量分布情况。

《频数分布表和频数分布直方图》教案

《频数分布表和频数分布直方图》教案

《频数分布表和频数分布直⽅图》教案《频数分布表和频数分布直⽅图》教案教学⽬标知识⽬标1.如何收集与处理数据.2.会绘制频数分布直⽅图与频数分布折线图.3.了解频数分布的意义,会得出⼀组数据的频数分布.能⼒⽬标1.初步经历数据的收集与处理的过程,发展学⽣初步的统计意识和数据处理能⼒.2.通过经历调查、统计、研讨等活动,发展学⽣实践能⼒与合作意识.情感与价值观⽬标通过学习,培养学⽣勇于提出问题,⼤胆设计,勇于探索与解决问题的能⼒.教学重点1.了解频数分布的意义,会得出⼀组数据的频数分布直⽅图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学⽅法交流探讨式教具准备投影⽚教学过程⼀、导⼊新课请⼤家⼀起回忆⼀下,我们如何收集与处理数据.1.⾸先通过确定调查⽬的,确定调查对象.2.收集有关数据.3.选择合理的数据表⽰⽅式统计数据.4.根据所收集的数据进⾏数据计算.根据特征数字,估计总体情况,设计可⾏的计划与⽅案,并不断实施与改进⽅案.⼤家能否帮卖雪糕的李⼤爷设计⼀种⽅案,确定各种牌⼦的雪糕应进多少?⾸先应开展调查.统计⼀下李⼤爷每天卖出的A、B、C、D、E五个牌⼦雪糕的数量.⼆、讲授新课(出⽰投影⽚)这是⼩丽统计的最近⼀个星期李⼤爷平均每天能卖出的A、B、C、D、E 五个牌⼦雪糕的数量.根据上表绘制⼀张频数分布直⽅图.(如下)(投影⽚)根据⼩丽的统计结果,请你为李⼤爷设计⼀个进货⽅案.A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.A多进多少?B多进多少?D进多少?如何通过⽐例确定?A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.如何确定进货的总数,还应考虑哪些因素?还应考虑当天⽓温情况,天⽓凉,⽓温低时少进货.天⽓热,⽓温⾼时多进货,即进雪糕总数应考虑当天⽓温变化.不能每天都进518⽀雪糕.2.做⼀做[例]学校要为同学们订制校服,为此⼩明调查了他们班50名同学的⾝⾼,结果(单位cm).如下:(投影⽚)(表⼀)填写下表,并将上述数据⽤适当的统计图表⽰出来.(表⼆)同学们想⼀想,你同⽗母⼀起去商店买⾐服时,⾐服上的号码都有哪些,标志是什么?我看到有些⾐服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么⼈穿.但肯定与⾝⾼、胖瘦有关.这位同学很善动脑,也爱观察. S代表最⼩号,⾝⾼在150~155 cm的⼈适合穿S号.M 号适合⾝⾼在155~160 cm的⼈群着装…….⼚家做⾐服订尺⼨也并不是按所有⼈的尺⼨定做,⽽是按某个范围分组批量⽣产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有⼀个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否⼤致符合确定组数的经验法则.在尝试中,往往要⽐较相应于⼏个组距的组数,然后从中选定⼀个较为合适的组数.我们⼀起看下表:⼩亮的做法.144 cm以下145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2⼩亮是怎么做的?先分组,再得到相应各组的学⽣⼈数.根据上表绘制统计图(如下)(投影⽚)当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直⽅图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直⽅图上取点、连线,得到如下的频数分布折线图.(投影⽚)⽐较⼀下各种统计图各⾃的优缺点.表⼀是没有经过整理的数据.数据多,⽽且数量表⽰上不简单、不直观.各个数据所占⼈数多少也没有直接给出,还需要计算.表⼆,优点:数量表⽰上确切.即准确表⽰出各个数据所占的⼈数.缺点:不能直观反映数据的总体规律.数据也较多.图5-3、图5-4能直观形象地将数据表⽰出来,⽽且能刻画出数据的总体规律.中间⼈数较集中,两边较少.⼩结.我们在收集到⼀些数据后,⼀定要选择合理的表⽰⽅式表⽰所收集的数据.常⽤表格与图表两种⽅式.何时⽤哪种⽅式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要⽣搬硬套,应多总结、提炼研究问题的思想和⽅法.不要⼀味去模仿.只要多动脑去思考.我相信同学们会创新出更好的⽅法.三、课堂练习分析:①先计算最⼤值与最⼩值的差.在上⾯的数据中,最⼤值为42,最⼩值为0.∴42-0=42.②决定组距与组数.绘制频数分布直⽅图(如下图)学⽣完成下图.图5-5四、课时⼩结本节课学习了如下内容.1.如何整理所收集的数据.2.将数据⽤适当的统计图表⽰出来.(1)表格形式.(2)频数分布直⽅图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习⼀些统计知识,⼀些图表的制作.例如频率分布直⽅图,以及它的意义.五、课后作业习题六、活动与探究1.将⼀批数据分组时,每个⼩组的频数与频率各指什么?答:每个⼩组的频数是指落在这个⼩组的数据的个数.每个⼩组的频率是指这个⼩组的频数与数据总数的⽐值.2.分组时应注意哪些问题?分组的组数不仅与数据的多少有关,还与数据的取值情况有关.先求最⼤值与最⼩值的差,再确定组距与组数.当数据较多,且波动较⼤时,为了便于整理数据,我们可将数据按从⼩到⼤的顺序重新排列,这虽然费事,但找数据中的最⼤值、最⼩值以及进⾏频数累计却变得⾮常简单了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.2频数分布表和频数分布直方图(1)教学目标知识目标1.掌握频数、频率的概念.2.会求一组数据的频数与频率.能力目标1.通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2.培养学生利用图表获取信息的能力,使学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.情感与价值观目标培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.教学重点频率与频数的概念,选择数据表示方式.教学难点各种统计图表的绘制,识别各种图表所含的信息,各自优缺点.教学方法合作探讨法教具准备投影片教学过程一、导入新课上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性.使所抽取的样本尽可能准确地反映总体的真实情况.本节课我们继续学习统计初步中反映数据出现频繁程度的两个量频数与频率.二、讲授新课1.例题讲解我们不仅要学好基础知识,还要强健自己的体魄,长大后才能更好地工作.同学们,你们平时最喜爱的体育运动是什么?乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毽子…….你最喜爱的体育明星是谁?下面是小亮调查的七(1)班50位同学喜欢的足球明星,结果如下:(投影片)示方式是什么?这些数据没有经过统计、整理,必须把A、B、C、D的个数全部数清,才能比较出哪位球星是该班同学最喜欢的.数据越多越不方便,所以我认为小亮的数据表示方式不太好.你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.我们小组用如下方式表示:(二)此种表示方式的优点是什么?简单明了,一眼可以看出哪个最多、哪个最少.我们小组采用如下方式表示数据.此种表示方式的优点是什么?直观,一目了然.不仅可以很快判断出哪个最多,哪个最少,还可比较出差别是否悬殊很大.从上表可以看出,A、B、C、D出现的次数有的多,有的少,或者说它们出现的频繁程度不同.我们称每个对象出现的次数为频数(absolute,frequency).而每个对象出现的次数与总次数的比值为频率(relative frequency).分别计算A 、B 、C 、D 的频数与频率.A 的频数为23,A 的频率为5023.B 的频数为8,B 的频率为254. C 的频数为13,C 的频率为5013. D 的频数为6,D 的频率为253. 三、课堂练习1.设计一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢? 分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原因.(课后完成)科目 语文 数学 英语 历史 地理 政治 物理 美体 学生数 频数 频率[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图.可不可以用频率分布来表示,小明、小亮从同一本书中分别随机抽取了6页,在统计了1页、2页、3页、4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率,并绘制了下图图5-1[生]频率在0.05至0.06之间变化的字是“的”字.“了”字的频率在0.005至0.015之间变化.[师]你认为该书中“的”和“了”两个字使用的频率哪个高?[生]我认为是“的”字.3.做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量.结果如下.(单位:厘米)(投影片)158 167 154 159 166 169 159156 166 162 159 156 166 164160 157 156 160 157 161 158158 153 158 164 158 163 158153 157 162 162 159 154 165166 157 151 146 151 158 160165 158 163 162 161 154 163165 162 162 159 157 159 149164 168 159 153有时只知道这一点还不够,还希望知道身高在哪个范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范围内所占的比的大小.(学生填下表)频率分布表落在各个小组内的数据的个数叫做频数.小结:整理数据时,可以按照下面的步骤进行.1.计算最大值与最小值的差.2.决定组距与组数.3.决定分点4.列频率分布表.下节课我们将继续学习对各种数据的统计表的处理.四、课时小结本节课主要学习了如下内容.1.频数与频率两个基本概念.2.会求一组数据的频数与频率,并会选择合理的表示方式来表示数据.例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.五、课后作业习题六、活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情.提出问题、探讨解决问题的方法.写一些实习作业,逐步掌握统计里的实习作业的问题如何表述,完成的步骤、实习报告的写法.例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象.在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的估计更加精确,所确定的抽取样本的对象力求具有代表性.例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校.可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)计算和分析数据,写出书面报告.为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误.为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.12.2频数分布表与频数分布直方图(2)教学目标知识目标1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.能力目标1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.情感与价值观目标通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程一、导入新课请大家一起回忆一下,我们如何收集与处理数据.1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.大家能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.二、讲授新课(出示投影片)这是小丽统计的最近一个星期李大爷平均每天能卖出的A图5-2A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.A多进多少?B多进多少?D进多少?如何通过比例确定?A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E 占总数的19%.如何确定进货的总数,还应考虑哪些因素?还应考虑当天气温情况,天气凉,气温低时少进货.天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化.不能每天都进518支雪糕.2.做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位cm).如下:(投影片)141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145172填写下表,并将上述数据用适当的统计图表示出来.(表二)同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2小亮是怎么做的?先分组,再得到相应各组的学生人数.图5-3图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影片)图5-4表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.小结.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.三、课堂练习1.储蓄所太多必将增加银行支出,太少又难以满足顾客的需求.为此,银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位mi n)如下:15 20 18 3 25 34 6 0 1724 23 30 35 42 37 24 21 114 12 34 22 13 34 8 22 3124 17 33 4 14 23 32 33 2842 25 14 22 31 42 34 26 1425 40 14 24 11(1)将数据适当分组,并绘制相应的频数分布直方图.(2)这50名顾客的平均等待时间是多少?根据这个数据,你认为应该给银行提什么建议?小值为0.∴42-0=42.②决定组距与组数.③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.图5-5四、课时小结本节课学习了如下内容.1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.例如频率分布直方图,以及它的意义.五、课后作业习题六、活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么?2.分组时应注意哪些问题?。

相关文档
最新文档