2017年天津市河西区中考数学一模试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年天津市河西区中考数学一模试卷
一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.计算(﹣3)﹣9的结果等于()
A.6 B.﹣12 C.12 D.﹣6
2.cos30°的值是()
A.B.C.D.
3.下列图案中,可以看作中心对称图形的是()
A.B.C. D.
4.第十三届全运会将于2017年8月在天津举行,其中足球项目承办场地为团泊足球场,该足球场占地163000平方米,将163000用科学记数法表示应为()A.163×103B.16.3×104C.1.63×105D.0.163×106
5.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()
A.B.C.D.
6.分式方程的解为()
A.x=﹣1 B.x=1 C.x=2 D.x=3
7.等边三角形的边心距为,则该等边三角形的边长是()
A.3 B.6 C.2 D.2
8.数轴上点A表示a,将点A沿数轴向左移动3个单位得到点B,设点B所表示的数为x,则x可以表示为()
A.a﹣3 B.a+3 C.3﹣a D.3a+3
9.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.B.C.D.
10.己知反比例函数y=,当1<x<3时,y的取值范围是()
A.0<y<l B.1<y<2 C.y>6 D.2<y<6
11.如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形ENCM的面积之比为()
A.9:4 B.12:5 C.3:1 D.5:2
12.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()
A.t≥﹣1 B.﹣1≤t<3 C.﹣1≤t<8 D.3<t<8
二、填空题:本大题共6小题,每小题3分,共18分.
13.计算a2•a4的结果等于.
14.关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是.
15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为.
16.如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若∠BOC与∠BAC互补,则弦BC的长为.
17.如图,在边长为a(a>2)的正方形各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,则正方形MNPQ的面积为.
18.在每个小正方形的边长为1的网格中,等腰直角三角形ACB与ECD的顶点都在网格点上,点N、M分别为线段AB、DE上的动点,且BN=EM.
(Ⅰ)如图①,当BN=时,计算CN+CM的值等于;
(Ⅱ)当CN+CM取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段CN和CM,并简要说明点M和点N的位置是如何找到的(不要求证明).
三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推
理过程.
19.解不等式组
请结合题意填空,完成本题的解答;
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为.
20.为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别睡眠时间x(小时)
A 4.5≤x<5.5
B 5.5≤x<6.5
C 6.5≤x<7.5
D7.5≤x<8.5
E8.5≤x<9.5
根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值;
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?
21.在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;
(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.
22.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至AC′的位置时,AC′的长为m;
(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).
23.国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:
类别彩电冰箱洗衣机
进价(元/台)200016001000
售价(元/台)230018001100
若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(1)商店至多可以购买冰箱多少台?
(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?
24.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.
如图,将一个矩形纸片ABCD,放置在平面直角坐标系中,A(0,0),B(4,0),D(0,3),M是边CD上一点,将△ADM沿直线AM折叠,得到△ANM.(Ⅰ)当AN平分∠MAB时,求∠DAM的度数和点M的坐标;
(Ⅱ)连接BN,当DM=1时,求△ABN的面积;
(Ⅲ)当射线BN交线段CD于点F时,求DF的最大值.(直接写出答案)
在研究第(Ⅱ)问时,师生有如下对话:
师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.
小明:我是这样想的,延长MN与x轴交于P点,于是出现了Rt△NAP,…
小雨:我和你想的不一样,我过点N作y轴的平行线,出现了两个Rt△NAP,…