六年级奥数速算、巧算方法及习题
六年级下册数学试题-奥数思维训练:-3:巧算的方法(含答案)全国通用
六年级下册数学试题-奥数思维训练:-3:巧算的方法(含答案)全国通用巧算的方法同学们,能够在看似无序的算式中寻找到一定的规律,化繁为简,那么一定能够增强你学习数学的信心、兴趣和能力。
智慧姐姐例题精选⑴ 9+99+999 ⑵ 84+83+78+79+80+77 【思路点睛】⑴ 方法一:把9、99、999分别看作10、100、1000进行相加。
因为每个加数都多加了1,所以要再从它们的和中减去3。
9+99+999 =10+100+1000-3 =1110-3 =1107 方法二:从9中分出1加给99,再分出1加给999。
9+99+999 =7+100+1000 =1107 ⑵ 观察这6个的数大小,你会发现这些数的大小相差不大,都接近80,我们可以先把这几个数都看作是80,先求6个80的和,然后再将原来的数逐一和80相比,比80大几的,就再加几,比80小几的就再减几。
这种巧算的方法就叫“找基准数”。
84+83+78+79+80+77 =80×6+(4+3-2-1-3)=480+1 =481 思维体操1.399+298+197+962.199+1999+199993.31+28+29+30+32+334.68+71+72+70+69+68+71 例题精选⑴ 355+82-123+645-182-77⑵ 578+(122-46)-(198+54)【思路点睛】⑴ “355”与“+645”,合起来凑整;“+82”与“-182”加减抵消,减数大,抵消之后仍然减;“-123”与“-77”,合成“-200”。
355+82-123+645-182-77 =1000-100-200 =700 ⑵ 在计算有括号的运算时,先算括号里的,但有时可以先去掉括号,然后进行运算会更加简便。
去括号时,如果括号前面是加号,可直接去掉括号,其它都不变;如果括号前面是减号,那么去括号后,原括号里面的运算符号要变号,加号变减号,减号变加号。
六年级奥数简便运算
六年级奥数简便运算六年级奥数是小学生们参加的一项数学竞赛,其中的运算题目是考察他们计算速度和思维能力的重要环节。
在奥数竞赛中,掌握一些简便运算方法可以帮助小学生们更快地解题,提高竞赛成绩。
一、快速计算乘法在六年级奥数中,乘法是一个经常出现的运算题型。
为了提高解题速度,我们可以运用一些简便的乘法方法。
下面是一些常用的快速计算乘法的技巧。
1. 乘法的交换律:a × b = b × a。
利用这个性质,我们可以调整乘法的顺序,选择较简单的计算方式。
例如,计算8 × 6,可以交换顺序为6 × 8,这样就可以利用6 × 10 = 60,再减去2个6,得到48。
2. 同尾巧算:当两个乘数的个位数相同,十位数之和为10的倍数时,可以利用同尾相乘的方法。
例如,计算23 × 27,可以先计算3 × 7 = 21,然后将2与7相乘得到14,最后将两个结果相加,得到621。
3. 同倍巧算:当两个乘数一个为10的倍数,另一个可以分解成10的倍数和个位数时,可以利用同倍相乘的方法。
例如,计算40 × 9,可以先计算4 × 9 = 36,然后在结果后面加一个0,得到360。
二、快速计算除法除法也是六年级奥数中的一个常见题型。
为了更快地解答除法题目,我们可以运用一些简便的除法方法。
1. 除法的逆运算:乘法和除法是相互逆运算。
如果我们知道一个乘法的结果和一个乘数,就可以通过除法来求另一个乘数。
例如,如果我们知道6 × 8 = 48,想要求出8,就可以用48除以6,得到8。
2. 除法的倍数法则:当除数和被除数都是10的倍数时,可以通过去掉末尾的0来简化计算。
例如,计算300 ÷ 10,可以直接去掉末尾的0,得到30。
三、快速计算加法和减法加法和减法是六年级奥数中的基本运算。
为了提高计算速度,我们可以运用一些简便的加法和减法方法。
六年级奥数 分数的速算与巧算
第一讲 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算 (1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
(2021年整理)六年级奥数速算与巧算
六年级奥数速算与巧算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级奥数速算与巧算)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级奥数速算与巧算的全部内容。
六年级奥数速算与巧算训练A卷1.直接写出得数。
(1) 8240÷5=(2) 21300÷25=(3) 72000÷125= (4) 36024×125=(5) 3724×11= (6) 387×101=(7) 5432×15= (8) 37×48×625=(9) 564-(387-136)= (10)(72+63)÷9=2.用简便方法计算下列各题。
(1) 372÷162×54 (2) 132×288÷(24×11) (3) 616÷36×18÷22 (4) 14×44×104(5) 8100÷5÷90×15 (6) 7777×3333÷1111 (7)(4+7+……+25+28)—(2+5+……+23+26)(8)199+1999+19999+ 1999993.一个数扩大 5倍后,再减去6得39。
那么这个数减去6后,再扩大 5倍,结果是多少?4.两个数的和是572,其中一个加数个位上的数是0,去掉0,就与第二个加数相同。
这两个加数各是多少?5.小强在计算“25-△×3”时,按从左向右依次计算,算出的结果与正确答案相差多少?6.小林在计算有余数的除法时,把被除数171错写成117,结果商比原来小3,但余数恰好相同。
六年级上册数学试题奥数知识点第1讲 速算与巧算
第1讲 速算与巧算(等差数列)1、数列定义:若干个数排成一列,像这样一串数,称为数列。
数列中的每一个数称为一项,其中第一个数称为首项(我们将用 1a 来表示),第二个数叫做第二项 以此类推,最后一个数叫做这个数列的末项(我们将用 n a 来表示),数列中数的个数称为项数,我们将用 n 来表示。
如:2,4,6,8, ,100。
2、等差数列:从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列。
我们将这个差称为公差(我们用 d 来表示),即:1122312----=-==-=-=n n n n a a a a a a a a d例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
(省略号表示什么?)练习:试举出一个等差数列,并指出首项、末项、项数和公差。
3、 计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差即:d n a a n ⨯-+=)1(1(2)项数公式:项数=(末项-首项)÷公差+1即:1)(1+÷-=d a a n n(3)求和公式:总和=(首项+末项)×项数÷2即:()21321÷⨯+=+++n a a a a a a n n在等差数列中,如果已知首项、末项、公差。
求总和时,应先求出项数,然后再利用等差数列求和公式求和。
1.计算:(1)2021-3-6-9-…-51-54(2)(2+4+6+…+96+98+100)-(1+3+5+7+…+97+99)(3)1991-1988+1985-1982+…+11-8+5-22.计算:2021×2021-2021×2021+2021×2021-2021×2021+…+4×3-3×2+2×13.计算:1+3+4+6+7+9+10+……+2021+20214.在1950—2021之间要插入15个数,这样就可以组成一个等差数列,被插入的这15个数的和是多少?5.15个连续奇数的和是2021,其中最大的奇数是多少?6.100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?7.1至100内所有不能被5或9整除的数的和是多少?8.仔细观察下图,想一想当对角线上的数字是77的时候,图中共有多少个阴影小正方形?9.如右上图,表中将自然数按照从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯,……,那么,第18个拐弯的地方是( )。
六年级奥数-.分数的速算与巧算
分母
n个9,其中n等于循环节所含的数字个数
按循环位数添9,不循环位数添0,组成分母,其中9在0的 左侧
;
;
2、单位分数的拆分:
例: =
=
=
;
=
=
分析:分数单位的拆分,主要方法是: 从分母N的约数中任意找出两个m和n,有:
=
本题10的约数有:1,10,2,5.。 例如:选1和2,有:
第 1 页 共 16 页
【解析】 先选10的三个约数,比如5、2和1,表示成连减式
和连加式
.
则:
如果选10、5、2,那么有:
.
另外,对于这类题还有个方法,就是先将单位分数拆分,拆成两个单位分数的和或差,再将其中的一个单位分 数拆成两个单位分数的和或差,这样就将原来的单位分数拆成了3个单位分数的和或差了.比如,要得到
,根据前面的拆分随意选取一组,比如
同,那么最后得到的 和 也是相同的.本题中,从10的约数中任取两个数, 共有
种,但是其中
比值不同的只有5组:(1,1);(1,2);(1,5);(1,10);(2,5),所以本题共可拆分成5组.具体的解如下:
.
(2)10的约数有1、2、5、10,我们可选2和5:
另外的解让学生去尝试练习. 【巩固】 在下面的括号里填上不同的自然数,使等式成立.
【例 14】
.
【解析】 原式
【巩固】 计算:
.
【解析】 本题可以直接将两个乘积计算出来再求它们的差,但灵活采用平方差公式能收到更好的效果.
原式
【巩固】 计算:
.
【解析】 本题可以直接计算出各项乘积再求和,也可以采用平方差公式.
原式
其中
可以直接计算,但如果项数较多,应采用公式 进行计算.
小学奥数常用的巧算和速算方法
常用的巧算和速算方法【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。
例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。
“3+5+7+………+97+99=?3+5+7+……+97+99=(99+3)×49÷2= 2499。
这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。
张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:“今有女子不善织,日减功,迟。
初日织五尺,末日织一尺,今三十日织讫。
问织几何?”题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。
她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。
问她一共织了多少布?张丘建在《算经》上给出的解法是:“并初末日织尺数,半之,余以乘织讫日数,即得。
”“答曰:二匹一丈”。
这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。
(答略)张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。
若把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。
同样,这一递增的相同的数,也不是一个整数。
假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等”这一特点,那么,就会出现下面的式子:所以,加得的结果是6×30=180(尺)但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。
所以,这妇女30 天织的布是180÷2=90(尺)可见,这种解法的确是简单、巧妙和饶有趣味的。
奥数中的速算与巧算
速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5习题一解答1.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78。
(完整)小学六年级奥数简便运算(含答案),推荐文档
简便运算(一)一、知识要点根据算式的结构和数的特征. 灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简. 化难为易。
二、精讲精练【例题 1】计算 4.75-9.63+ (8.25-1.37 )【思路导航】先去掉小括号 . 使 4.75 和 8.25 相加凑整 . 再运用减法的性质:a-b-c = a -( b+c). 使运算过程简便。
所以原式= 4.75+8.25 -9.63 -1.37=13-( 9.63+1.37 )=13-11=2练习 1:计算下面各题。
1. 6.73 - 2 又 8/17+ (3.27 -1 又 9/17 )2.7 又 5/9 -(3.8+1 又 5/9 )- 1 又 1/53.14.15 -( 7 又 7/8 - 6 又 17/20 )- 2.1254.13 又 7/13 -( 4 又 1/4+3 又 7/13 )- 0.75【例题 2】计算 333387 又 1/2 ×79+790× 66661 又 1/4【思路导航】可把分数化成小数后 . 利用积的变化规律和乘法分配律使计算简便。
所以:原式= 333387.5 × 79+790×66661.25=33338.75 ×790+790× 66661.25=( 33338.75+66661.25 )× 790=100000× 790=79000000练习 2:计算下面各题:1.3.5 ×1 又 1/4+125% +1 又 1/2 ÷4/52.975 ×0.25+9 又 3/4 ×76-9.753.9 又 2/5 ×425+4.25÷1/604.0.9999 ×0.7+0.1111 ×2.7【例题 3】计算: 36× 1.09+1.2 ×67.3【思路导航】此题表面看没有什么简便算法. 仔细观察数的特征后可知:36 =1.2 ×30。
小学数学速算与巧算方法
小学数学速算与巧算方法在小学数学中,速算与巧算方法可以帮助学生们快速计算数学题目,提高他们的计算效率。
下面介绍一些常用的小学数学速算与巧算方法。
一、快速乘法1.垂直互补法:假设解题的数字是27和83相乘,我们可以将相乘的数字列成如下形式:2 7×83---------16 21 (7×3=21)+ 56 (2×8=16)---------2241这种方法适用于两位数相乘的情况。
2.分解法:当有一个较大的数和一个较小的数相乘时,我们可以将较大的数分解成更容易计算的部分,然后再相乘。
例如,我们要计算37×4,可以将37分解为30+7,然后将这两个数分别与4相乘,最后再将两个结果相加:(30×4)+(7×4)=120+28=1483.十倍法:当需要计算一个数的十倍时,可以直接在这个数的末位加一个零。
例如,计算23的十倍,就是230。
二、快速除法1.分解法:当需要计算一个数除以一个较大的数时,我们可以将这个数分解成更容易计算的部分,然后再进行计算。
例如,计算125÷5,可以将125分解为100+20+5,然后分别将这三个数除以5:(100÷5)+(20÷5)+(5÷5)=20+4+1=252.迭加法:当需要计算一个数除以2、3、4等数字时,可以使用迭加法。
例如,计算108÷4,可以从最大的4开始迭加,找到一个最大的数x,使得x×4≤108,然后再计算108-x×4的值,这个值就是我们要的结果。
在这种情况下,4×25=100,所以108-100=8,所以108÷4=25余8三、快速加减法1.补零法:当需要进行两个数的加减运算时,我们可以选择将其中一个数补零,使得两个数的位数相同,然后再进行计算。
例如,计算27+8,我们可以将8补零成80,然后进行计算:27+80=1072.数形结合法:当需要进行一系列连加或连乘的运算时,我们可以将这些数进行排列组合,形成一种数形结合的形式,从而简化计算过程。
六年级上册数学同步拓展奥数第2讲 速算与巧算 全国通用
第2讲 速算与巧算(裂项法)1、分数裂项法将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
2、整数裂项法:裂项思想是:瞻前顾后,相互抵消。
例如:1223344950⨯+⨯+⨯++⨯=_________;设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×3 3×4×3=3×4×(5-2)=3×4×5-2×3×449×50×3=49×50×(51-48)=49×50×51-48×49×50 3S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51 S =49×50×51÷3=41650例1:111111223344556++++=⨯⨯⨯⨯⨯ 。
小学六年级奥数速算与巧算
【导语】数学速算法是指利⽤数与数之间的特殊关系进⾏较快的加减乘除运算的计算⽅法。
以下是⽆忧考整理的《⼩学六年级奥数速算与巧算》相关资料,希望帮助到您。
1.⼩学六年级奥数速算与巧算 ①1870-280-520 =1870-(280+520) =1870-800 =1070 ②4995-(995-480) =4995-995+480 =4000+480=4480 ③4250-294+94 =4250-(294-94) =4250-200=4050 ④1272-995 =1272-1000+5 =2772.⼩学六年级奥数速算与巧算 ①536+(541+464)+459 =(536+464)+(541+459) =2000 ②588+264+148 =588+(12+252)+148 =(588+12)+(252+148) =600+400 =1000 ③8996+3458+7546 =(8996+4)+(3454+7546) =9000+11000(把3458分成4和=9000+110003454) =20000 ④567+558+562+555+563 =560×5+(7-2+2-5+3) =2800+5=28053.⼩学六年级奥数速算与巧算 ①478-128+122-72 =(478+122)-(128+72) =600-200 =400 ②464-545+99+345 =464-(545-345)+100-1 =464-200+100-1 =363 ③537-(543-163)-57 =537-543+163-57 =(537+163)-(543+57) =700-600 =100 ④947+(372-447)-572 =947+372-447-572 =(947-447)-(572-372) =500-200 =3004.⼩学六年级奥数速算与巧算 ⼀、(1+2+3+……+2009+2010+……+2+1)÷2010 【分析】1+2+3+……+2009+2010+……+2+1)÷2010 =2010×2010÷2010 =2010 ⼆、123×9+82×8+41×7-2009 【分析】40 123×9+82×8+41×7-2010 =41×3×9+41×2×8+41×7-2010 =41×(27+16+7)-2010 =2050-2010 =40 三、(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999) 解答:分析题⽬要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,⽐较⿇烦.但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…=1000-999=1,因此可以对算式进⾏分组运算.解解法⼀:分组法解法⼆:等差数列求和(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)=(2+1000)×500÷2-(1+999)×500÷2=1002×250-1000×250=(1002-1000)×250=500。
六年级奥数专题01:分数的巧算
一、分数的巧算(一)年级 班 姓名 得分一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+321131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算: ⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151.12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211.13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++.14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.一、分数的巧算(二)年级 班 姓名 得分一、填空题1.计算:13471711613122374⨯+⨯+⨯= . 2.计算:⎪⎭⎫ ⎝⎛⨯+÷⨯⎪⎭⎫ ⎝⎛+-25.1522546.79428.0955= . 3.计算:25114373611125373185444.4⨯+÷+÷= . 4.计算:()()015.06.32065.022.0013.000325.0⨯÷-÷= . 5.计算: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= . 6.计算:222345567566345567+⨯⨯+= . 7.计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= . 8.计算:4513612812111511016131+++++++= . 9.计算:()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= . 10.计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++ ⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211= .二、问答题11.用简便方法计算:421330112091276523-+-+-.12.计算:()1999119981997199919985.19935.1995÷⨯÷-.(得数保留三位小数)13.计算:⋅⋅⋅+++⋅⋅⋅+++++++++1999219991313233323121222111 1999119992199919981999199919991998++⋅⋅⋅++++.14.计算:299810001299799912001312000211999111999119981199714131211++++⋅⋅⋅+++++++-+⋅⋅⋅+-+-.———————————————答 案一—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=. 3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…, 直到减去余下的五百分之一,最后剩下: ⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=.5. 16. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=.6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=.10. 144. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=. 11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-= 91837641532730+-+-+= 504533=.13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.———————————————答 案二——————————————————————1. 16 原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯=.2. 90 原式⎪⎭⎫ ⎝⎛⨯+⨯⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=45522455378.0942955 ()⎪⎭⎫ ⎝⎛+⨯⨯-=522537458.08 90457210452.7=⨯=⨯⨯=.3. 9. 原式25114373625114373137825114⨯+⨯+⨯= ⎪⎭⎫ ⎝⎛++⨯=37363731378251149377525114=⨯=.4. 1 原式1100131351536325=⨯⨯⨯⨯=.5. 1.1 原式1.110119854321011674523==⨯⋅⋅⋅⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=6. 1.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+=.7. 205. 原式322330433440544550655660766770⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 205120130140150160=+++++++++=.8. 54 原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=101915141413131212 54101212=⎪⎭⎫ ⎝⎛-=.9. 1. 原式2960285933423313231603059332231130⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= 13130321605934333229283216059323130=⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯=.10.21. 令a =+++++766554433221,则 原式⎪⎭⎫ ⎝⎛-⨯+-⨯+=21)1(212a a a a 2121212122=⎪⎭⎫ ⎝⎛-+-+=a a a a .11. 原式767665655454434332322121⨯+-⨯++⨯+-⨯++⨯+-⨯+= ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=71616151514141313121211 76711=-=.12. 原式199919981200019982⨯⎪⎭⎫ ⎝⎛-⨯= 199811998199824000+⨯⎪⎭⎫ ⎝⎛-= ⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=199811199824000 1998199821998240004000⨯--+= 1998199821998224000⨯-++= 001.4002≈.13. 因为kk k k k k k k k k k k k k k -+⋅⋅⋅+++=+++⋅⋅⋅+-++-+⋅⋅⋅+++)321(212311321 k kk k k =-+=)1(,所以, 原式19990002200019991999321=÷⨯=+⋅⋅⋅+++=.14. 分子⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⨯-⎪⎭⎫ ⎝⎛+++⋅⋅⋅++++=1998161412121999119981199714131211 ⎪⎭⎫ ⎝⎛+⋅⋅⋅+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++=9991312111999131211 199911001110001+⋅⋅⋅++= 分母3998139961200412002120001++⋅⋅⋅+++= ⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯=1999110011100012 原式211999110011100012199911001110001=⎪⎭⎫ ⎝⎛+⋅⋅⋅++⨯+⋅⋅⋅++=.。
小学生奥数速算与巧算题五篇(最新)
1.小学生奥数速算与巧算题【思路】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。
(2)812-593+193=812-(593-193)=812-400=412(1)286+879-679=286+(879-679)=286+200=868练习:计算下面各题。
1.368+1859-8592.582+393-2933.632-385+2854.2756-2748+1748+2445.612-375+275+(388+286)6.756+1478+346-(256+278)-2462.小学生奥数速算与巧算题【例题】计算9+99+999+9999【思路】这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
这是小学数学计算中常用的一种技巧。
9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106练习:1、计算99999+9999+999+99+92、计算9+98+996+99973、计算1999+2998+396+4974、计算198+297+396+4955、计算1998+2997+4995+59946、计算19998+39996+49995+699963.小学生奥数速算与巧算题1、用2、3、4、6这四张牌进行计算,使最后得数等于24。
2、怎样用3、7、8、8四个数进行计算,使最后得数等于24?3、用两个2和两个8计算,使最后得数等于24。
4、现在有三个数:2、6、8,怎样用这三个数进行计算,使计算结果等于24?5、小明从一副扑克牌中摸出2、3、6、9这四张牌,怎样用这四个数进行计算,使结果等于24?6、有四个数:1、3、5、9,请你进行计算,使最后得数等于24。
六年级巧算奥数题
六年级巧算奥数题在六年级的学习生活中,奥数题常常成为学生们头疼的问题。
奥数题通常需要灵活运用各种数学知识和技巧来解决,对学生的逻辑思维能力和数学运算能力提出了很高的要求。
在这篇文章中,我们将会解析一些六年级巧算奥数题,帮助学生更好地理解和解决这些挑战性问题。
首先,让我们来看一个常见的奥数题例子:如果一个正整数的百位、十位和个位数字分别是1、2和3,这个数比它的百位数字大72,那么这个数是多少?这道题目考察了学生对数字的理解和运算能力。
首先,我们可以设这个数为ABC,其中A为百位数,B为十位数,C为个位数。
根据题意,我们可以得出以下等式:100A + 10B + C = 100A + B + C + 72。
化简得到10B = 72,解方程得到B = 7。
因此,这个数为173。
接下来,让我们来看一个稍复杂一点的奥数题:有一堆桃子,数学的时候,爸爸吃了一半,还多吃了一个,妈妈吃了一半,还多吃了一个,孩子吃了一半,还多吃了一个,最后剩下4个,问这堆桃子原来有多少个?这个题目考察了学生的逻辑思维和反推能力。
假设原来有X个桃子,按照题目的描述,我们可以得出以下等式:(1/2)X - 1 = (1/2)(X/2 - 1) - 1 = (1/2)((X/2 - 1)/2 - 1) - 1 = 4。
解方程得到X = 22,因此原来有22个桃子。
最后,让我们来看一个挑战性较大的奥数题:甲、乙、丙三个数,已知甲的数值是乙的数值的2倍,乙的数值是丙的数值的2倍,而丙的数值是甲的数值的2倍,问:这三个数各是多少?这个题目需要学生通过分析数值的关系来解决。
设甲、乙、丙的数值分别为A、B、C,根据题目的描述,我们可以得出以下等式:A = 2B,B = 2C,C = 2A。
解方程得到A = 0,B = 0,C = 0,因此这三个数各是0。
通过以上的例题,我们可以看到,解决奥数题需要学生具备良好的数学基础知识,灵活的数学运算技巧,以及清晰的逻辑思维能力。
小学六年级计算数学题速算技巧
小学六年级计算数学题速算技巧小学六年级计算数学题速算技巧加法的神奇速算法一、加大减差法1.口诀前面加数加上后面加数的整数,减去后面加数与整数的差等于和。
2.例题1376+98=1474 计算方法:1376+100-23586+898=4484 计算方法:3586+1000-1025768+9897=15665 计算方法:5768+10000-103二、求只是数字位置颠倒两个两位数的和1.口诀一个数的十位数加上它的个位数乘以11等于和2.例题47+74=121 计算方法:(4+7)x 11=12168+86=154 计算方法:(6+8)x 11=15458+85=143 计算方法:(5+8)x 11=143减法的神奇速算法一、减大加差法1.例题321-98=223计算方法:减100,加28135-878=7257计算方法:减1000,加12291321-8987= 82334计算方法:减10000,加10132.总结被减数减去减数的整数,再加上减数与整数的差,等于差。
二、求只是数字位置颠倒两个两位数的差1.例题74-47=27计算方法:(7-4)x9=2783-38=45计算方法:(8-3)x9=4592-29=63计算方法:(9-2)x9=632.总结被减数的十位数减去它的个位数乘以9,等于差。
三、求只是首尾换位,中间数相同的两个三位数的差1.例题936-639=297计算方法:(9-6)x9=27注意!27中间必须加9,即为差297723-327=396计算方法:(7-3)x9=36注意!36中间必须加9,即为差396873-378=495计算方法:(8-3)x9=45注意!45中间必须加9,即为差4952.总结被减数的百位数减去它的个位数乘以9,(差的中间必须写9)等于差。
四、求互补两个数的差1.例题73-27=46计算方法:(73-50)x2=46613-387=226计算方法:(613-500)x2=2268112-1888=6224计算方法:(8112-5000)x2=62242.总结两位互补的数相减,被减数减50乘以2;三位互补的数相减,被减数减500乘以2;四位互补的数相减,被减数减5000乘以2;以此类推......乘法的神奇速算法一、十位数相同,个位数互补的两位数乘法1.口诀十位加一乘十位,个位相乘写后边(未满10补零)。
六年级奥数课堂第四讲 小数的速算与巧算
六年级奥数课堂第二讲小数的速算与巧算【专家讲解】要想使计算变得快速、巧妙、正确,就要注意观察,发现算式中数的特点,灵活运用拆、拼的方法进行转化,化繁为简,化难为易。
【解题技巧】小数巧算常用的一些方法有:1.小数减(除)法的性质。
2.积(商)不变的规律。
3.交换律和结合律。
4.乘法分配率及其逆应用(分解、变形)。
5.分组法和图解法。
例题1.用简便方法计算下面各题:(1)52.8-2.65+47.2-7.35 (2)68.4-(24.2-11.6)例题2.用简便方法计算下面各题:(1)1.25×0.25×8×4 (2)0.125×0.25×0.5×64趁热打铁习题(1)(1)38.6-8.3+11.4-1.7 (2)3.28-(1.98-1.72)(3)12.5×2.5×8×4 (4)64×12.5×0.25×0.08(5)0.5×0.32×1.25×0.025×2例题3.用简便方法计算下面各题:(1)0.23×10.2 (2)7.5×99.8例题4.用简便方法计算下面各题:(1)21.3×0.8+0.2×21.3 (2)3.75×31+62.5×3.1趁热打铁习题(2)(1)0.45×100.2 (2)0.25×99.8(3)5.63×12+88×5.63 (4)327×2.8+17.3×28例题5.用简便方法计算下面各题:(1)7.68÷2.5÷4 (2)0.125÷(3.6÷80)×0.18 (3)(9.1×4.8×7.5)÷(2.5×1.3×1.6)趁热打铁(3)(1)82.3÷12.5÷0.8 (2)4.92÷0.25÷0.4(3)36.363÷(1.2121×4)(4)(3.6×7.5×9.5)÷(1.2×2.5×1.9)综合练习题(1)12.2×201-24.4 (2)0.26×9.8-0.74×0.2(3)14.8×47-14.8×19+14.8×72(4)5.75÷1.25÷0.4÷2 (5)0.125÷(3.6÷80)×0.9。
最新小学奥数 分数的速算与巧算(含详解)
最新小学奥数 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
六年级奥数速算、巧算方法及习题
六年级奥数速算、巧算方法及习题姓名 成绩一、认真思考,对号入座:(共30分)(1)一个圆的周长是6.28米,半径是(1米)。
(2)一块周长是24分米的正方形铁板,剪下一个最大的圆,圆的面积是(28.26平方分米)。
(3)一项工程,甲单独做要6小时完成,乙单独做要9小时完成。
甲、乙合做2小时,完成了这项工程的(5/9),余下的由甲单独做,还要(8/3)小时完成。
(4)以“万”为单位,准确数5万与近似数5万比较最多相差(0.5万)。
(5)在推导圆的面积公式时,将圆等分成若干份,拼成一个近似的长方形,已知长方形的长比宽多6.42厘米,圆的面积是(28.26)平方厘米。
(6)已知:a ×23 =b ×135 =c ÷23 ,且a 、b 、c 都不等于0,则a 、b 、c 中最小的数是(b )。
(7)甲是乙的15 ,乙是丙的15 ,则甲是丙的(1/25)。
(8)六年级共有学生180人,选出男生的131和5名女生参加数学比赛,剩下的男女人数相等。
六年级有男生(91)人。
(9)今年王萍的年龄是妈妈的31,二年前母子年龄相差24岁,四年后小萍的年龄是(16)岁。
(10)六(1)班男生的一半和女生的41共16人,女生的一半和男生的41共14人,这个班(40)人。
(11)把一个最简分数的分母缩小到原来的1/3,分子扩大到原来的3倍,这个分数的值15/2,这个最简分数是(5/6)。
(12)一个真分数,分子和分母的和是33,如分子减2,分母增加4,约简后是2/3,原分数是(16/17)。
(13)一件工作,甲做3天,乙做5天可完成1/2;甲做5天,乙做3天可完成1/3。
那么,甲乙合做(9.6)天可完成。
(14)把20克药粉放入180克水中,药粉占药水的(1/10)。
(15)一桶水连桶共重1734 千克,把水倒出13 后,重1214 千克,空桶重(5/4)千克。
二、看清题目,巧思妙算:(共27分) (1)计算下列各题[28÷[7.8]×5] [7×[9.3]-2.3] [13.8÷[313 ]×12]=20 =60 =55 (2)3000以内有多少个数能被11整除? [3000/11]=272(3)有13个自然数,它们的平均值精确到小数点后一位数是18.6,那么精确到小数点后三位数是多少?18.55×13‹13个自然数的和‹18.64×13 241.15‹13个自然数的和‹242.32 242÷13≈18.615 (4)用最简便的方法计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数速算、巧算方法及习题
姓名 成绩
一、认真思考,对号入座:(共30分)
(1)一个圆的周长是6.28米,半径是(1米)。
(2)一块周长是24分米的正方形铁板,剪下一个最大的圆,圆的面积是(28.26平方分米)。
(3)一项工程,甲单独做要6小时完成,乙单独做要9小时完成。
甲、乙合做2小时,完成了这项工程的(5/9),余下的由甲单独做,还要(8/3)小时完成。
(4)以“万”为单位,准确数5万与近似数5万比较最多相差(0.5万)。
(5)在推导圆的面积公式时,将圆等分成若干份,拼成一个近似的长方形,已知长方形的长比宽多6.42厘米,圆的面积是(28.26)平方厘米。
(6)已知:a ×23 =b ×135 =c ÷23
,且a 、b 、c 都不等于0,则a 、b 、c 中最小的数是(b )。
(7)甲是乙的15 ,乙是丙的15
,则甲是丙的(1/25)。
(8)六年级共有学生180人,选出男生的
131和5名女生参加数学比赛,剩下的男女
人数相等。
六年级有男生(91)人。
(9)今年王萍的年龄是妈妈的3
1,二年前母子年龄相差24岁,四年后小萍的年龄是(16)岁。
(10)六(1)班男生的一半和女生的
41共16人,女生的一半和男生的4
1共14人,这个班(40)人。
(11)把一个最简分数的分母缩小到原来的1/3,分子扩大到原来的3倍,这个分数的值15/2,这个最简分数是(5/6)。
(12)一个真分数,分子和分母的和是33,如分子减2,分母增加4,约简后是2/3,原分数是(16/17)。
(13)一件工作,甲做3天,乙做5天可完成1/2;甲做5天,乙做3天可完成1/3。
那么,甲乙合做(9.6)天可完成。
(14)把20克药粉放入180克水中,药粉占药水的(1/10)。
(15)一桶水连桶共重1734 千克,把水倒出13 后,重1214
千克,空桶重(5/4)千克。
二、看清题目,巧思妙算:(共27分)
(1)计算下列各题
[28÷[7.8]×5] [7×[9.3]-2.3] [13.8÷[313
]×12] =20 =60 =55
(2)3000以内有多少个数能被11整除?
[3000/11]=272
(3)有13个自然数,它们的平均值精确到小数点后一位数是18.6,那么精确到小数点后三位数是多少?
18.55×13‹13个自然数的和‹18.64×13
241.15‹13个自然数的和‹242.32
242÷13≈18.615
(4)用最简便的方法计算。
138
7131287÷+⨯ 6.63×45+4.37÷145 -45 =7/8 =450
(435 ×3.62+4.6×61350 )÷23 (12 +1112 )÷219
÷(2-0.25) =4.6×9.88÷23 =19/12×9/19×7/4
=1.976 =21/16
12578 ÷(1134 -4320 +2.25-720 ) 54×(123 -131 )+23×(131 + 154 )-31×(123 - 154
) =12578
÷(14-4.5) =1 =13.25
三、面积计算。
(共8分)
(1)如图,圆的周长为6π厘米,梯形中位线为8厘米。
阴影面积是多少平方厘米?
(2)图中扇形的半径OA =OB =6厘米,45=∠AOB , AC 垂直OB 于C ,那么图中阴影部分的面积是多少平方厘米?
四、走进生活,解决问题:(共35分)
(1)某小学学生中38
是男生,男生比女生少328人,该小学共有学生多少人? 328÷(1-38 -38
)=1312人 (2)有两袋米,甲比乙少18千克。
如果再从甲倒入乙6千克,这时甲的米是乙的58
,甲原来有多少千克米?
(18+6×2)÷(1-58
)-30=50千克 8×6-3×3×3.14=19.74平方厘米
6×6×3.14×45/360-6×3÷2=5.13平方厘米
(3)一项工程,甲单独做12天可以完成。
如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完。
若甲单独做6天,余下工作乙要做几天?
(1-3/12)÷6=1/8
(1-6/12)÷1/8=4天
(4)食堂有一批大米,用去总重量的23 后,又运进260千克,现存大米比原来还多15
,现存大米多少千克?
260÷[1+15 -(1-23
)]=300千克 (5)加工一批零件,甲单独做3天完成,乙单独做4天完成。
两人同时加工完成任务时,甲比乙多做24个。
这批零件有多少个?
1÷(1/3+1/4)=12/7
24÷12/7÷(1/3-1/4)=168个
(6)一个半圆的周长是102.8厘米,这个半圆的面积是多少平方厘米?
102.8÷5.14=20
20×20×3.14÷2=628平方厘米
(7)甲、乙两班各有一个图书室,共有296本书。
已知甲班图书的
513
和乙班图书的14
合在一起是95本,那么甲班图书有多少本? (95-296×14 )÷(513 -14
)=156本
(8)一项工作,甲乙两队合作9天完成,乙丙两队合作12天完成,甲丙两队合作需18天完成,现在三队合作需多少天完成?
1÷[(19 + 112 + 118
)÷2]=8天
(9)一项工程,甲单独做10日可完成,乙单独做15日可完成。
今甲、乙合作,但因乙休息了若干日,则用了8日完成。
问乙休息了几日?
8-(1-8/10)÷1/15=5。