七年级数学角平分线和垂直平分线的性质综合练习

合集下载

垂直平分线角平分线练习题

垂直平分线角平分线练习题

垂直平分线1.三角形中,一条边的垂直平分线恰好经过三角形的另一个顶点,那么这个三角形一定是( ). A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 2.如图,△ABC 中,∠BAC=100°,DE ,FG 分别为AB ,AC 的垂直平分线,•如果BC=16cm ,那么△AEG 的周长为_______,∠EAG=_______.3、在△ABC 中,AB=AC ,∠BAC=90°,斜边BC 与AB 的垂直平分线交于D 点,若BC=a ,则D 点到△ABC 的三个顶点的距离的和是_______________.4.如图,已知AE=CE ,BD ⊥AC 求证:BA+DA=BC+DC5.在△ABC 上,已知点D 在BC 上,且BD+AD=BC 。

求证:点D 在AC 的垂直平分线上。

6.已知:如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ;求证:AD 垂直平分EF7.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M,∠A=40°.(1)求∠NMB 的大小.(2)如果将(1)中的∠A 的度数改为70°,其余条件不变,再求∠NMB 的大小; (3)你发现有什么样的规律性?试证明之;8. 在Rt △ABC 中,∠C=90°,AD 平分∠BAC ,DE 垂直平分AB 。

(1)求∠B 的度数。

(2)若CD=3cm ,求AB 的长。

DEC BA9、如图,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形。

(保留作图痕迹,不要求写作法和证明)角平分线1、如图AD 、AE 分别是△ABC 中∠A 内角的平分线和外角平分线,则∠DAE= .(第2题)E C A D B(第3题)BCA DA BCFED2、如图,∠BAC=30º,P 是∠BAC 平分线上一点,PM//AC ,PD ⊥AC ,若AM=8cm ,则PD=_________ cm .3、如图,在ΔABC 中,BC =5 cm ,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD ∥AB ,PE ∥AC ,则ΔPDE的周长是___________ cm.4.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D 到边AB 的距离为_____.5.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2,AB =4,则AC =( )A .4 B .3 C .6 D .5 6、在Rt 三角形ABC 中,AC=4,BC=3,AB=5,点P 是三角形三个内角平分线的交点,则点P 到AB 的距离PE=_____. 7.如图所示,在四边形ABCD 中,∠C=∠D=90°,若∠DAB 的平分线AE 交CD•于E ,连接BE ,且BE 恰好平分∠ABC ,则下列结论中错误的是( )A .AE ⊥BE B .CE=DE C .AD+DE=BE D .AB=AD+BC 8、已知△ABC :⑴如图1,若P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°+21∠A ; ⑵如图2,若P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=21∠A ; ⑶如图3,若P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°-21∠A 。

垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。

全等三角形、轴对称、角平分线、垂直平分线综合例题加练习(基础)七年级下数学

全等三角形、轴对称、角平分线、垂直平分线综合例题加练习(基础)七年级下数学

角平分线、垂直平分线一、角平分线基础知识回顾。

角平分线的性质:角平分线的判定:1、角的平分线的作法(1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB内一点C.(3)作射线OC,则OC为∠AOB的平分线(如图)二、垂直平分线基础知识回顾。

1、垂直平分线的性质:垂直平分线的判定:2、垂直平分线的作法段的两侧),连接这两个交点。

应用1、作图。

设计最短路线。

(只需要保留作图痕迹,不写作法)建设一条输油管道支路,从主输油管道AB将油输到M和N两个村庄,请设计使铺设的管道最短的路线图。

MA B2、如图,一铁路直线EC和一公路直线DC相交于点C,请确定点P的位置,使得点P到两个村庄A和B的距离相等,且点P到公路和铁路的距离相等。

(写出作法,并保留作图痕迹)E3.如图,在∠ABC内有一点P,问:(1)能否在BA、BC边上各找到一点M、N,使△PMN的周长最短?若能,请画图说明;若不能,说明理由.(2)若∠ABC=40°,在(1)问的条件下,能否求出∠MPN的度数?若能,请求出它的数值;若不能,请说明原因.典型例题剖析例1、如图所示,四边形ABCD 中,AB =AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD .求证:△ABE ≌△ADF .例2、已知:如图,在四边形ABCD 中,AB>BC ,BD 平分.求证:AD=CD .练习、如图,AC 平分BCD ∠,180B D ∠+∠=︒,证明:AB=AD 。

ABCD练习、如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB 于F,EG⊥AC交AC的延长线于G,求证:BF=CG.例题.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.2、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.例题4.(10分)已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.练习.如图,等边△ABC中,D是AB边上的一动点,以CD为一边,向上作等边△EDC,连接AE.(1)求证:△ACE≌△BCD;(2)判断AE与BC的位置关系,并说明理由.复习回顾B 卷常考题练习20.已知:如图,在等腰直角三角形ABC 中,∠BAC=90°,BD 平分ABC ∠,交AC 于点D ,过点C 作CE BD ⊥,交BD 的延长线于点E ,交BA 的延长线于点F ,连结DF . (1)求证:BD CF =;(2)若2=CE ,求BDF ∆的面积.B 卷(共50分)一、填空题(每小题4分,共20分)21.如图,已知AB ∥CD ,AE=DF ,点A 、E 、F 、D 在一条直线上,要使△ABF ≌△DCE ,还需添加一个..条件,这个条件可以是 . 22.若关于x 的二次三项式292(4)16x a x +-+是一个完全平方式,则a 的值为 .23.现有五根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,12cm ,从中任取三根木棒,能组成三角形的概率是 . 24.已知12112a =-,22113a =-,32114a =-,…,)1(11+-=n a n (为正整数),记,则2011S = .25.如图,已知中,8AB AC ==厘米,6BC =厘米,点为的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为 厘米/秒时,能够使与全等.n 123n n S a a a a =⋅⋅⋅⋅L ABC △D AB BPD △CQP △ABEFCDF AE DCB二、(26题8分,27题10分,28题12分,共30分) 26.已知a b c 、、是的三条边长.(1)若a b c 、、满足222a b c +=,且29()()42x a x b x x -+=--,求c 的值; (2)若a b c 、、满足2215424a b a b c ++=+--,试判断的形状,并说明你的理由.22. 如图所示,在△ABC 中,AD 是BC 边上的中线, AB =4,AC =8,则中线AD 长度的取值范围是________________.26. 已知:0152=+-a a ,试求下列代数式的值: (1)a a 1+;(2)221aa +.21.若非零实数b a ,满足,2241b ab a -=则a b= .22、在锐角△ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC = .23、若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于 .ABC △ABC △A BC(24题24、如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是 一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂 上阴影,能构成这个正方体的表面展开图的概率是 。

垂直平分线和角平分线典型题

垂直平分线和角平分线典型题

知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

垂直平分线与角平分线(习题及答案).

垂直平分线与角平分线(习题及答案).

垂直平分线与角平分线(习题)➢复习巩固1.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点2.如图,在△ABC 中,AF 平分∠BAC,AC 的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C 的度数为.第2 题图第3 题图3.如图,AD 是∠BAC 的平分线,DE⊥AB 于点E,若S△ABC=6,AB=4,AC=3,则线段DE 的长为.4.如图,P 是∠AOB 平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C,D,连接CD.求证:OP 是CD 的垂直平分线.5.如图,点P 为锐角∠ABC 内一点,点M 在边BA 上,点N 在边BC 上,且PM=PN,∠BMP+∠BNP=180°.求证:BP 平分∠ABC.16.如图,点D 在边AC 上,∠ABD+∠ABC =180°,CE 平分∠ACB 交AB 于点E,连接DE.求证:DE 平分∠ADB.7.如图,在△ABC 中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC 的平分线AM 交BC 于点D;②作边AB 的垂直平分线EF,EF 与AM 相交于点P;③连接PB,PC.若∠ABC=70°,则∠BPC 的度数为.8.如图,已知△ABC(AC<BC),求作:(不写作法,保留作图痕迹)(1)BC 边上的高;(2)在BC 上确定一点P,使PA+PC=BC.9.如图,已知线段a,利用尺规求作以a 为底、以2a 为高的等腰三角形.(不写作法,保留作图痕迹)10.如图,有三幢公寓楼分别建在点A,点B,点C 处,AB,AC,BC 是连接三幢公寓楼的三条道路,要修建一超市P,按照设计要求,超市要在△ABC 的内部,且到A,C 的距离必须相等,到两条道路AC,AB 的距离也必须相等,请利用尺规作图确定超市P 的位置.(不写作法,保留作图痕迹)【参考答案】➢复习巩固1. D2. 24°3. 12 74.证明略;提示:先证Rt△POC≌Rt△POD(HL),得到OC=OD,由“到一条线段两个端点距离相等的点,在这条线段的垂直平分线上”求证5.证明略;提示:过点P 分别作PD⊥AB 于D,PE⊥BC 于E,先证△PMD≌△PNE(AAS),得到PD=PE,再由“在一个角的内部,到角的两边距离相等的点在这个角的平分线上”求证6.证明略;提示:过点E 分别作EF⊥AC 于F,EH⊥BD 于H,EG⊥BC 于G,证EF=EG=EH,求证7. 80°8.作图略提示:(1)过直线外一点作已知直线的垂线;(2)作线段AB 的垂直平分线9.作图略10.作图略提示:作线段AC 的垂直平分线和∠CAB 的角平分线;。

垂直平分线与角平分线典型题练习题

垂直平分线与角平分线典型题练习题

线段的垂直平分线与角平分线〔1〕经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,那么AC 的长等于〔 〕 A .6cm B .8cmC .10cmD .12cm针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,若是△EBC 的周长是24cm ,那么BC= 2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若是BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若是∠A=28 度,那么∠EBC 是例2. : AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

针对性练习::在△ABC 中,ON 是AB 的垂直平分线,OA=OC,求证:点O 在BC 的垂直平分线.例3. 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。

针对性练习:1. 在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为40°,那么底角B 的大小为________________。

例4、如图8,AD 是△ABC 的BC 边上的高,且∠C =2∠B ,求证:BD =AC +CD.O B A C NB课堂练习:1.如图,AC =AD ,BC =BD ,那么〔 〕 垂直平分AD 垂直平分CD 平分∠ACB2.若是三角形三条边的中垂线的交点在三角形的外部, 那么,那个三角形是〔 〕3.以下命题中正确的命题有〔 〕①线段垂直平分线上任一点到线段两头距离相等;②线段上任一点到垂直平分线两头距离相等;③通过线段中点的直线只有一条;④点P 在线段AB 外且PA =PB ,过P 作直线MN ,那么MN 是线段AB 的垂直平分线;⑤过线段上任一点能够作这条线段的中垂线. 个 个 个 个4.△ABC 中,AB 的垂直平分线交AC 于D ,若是AC =5 cm ,BC =4cm ,那么△DBC 的周长是〔 〕 A.6 cm B.7 cm C.8 cm D.9 cm5.如图,在△ABC 中,AB =AC ,O 是△ABC 内一点,且OB =OC ,求证:AO ⊥B C.6.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线MN 别离交BC 、AB 于点M 、N . 求证:CM =2BM .课后作业:1. 如图7,在△ABC 中,AC =23,AB 的垂直平分线交AB 于点D ,交BC 于点E ,△ACE 的周长为50,求BC 边的长.2. :如以下图,∠ACB ,∠ADB 都是直角,且AC=AD ,P 是AB 上任意一点,求证:CP=DP 。

垂直平分线与角平分线综合练习

垂直平分线与角平分线综合练习

线段的垂直平分线与角平分线综合练习练习1一、填空题1、一个角是轴对称图形,它的对称轴是 。

2、如果一个点到一条线段两个端点的距离相等,那么这个点在 上。

3、线段的垂直平分线可以看作是 的点的集合。

4、如果两个点关于一条直线对称,那么这条直线 连接这两点的线段。

5、如图(1),BC 的垂直平分线交AB 于点D ,如果=50A ∠,2DCB ACD ∠=∠,那么B ∠= ,ACB ∠= 。

6、角的平分线可以看作是 点的集合。

7、如图(2),PE ⊥OA ,PF ⊥OB ,PE=PF ,那么点P的位置在上,依据是 。

8、如图(3),△ABC 中,ABC ACB ∠∠、的平分线相交于点O ,连接AO ,如果130BOC ∠=,那么OAC ∠等于 度。

BOBC图(1) 图(2) 图(3) 二、选择题9、等腰三角形是轴对称图形,对称轴是( ) A. 底边的中线; B. 顶角的平分线; C. 底边上的高; D. 底边的垂直平分线。

10、如果点P 到△ABC 的各顶点的距离相等,那么点P 是( ) A. 三角形三条中线的交点; B. 三角形三条高的交点;C. 三角形三个内角平分线的交点;D. 三角形各边垂直平分线的交点。

11、在△ABC 内部,到边AB 、BC 、CA 的距离都相等的点共有( ) A. 一个; B. 二个; C. 三个; D. 无数个。

12、已知△ABC 中,AB=AC ,角平分线AD 、BE 、CF 相交于点I ,画图后判断该图形中全等三角形的对数共有( )A. 4对;B. 5对;C. 6对;D. 7对。

三、解答题 13、已知,如图,在△ABC 中,DE 垂直平分AB ,交BC 于点E ,垂足为D ,2CEA CAE ∠=∠。

求证:2BAC B ∠=∠。

AB14、已知,如图,AB=AE ,BC=ED ,B E ∠=∠,AF 是BAE ∠的平分线。

求证:AF 垂直平分CD 。

EFB15、如图所示,在△ABC 中,DF 垂直平分AB ,垂足为点D ,交AC 于点E ,交BC 的延长线于点F ,且AE=EF ,:4:3A F ∠∠=。

简单的轴对称图形——垂直平分线和角平分线(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

简单的轴对称图形——垂直平分线和角平分线(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第03讲简单的轴对称图形—垂直平分线和角平分线(7类热点题型讲练)1.理解线段的垂直平分线的概念;2.掌握线段的垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)4.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)5.能运用角的平分线性质定理解决简单的几何问题.(难点)知识点01线段的垂直平分线(简称中垂线)定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.作法:作已知线段的垂直平分线.知识点02角平分线的性质1.角是轴对称图形,角平分线所在的直线是它的对称轴.2.性质:角平分线上的点到这个角的两边的距离相等.3.作已知角的角平分线.题型01根据线段垂直平分线的性质求解【例题】(2024八年级下·全国·专题练习)如图,在()ABC AB AC < 中,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,15cm AC =,ABE 的周长为24cm ,则AB 的长为.【变式训练】1.(2024·山东滨州·一模)如图,在ABC 中,90A ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若16AB =,8AC =,则BE 长为.2.(23-24八年级下·四川雅安·阶段练习)如图所示,在ABC 中,DM EN 、分别垂直平分AB 和AC ,交BC 于D E 、.(1)若50DAE ∠=︒,求BAC ∠的度数;(2)若ADE V 的周长为19cm ,求BC 的长度.题型02线段垂直平分线的实际应用【例题】(23-24八年级下·河北保定·阶段练习)如图,政府计划在,,A B C 三个村庄附近建立一所小学,且小学到三个村庄的距离相等,则小学应建在()A .ABC 三边垂直平分线的交点B .ABC 三条角平分线的交点C .ABC 三条高所在直线的交点D .ABC 三条中线的交点【变式训练】1.(23-24八年级下·河南郑州·阶段练习)如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A .AC ,BC 两边垂直平分线的交点处B .AC ,BC 两边中线的交点处C .AC ,BC 两边高线的交点处D .A ∠,B ∠两内角平分线的交点处题型03作垂线(尺规作图)【例题】(23-24八年级下·广东佛山·期中)如图,在ABC 中,90C ∠=︒.(1)尺规作图:作边AB 的垂直平分线,交BC 与点D ,交AB 于点E (保留作图痕迹,不写作法)(2)若38ABC ∠=︒,求CAD ∠的度数.【变式训练】1.(23-24八年级上·江苏徐州·期中)如图,某社区要在居民区A ,B 所在的直线上建一图书室E ,并使图书室E 到本社区两所学校C 和D 的距离相等.已知CA AB ⊥,DB AB ⊥,垂足分别为A ,B ,且 2.5km AB =,1.5km CA =, 1.0km BD =.(1)请用直尺和圆规在图中作出点E (不写作法,保留作图痕迹);(2)求图书室E 到居民区A 的距离.2.(23-24八年级上·辽宁鞍山·阶段练习)如图,某居民小区在三栋住宅楼A ,B ,C 之间修建了供居民散步的三条绿道,小区物业打算在绿道内部修建一个凉亭,按照设计要求,凉亭到三条绿道的距离相等,请在图中标注凉亭的位置,保留作图痕迹,并说明设计理由.题型04根据角平分线的性质定理求解【例题】(23-24八年级下·广东茂名·期中)如图,OP 平分AOB ∠,PC OB ⊥,如果6PC =,那么点P 到OA 的距离等于【变式训练】1.(23-24八年级下·江西吉安·阶段练习)如图,AD 是ABC 的角平分线,DE AB ⊥于点E ,若6,2AC DE ==,则ACD 的面积为.2.(23-24八年级下·河南郑州·阶段练习)如图,已知P 是AOB ∠平分线上一点,15AOP ∠=︒,CP OB ∥交OA 于点C ,PD OB ⊥,垂足为D ,且6PC =,则OPC 的面积等于.题型05根据角平分线的性质定理证明【例题】(23-24八年级上·广东广州·期中)如图,四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 上一点,DE 平分ADC ∠,且AE 平分BAD ∠.(1)求证:ED AE ⊥;(2)求证:点E 为BC 的中点.【变式训练】1.(23-24八年级上·湖北恩施·期末)教材第56页拓广探索12题:(1)如图,在ABC 中,AD 是它的角平分线①求证:ABD ACD S AB S AC=△△;②另一方面,我们进一步探索,可以证明ABDACD S BD S CD= .请你选择上述两结论中的其中一个进行证明;(2)由(1)的探索我们可以得到关于ABC 的角平分线AD 的一个性质,请你总结这个性质(结合图1表述);(3)运用你所得到的结论完成下列证明:如图2,AD 是BAC ∠的平分线,CE AD ∥交BA 的延长线于点E .求证:BD BA CD EA=.2.(22-23八年级上·上海普陀·期中)如图,在ABC 中,AD 是BAC ∠的平分线.(1)在线段AD 上任意取一点F ,过点F 作MN AD ⊥,交AB 于点M ,交AC 于点N ,通过这样的作图能得到结论MF FN =,那么依据是_________.(2)如果=60B ∠︒,CE 平分ACB ∠交AB 于点E ,且AD 、CE 相交于点F ,求证:FE FD =.(3)如果100ACB ∠=︒,在边AB 上截取一点E ,连接CE ,使20ACE ∠=︒,连接DE .请直接写出ADE ∠的度数.题型06角平分线的性质实际应用【例题】(23-24八年级下·陕西西安·阶段练习)如图,某市有一块由三条马路围成的三角形绿地,现决定在其中修建一个亭子,使亭子中心到三条马路的距离相等,则亭子应建在()A .在边AC ,BC 两条高的交点处B .在边AC ,BC 两条中线的交点处C .在边AC ,BC 两条垂直平分线的交点处D .在ABC ∠和ACB ∠两条角平分线的交点处【变式训练】1.(23-24八年级下·陕西西安·阶段练习)如图,直线a ,b ,c ,表示三条相互交叉的公路,交点为三个小区,现拟建一个超市,要求它到三个小区的距离都相等,则可以供选择的地址有()A .1处B .2处C .3处D .4处题型07作角平分线(尺规作图)【例题】(23-24八年级下·辽宁沈阳·阶段练习)如图1,两条交叉马路OM ,ON 中间区域建有A ,B 两个温室花房.现要在两条马路OM ,ON 之间的空场处建鲜花交易中心P ,使得交易中心P 到两条马路OM ,ON 的距离相等,且到两个温室花房A ,B 的距离也相等.如何确定交易中心P 的位置?如图2,利用尺规作图求作点P (不写作法,保留作图痕迹).【变式训练】1.(2024·广东茂名·一模)如图,已知ABC ,CA CB =,ACD ∠是ABC 的一个外角.(1)请用尺规作图法,求作射线CP ,使CP 平分ACD ∠.(保留作图痕迹,不写作法)(2)证明:CP AB ∥.2.(23-24九年级下·湖北恩施·阶段练习)如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若110ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,求证:ACN MCN △≌△.一、单选题1.(23-24八年级上·浙江温州·阶段练习)如图,100,BAC AB AC ∠=︒>.若MP 和NQ 分别垂直平分AB 和AC ,则PAQ ∠的度数是()A .20︒B .60︒C .50︒D .40︒2.(22-23八年级上·湖北武汉·期末)如图,ABC 中,90BAC ∠=︒,534BC AC AB ===,,,点D 是ABC ACB ∠∠,的角平分线的交点,则点D 到BC 的距离为()A .1B .2C .3D .3.53.(22-23九年级上·浙江杭州·期中)如图在ABC 中,边AB ,AC 的垂直平分线交于点P ,连结BP ,CP ,若50A ∠=︒,则BPC ∠=()A .100︒B .95︒C .90︒D .50︒4.(2024·海南省直辖县级单位·模拟预测)如图,在ABC 中,AB AC =,54B ∠=︒,以点C 为圆心,CA 长为半径作弧交AB 于点D ,分别以点A 和点D 为圆心,大于12AD 长为半径作弧,两弧相交于点E ,作直线CE ,交AB 于点F ,则ACF ∠的度数是()A .25︒B .20︒C .18︒D .15︒5.(23-24七年级下·江苏苏州·阶段练习)如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是()①ABE 的面积BCE =△的面积;②=AFG AGF ∠∠;③2FAG ACF ∠=∠;④AF FB =.A .①③④B .①②④C .①②③D .③④二、填空题6.(22-23八年级上·甘肃平凉·期末)如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长.7.(23-24九年级下·北京·阶段练习)如图,在Rt ABC 中,90B Ð=°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG 的面积为8.(23-24八年级上·山东日照·期末)如图,ABC 的面积是12,8AB =,CAB ∠的平分线交BC 于点D ,M ,N 分别是线段AD ,AC 上的动点,则CM MN +的最小值是.9.(23-24八年级下·陕西咸阳·阶段练习)如图,在ABC 中,100A ∠=︒,点D 是BC 上的一点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,则EDF ∠=.10.(2023·四川泸州·二模)如图,已知线段6AB =,点P 为线段AB 上一动点,以PB 为边作等边PBC ,以PC 为直角边,CPE ∠为直角,在PBC 同侧构造Rt PCE △,点M 为EC 的中点,连接AM ,则AM 的最小值为三、解答题11.(23-24九年级上·山东青岛·阶段练习)A 、B 是两个村庄,12L L 、是两条马路.为发展经济,提高农民收入,镇政府决定建立一个蔬菜批发市场,选址要使市场到两条马路和两个村庄的距离都相等.请你用尺规在图中找出市场的位置.(不用写作法,但是要保留作图痕迹)12.(23-24八年级上·重庆江津·期中)如图,在ABC 中,AD BC ⊥,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD DE =,连接AE .(1)求证:AB EC =;(2)若ABC 的周长为42cm ,16cm AC =,求DC 的长.13.(23-24八年级下·广东深圳·阶段练习)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,BE AC =.(1)求证:AD BC ⊥.(2)若75BAC ∠=︒,求B ∠的度数.14.(22-23八年级上·辽宁营口·期中)感知:如图1,AD 平分BAC ∠,180B C ∠+∠=︒.90B Ð=°探究:如图2,AD 平分BAC ∠,180B C ∠+∠=︒.90B ∠<︒,求证:DB DC =.15.(23-24八年级下·河南郑州·阶段练习)如图,在ABC 中,AC CB ≠,DM 、EN 分别垂直平分AC 和BC ,交AB 于点M 、N ,垂足分别为点D 、E ,分别延长DM 和EN ,相交于点F .八年级的小明同学非常喜欢钻研数学问题,在学习线段垂直平分线时,他发现MCN ∠与ACB ∠存在一定的数量关系,于是他通过举例的方式进行研究:(1)当100ACB ∠=︒时,MCN ∠=________;当80ACB ∠=︒时,MCN ∠=________.(2)当ACB m ∠=时,求MCN ∠的度数(用含m 的代数式表示,写出推理过程).(3)当50DFE ∠=︒时,MCN ∠=________°.16.(23-24八年级上·湖北武汉·阶段练习)已知等边ABC ,点N 是边AB 上一点,以BN 为边向外作等边BNM ,连AM 、CN .(1)如图1,求证:AM CN =;(2)如图2,若CN AB⊥,判断BC与MN的关系并证明;(3)如图3,在(2)下,连MC,以MC为边向下作等边MCP,设MC交AB于G,连PG,求证:12PMG PCGS S=△△.。

角平分线和垂直平分线的性质,判定过关考试

角平分线和垂直平分线的性质,判定过关考试

D
C
B
A
姓名:
1、如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,
PE⊥OB交OB于E.F是OC上的另一点,DF=EF.求证:∠PDF=∠PEF.
2、如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC .
求证:∠BAD+∠BCD=180°(作两条辅助线).
3、如图,CD ⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,OB=OC.
求证:∠1=∠2 .
4、如图,在△OAB中,E是BC的中点,EC⊥OA,ED⊥OB ,垂足为C,D,AC=BD.求
证:AD是△ABC的角平分线.
5、如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC.
求证:AE是∠DAB的角平分线.
O
A
C
F
P
B
E
D
6、如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.求∠A的度数?
7、如图,等腰△ABC中,AC=8.线段AB的垂直平分线交AB于D,交AC于E,AD=5,
△ABC的周长为20.。

求△BEC的周长。

8、如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在哪条线
段的垂直平分线上,并说明理由9、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连
接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;
(2)AB=BC+AD.
10、如图,AC=AD,BC=BD,可以得到哪些结论,并说明
垂直平分的理由(共10种)。

线段的垂直平分线与角平分线综合压轴题五种模型全攻略(解析版)--初中数学

线段的垂直平分线与角平分线综合压轴题五种模型全攻略(解析版)--初中数学

线段的垂直平分线与角平分线综合压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一利用线段垂直平分线的性质求解】【考点二线段垂直平分线的判定】【考点三利用角平分线的性质求解】【考点四角平分线的判定】【考点五线段的垂直平分线与角平分线的综合问题】【过关检测】【典型例题】【考点一利用线段垂直平分线的性质求解】1(2023春·江苏淮安·七年级校考阶段练习)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB、AC于E,D,连接EC,则∠BEC=.【答案】72°/72度【分析】先根据垂线平分线的定义得到AD=CD,ED⊥AC,进而证明△ADE≌△CDE得到∠DCE =∠A=36°,则由三角形外角的性质可得∠BEC=∠A+∠ACE=72°.【详解】解:∵AC的垂直平分线交AB、AC于E,D,∴AD=CD,ED⊥AC,∴∠ADE=∠CDE=90°,又∵ED=ED,∴△ADE≌△CDE SAS,∴∠DCE=∠A=36°,∴∠BEC=∠A+∠ACE=72°,故答案为:72°.【点睛】本题主要考查了三角形外角的性质,全等三角形的性质与判断,线段垂直平分线的定义,正确推出∠DCE=∠A=36°是解题的关键.【变式训练】1(2023·江苏·八年级假期作业)三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获胜,为使游戏公平,凳子应放的最适当的位置在三角形的()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【答案】D【分析】根据题意可知,凳子的位置应该到三个顶点的距离相等,从而可确定答案.【详解】因为三边的垂直平分线的交点到三角形三个顶点的距离相等,这样就能保证凳子到三名同学的距离相等,以保证游戏的公平,故选:D.【点睛】本题主要考查垂直平分线的应用,掌握垂直平分线的性质是关键.2(2023春·山东济南·七年级济南市章丘区第二实验中学校考阶段练习)如图,在△ABC中,BC=8,AB的中垂线交BC于E,AC的中垂线交BC于G,则△AGE的周长等于.【答案】8【分析】根据垂直平分线的性质定理,得EA=EB,GA=GC,进而即可求解.【详解】解:∵AB的中垂线交BC于E,AC的中垂线交BC于G,∴EA=EB,GA=GC,∴△AGE的周长=EA+GA+GE=EB+GC+GE=BC=8.故答案是:8.【点睛】本题主要考查垂直平分线的性质定理,掌握垂直平分线的性质定理是解题的关键.线段的垂直平分线上的点到线段的两个端点的距离相等.3(2023春·广东深圳·七年级校考期末)如图,在△ABC中,DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=10cm,求△CMN的周长;(2)若∠MFN=65o,则∠MCN的度数为°.【答案】(1)10cm(2)50【分析】(1)由线段垂直平分线的性质可得MA=MC,NB=NC,则△CMN的周长=CM+CN+MN= AM+MN+BN=AB;(2)根据等边对等角可得∠A=∠MAC,∠B=∠NCB,根据三角形内角和定理,列式求出∠FMN+∠FNM,再求出∠A+∠B,即可求解.【详解】(1)解:∵DM,EN分别是AC,BC的中垂线∴MA=MC,NB=NC∴C△CMN=CM+MN+CN=AM+MN+BN=AB=10cm;(2)由(1)得MA=MC,NB=NC,由DM,EN分别垂直平分AC和BC,可得∠MDA=∠NEB=90°,∴∠A=∠MCA,∠B=∠NCB,∵在△MNF中,∠MFN=65°,∴∠FMN+∠FNM=115°,根据对顶角的性质可得:∠FMN=∠AMD,∠FNM=∠BNE,在Rt△ADM中,∠A=90°-∠AMD=90°-∠FMN,在Rt△BNE中,∠B=90°-∠BNE=90°-∠FNM,∴∠A+∠B=90°-∠FMN+90°-∠FNM=65°,∴∠MCA+∠NCB=65°,在△ABC中,∠A+∠B=65°∴∠ACB=115°,∴∠MCN=∠ACB-(∠MCA+∠NCB)=50°.故答案为:50.【点睛】本题考查了线段垂直平分线的性质,等边对等角的性质,三角形内角和定理,解题的关键是熟练掌握相关基本性质和整体思想的利用.【考点二线段垂直平分线的判定】1(2023春·陕西西安·七年级校考阶段练习)如图,AD为三角形ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F,连接EF交AD于点O.(1)若BE=DE,∠BAC=60°,求∠CDF的度数;(2)写出AD与EF的关系,并说明理由;【答案】(1)15°(2)AD⊥EF,AD平分EF【分析】(1)根据三角形内角和可得∠C,再利用内角和即可得出∠CDF;(2)由角平分线的意义及两个垂直可证明△ADE≌△ADF,从而有AE=AF,DE=DF,由线段垂直平分线的判定知,AD⊥EF,AD平分EF.【详解】(1)解:∵DE⊥AB∴∠BED=90°∵BE=DE∴∠B=45°∵∠BAC=60°∴∠C=180°-45°-60°=75°∵DF⊥AC∴∠DFC=90°∴∠CDF=15°(2)解:AD⊥EF,AD平分EF;理由如下:∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE⊥AB,DF⊥AC,∴∠DEA=∠DFA=90°,∵AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴AD是线段EF的垂直平分线,即AD⊥EF,AD平分EF.【点睛】本题考查了全等三角形的证明,等腰三角形的性质,三角形内角和,角平分线的性质.找到Rt△AED和Rt△ADF,通过两个三角形全等,找到各量之间的关系,完成证明是关键.【变式训练】1(2023秋·广西河池·八年级统考期末)如图,在△ABC中,边AB,BC的垂直平分线交于点P.(1)求证:PA=PB=PC;(2)求证:点P在线段AC的垂直平分线上.【答案】(1)见解析(2)见解析【分析】(1)根据垂直平分线的性质直接可得到答案;(2)根据到线段两个端点的距离相等的点在线段的垂直平分线上即可得到答案;【详解】(1)证明:∵边AB、BC的垂直平分线交于点P,∴PA=PB,PB=PC,∴PA=PB=PC;(2)证明:∵边AB,BC的垂直平分线交于点P,∴PA =PB ,PB =PC ,∴PA =PC ,∴点P 在AC 的垂直平分线上.【点睛】本题考查垂直平分线的性质及判定,解题的关键是熟练掌握垂直平分线上的点到线段两个端点距离相等及到线段两个端点的距离相等的点在线段的垂直平分线上.2(2023春·全国·八年级专题练习)如图,点D 是等边△ABC 外一点,∠BDC =120°,DB =DC ,点E ,F 分别在AB ,AC 上,连接AD 、DE 、DF 、EF .(1)求证:AD 是BC 的垂直平分线;(2)若ED 平分∠BEF ,BC =5,求△AEF 的周长.【答案】(1)见解析;(2)10.【分析】(1)根据到线段两端距离相等的点在垂直平分线上即可证明;(2)如图,过D 作DM ⊥EF 于M ,结合已知易证∠DBE =90°即DB ⊥AB ,同理可得DC ⊥AC ,易证Rt △DBE ≌Rt △DME HL 得BE =ME ,同理可得CF =MF ,然后转换求周长即可.【详解】(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∴A 在BC 的垂直平分线上,又DB =DC ,∴D 在BC 的垂直平分线上,∴AD 是BC 的垂直平分线;(2)如图,过D 作DM ⊥EF 于M ,∵∠BDC =120°,DB =DC∴∠DBC =30°又∵△ABC 是等边三角形,∴∠DBE =∠DBC +∠ABC =90°∴DB ⊥AB同理可得∴DC ⊥AC∵ED 平分∠BEF ,DM ⊥EF∴DB =DM =DC∴DF 平分∠CFE ,在Rt △DBE 与Rt △DME 中,DE =DE DB =DM∴Rt △DBE ≌Rt △DME HL∴BE =ME同理可得CF =MFC△AEF=AE+AF+EF=AE+AF+EM+MF=AE+AF+EB+CF=AE+EB+AF+CF=AB+AC=2BC=10.【点睛】本题考查了垂直平分线的判定,角平分线的判定和性质,全等三角形的判定和性质;解题的关键是通过相关性质构造线段相等、进行转换.【考点三利用角平分线的性质求解】1(2023春·山东威海·七年级统考期末)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,AB= 8,DE=4,AC=6,则S△ABC=()A.14B.26C.56D.28【答案】D【分析】如图:作DF⊥AC交AC于点F,根据角平分线的性质可得DF=DE=4,再由S△ABC=S△ADC+S△ADB求解即可.【详解】解:如图,作DF⊥AC交AC于点F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DF=DE=4,∴S△ABC=S△ADC+S△ADB=12AC·DF+12AB·DE=12DE AC+AB=12×46+8=28,故选:D.【点睛】本题考查了角平分线的性质定理、三角形的面积公式等知识点,根据角平分线的性质定理得到DF=DE=4是解题的关键.【变式训练】1(2023春·甘肃张掖·八年级校考期末)一块三角形的草坪,现要在草坪上建一个凉亭供大家休息,要使凉亭到草坪三边的距离相等,凉亭的位置应选在()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高所在直线的交点D.三角形三条中线的交点【答案】B【分析】根据题意,凉亭到草坪三边的距离相等,凉亭的位置在三角形三条角平分线的交点,据此即可求解.【详解】解:∵凉亭到草坪三边的距离相等,∴凉亭的位置在三角形三条角平分线的交点,故选:B.【点睛】本题考查了三角形角平分线的性质,熟练掌握角平分线的性质是解题的关键.2(2023春·山西运城·七年级统考期末)如图,BD平分∠ABC,P是BD上一点,过点P作PQ⊥BC 于点Q,PQ=5,O是BA上任意一点,连接OP,则OP的最小值为.【答案】5【分析】根据垂线段最短确定点O的位置,再根据角平分线的性质即可得到最短距离.【详解】解:∵O是BA上任意一点,∴当PO⊥BA时,OP的值最小,又∵BD平分∠ABC,P是BD上一点,PQ⊥BC,PQ=5∴OP的最小值为5,故答案为:5.【点睛】本题考查角平分线的性质定理,垂线段最短,解题关键是找到最短距离的位置.3(2023春·陕西榆林·七年级校考期末)如图,在四边形ABCD中,AD∥BC,∠D=90°,∠DAB的平分线与∠CBA的平分线相交于点P,且点P在线段CD上,∠CPB=30°.(1)求∠PAD的度数;(2)试说明PD=PC.【答案】(1)30°(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,以及角平分线的定义,即可作答;(2)过点P作PE⊥AB于点E,再根据角平分线的性质定理即可证明.【详解】(1)∵AD∥BC,∴∠C=180°-∠D=180°-90°=90°.∵∠CPB=30°,∴∠PBC=90°-∠CPB=60°.∵PB平分∠ABC,∴∠ABC=2∠PBC=120°.∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°-120°=60°.∵AP平分∠DAB,∴∠PAD=1∠DAB=30°.2(2)如图.过点P作PE⊥AB于点E.∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD.∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC.【点睛】本题主要考查了平行线的性质,角平分线的性质定理的等知识,掌握角平分线的性质定理,是解答本题的关键.【考点四角平分线的判定】1(2023·全国·八年级假期作业)如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.【答案】证明见解析【分析】作DE⊥BA交BA的延长线于E,DF⊥AC于F,DG⊥BH于G,根据角平分线的性质得到DE=DF,根据角平分线的判定定理证明结论.【详解】证明:作DE⊥BA交BA的延长线于E,DF⊥AC于F,DG⊥BH于G,∵DB平分∠ABC、DC平分∠ACH,∴DE=DG,DF=DG,∴DE=DF,又DE⊥BA,DF⊥AC,∴AD是∠BAC的外角平分线.【点睛】本题考查的是角平分线的性质和判定,掌握角的平分线上的点到角的两边的距离相等、到角的两边的距离相等的点在角的平分线上是解题的关键.【变式训练】1(2023·广东惠州·校联考二模)如图,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.(1)求证:AC 平分∠DAB ;(2)若AE =10,DE =4,求AB 的长.【答案】(1)见解析(2)6【分析】(1)过C 点作CF ⊥AB ,交AB 的延长线于点F .由AAS 证明△CDE ≌△CBF ,可得CE =CF ,结论得证;(2)证明Rt △ACE ≌Rt △ACF ,可得AE =AF ,可求出AB .【详解】(1)证明:过C 点作CF ⊥AB ,交AB 的延长线于点F .∵CE ⊥AD ,∴∠DEC =∠CFB =90°,∵∠D +∠ABC =180°,∠CBF +∠ABC =180°,∴∠D =∠CBF ,又∵CB =CD ,∴△CDE ≌△CBF ,∴CE =CF ,∴AC 平分∠DAB ;(2)解:由(1)可得BF =DE =4,在Rt △ACE 和Rt △ACF 中,CE =CF AC =AC ,∴Rt △ACE ≌Rt △ACF ,∴AE =AF =10,∴AB =AF -BF =6.【点睛】本题考查了角平分线的判定与性质,全等三角形的判定与性质,关键是作出辅助线构造全等三角形.2(2023·江苏·八年级假期作业)如图,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.【答案】(1)见解析(2)AB +AC =2AE ,证明见解析【分析】(1)根据HL证明Rt△DBE≌Rt△DCF,得到DE=DF,再根据角平分线的判定定理,求证即可;(2)通过HL证明Rt△ADE≌Rt△ADF,得到AE=AF,利用线段之间的关系,求解即可.【详解】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,在Rt△DBE和Rt△DCF中,BD=CD BE=CF,∴Rt△DBE≌Rt△DCF HL,∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC.(2)解:AB+AC=2AE,证明如下:在Rt△ADE和Rt△ADF中,AD=AD DE=DF,∴Rt△ADE≌Rt△ADF HL,∴AE=AF,∴AB+AC=AB+AF+CF=AB+AE+BE=2AE.【点睛】此题考查了全等三角形的判定与性质,以及角平分线的判定定理,解题的关键是灵活利用相关性质进行求解.【考点五线段的垂直平分线与角平分线的综合问题】1(2023秋·河北保定·八年级统考期末)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB.(2)连接CE,求证AD垂直平分CE.(3)若AB=10,AF=6,求CF的长.【答案】(1)证明见解析(2)证明见解析(3)CF=2【分析】(1)利用角平分线的性质可得DC=DE,再利用“HL”证明Rt△DCF≌Rt△DEB,即可证明CF=EB;(2)利用“HL”证明Rt△ACD≌Rt△AED,可得AC=AE,所以点A在CE的垂直平分线上,根据DC=DE,可得点D在CE的垂直平分线上,进而可以解决问题;(3)设CF=BE=x,则AE=AB-BE=10-x=AC=AF+FC=6+x,即可建立方程求解.【详解】(1)证明:∵DE⊥AB于点E,∴∠DEB=90°,又AD平分∠BAC,∠C=90°,∴DC=DE,在Rt△DCF和Rt△DEB中,DF=DB DC=DE,∴Rt△DCF≌Rt△DEB HL,∴CF=EB.(2)证明:连接CE,如图在Rt△ACD和Rt△AED中,AD=AD DC=DE,∴Rt△ACD≌Rt△AED HL,∴AC=AE∴点A在CE的垂直平分线上,∵DC=DE,∴点D在CE的垂直平分线上,∴AD垂直平分CE(3)解:设CF=BE=x,∵AB=10,AF=6,∴AE=AB-BE=10-x,AC=AF+FC=6+x,∵AE=AC,∴10-x=6+x,解得:x=2∴CF=2【点睛】本题考查了直角三角形全等的判定与性质,角平分线的性质,解题关键是在图形中找到正确的全等三角形以及熟悉以上性质与判定.【变式训练】1(2023秋·河南洛阳·八年级统考期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC 于点F,连接EF.(1)求证:点D在EF的垂直平分线上;(2)若AB+AC=16,S△ABC=24,则DE的长为【答案】(1)见解析(2)3【分析】(1)根据角平分线的性质定理直接得出DE=DF,则问题得解;(2)先得出S△ABD=12×AB×DE,S△ACD=12×AC×DF,结合DE=DF,可得S△ABC=12×AB+AC×DE,问题随之得解.【详解】(1)证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.∴点D在EF的垂直平分线上.(2)∵DE⊥AB,DF⊥AC,∴S△ABD=12×AB×DE,S△ACD=12×AC×DF,∵在(1)中有:DE=DF,∴S△ACD=12×AC×DF=12×AC×DE,∵S△ABC=S△ABD+S△ACD,∴S△ABC=12×AB×DE+12×AC×DE=12×AB+AC×DE,∵AB+AC=16,S△ABC=24,∴24=12×16×DE,∴DE=3,即DE的长为3,故答案为:3.【点睛】本题主要考查了角平分线的性质定理,根据角平分线的性质定理直接得出DE=DF是解答本题的关键.2(2023春·全国·八年级专题练习)如图,D为△ABC外一点,DG为BC的垂直平分线,分别过点D 作DE⊥AB,DF⊥AC,垂足分别为点E,F,且BE=CF.(1)求证:AD为∠CAB的角平分线;(2)若AB=8,AC=6,求AE的长.【答案】(1)见解析(2)AE=7【分析】(1)连接CD,BD,根据线段垂直平分线的性质可得CD=BD,再证明Rt△DEB≌Rt△DFC,可得DF=DE,再证明Rt△AFD≌Rt△AED,即可得证;(2)根据全等三角形的性质可得AE=AF,进一步可得AB-AE=AF-AC,从而可得AE=1 2AB+AC.【详解】(1)连接CD,BD,如图所示:∵DG为BC的垂直平分线,∴CD=BD,∵DE ⊥AB ,DF ⊥AC ,∴∠DEB =∠DFC =90°,在Rt △DEB 和Rt △DFC 中,BE =CF BD =CD ,∴Rt △DEB ≌Rt △DFC∴DE =DF ,在Rt △AFD 和Rt △AED 中,DF =DE AD =AD ,∴Rt △AFD ≌Rt △AED∴∠FAD =∠EAD ,∴AD 为∠CAB 的角平分线;(2)∵Rt △AFD ≌Rt △AED ,∴AE =AF ,又∵BE =CF ,∴AB -AE =AF -AC ,即AE =12AB +AC ,∵AB =8,AC =6,∴AE =7.【点睛】本题考查了全等三角形的判定和性质、角平分线的判定及线段垂直平分线的性质,熟练掌握直角三角形全等的判定方法是解题的关键.3(2023春·全国·八年级开学考试)如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A =78°,∠BPC =39°,BC =7,AB =4.(1)求证:BD 平分∠ABC ;(2)如图2,AC 的垂直平分线交BD 于点Q ,交AC 于点G ,QM ⊥BC 于点M ,求MC 的长度.【答案】(1)见解析(2)MC =1.5【分析】(1)由∠ACF =∠A +∠ABF ,∠ECF =∠BPC +∠DBF ,得∠ABF =∠ACF -78°,∠DBF =∠ECF -39°,再根据CE 平分∠ACF ,得∠ACF =2∠ECF ,则∠ABF =2∠ECF -78°=2(∠ECF -39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt △QNA ≌Rt △QMC ,得NA =MC ,再证明Rt △QNB ≌Rt △QMB (HL ),得NB =MB ,则BC =BM +MC =BN +MC =AB +AN +MC ,从而得出答案.【详解】(1)证明:∵∠ACF =∠A +∠ABF ,∠ECF =∠BPC +∠DBF ,∴∠ABF =∠ACF -78°,∠DBF =∠ECF -39°,∵CE 平分∠ACF ,∴∠ACF =2∠ECF ,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.【点睛】本题主要考查了角平分线的定义和性质,三角形外角的性质,线段垂直平分线的性质,全等三角形的判定与性质等知识,作辅助线构造全等三角形是解题的关键.【过关检测】一、选择题1(2023春·四川成都·八年级统考期末)如图,在△ABC中,DE是AC边的垂直平分线,分别交BC、AC于D、E两点,连接AD,∠BAD=25°,∠C=35°,则∠B的度数为()A.70°B.75°C.80°D.85°【答案】D【分析】利用垂直平分线的性质,可得∠DAC=∠C=35°,根据三角形内角和定理,可得∠B的度数.【详解】解:∵DE是AC边的垂直平分线,∴∠DAC=∠C=35°,根据三角形内角和定理,可得∠B=180°-∠BAD-∠DAC-∠C=85°,故选:D.【点睛】本题考查了垂直平分线的性质,三角形内角和定理,熟练利用垂直平分线的性质是解题的关键.2(2023春·四川达州·八年级统考期末)如图,点P为定角∠AOB平分线上的一个定点,且∠MPN与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论中,不正确的是()A.OM +ON 的值不变B.∠PNM =∠POBC.MN 的长不变D.四边形PMON 的面积不变【答案】C【分析】如图作PE ⊥OA 于E ,PF ⊥OB 于F ,于∠EPF +∠AOB =180°,可证∠MPN =∠EPF ,所以∠EPM =∠FPN ,由OP 平分∠AOB ,得证PE =PF ,于是Rt △POE ≌Rt △POF ,所以OE =OF ,同时△PEM ≌△PFN ,所以EM =NF ,PM =PN ,推出∠PMN =∠PNM ,进一步得到∠PNM =12∠AOB ,∠POB =12∠AOB ,所以∠PNM =∠POB ,故B 正确;因为OM +ON =OE +ME +OF -NF =2OE =定值,故A 正确;由三角形全等可知,所以定值,故D 正确;M ,N 的位置变化,所以MN 的长度是变化的,故C 错误.【详解】解:如图作PE ⊥OA 于E ,PF ⊥OB 于F .∵∠PEO =∠PFO =90°,∴∠EPF +∠AOB =180°,∵∠MPN +∠AOB =180°,∴∠MPN =∠EPF ,∴∠EPM =∠FPN ,∵OP 平分∠AOB ,PE ⊥OA 于E ,PF ⊥OB 于F ,∴PE =PF ,在Rt △POE 和Rt △POF 中,OP =OP PE =PF ,∴Rt △POE ≌Rt △POF ,∴OE =OF ,在△PEM 和△PFN 中,∠MPE =∠NPFPE =PF∠PEM =∠PFN∴△PEM ≌△PFN ,∴EM =NF ,PM =PN ,∵PE =PF ,EM =NF ,∴S △PEM =S △PNF ,∴S 四边形PMON =S 四边形PEOF =定值,故D 正确,∵OM +ON =OE +ME +OF -NF =2OE =定值,故A 正确,∵M ,N 的位置变化,∴MN 的长度是变化的,故C 错误.∵PM =PN ,∴∠PMN =∠PNM ,∵∠MPN 与∠AOB 互补,∴∠MPN +∠AOB =180°,∵∠PMN +∠PNM +∠MPN =180°,∴∠PMN +∠PNM =∠AOB ,∵∠PMN =∠PNM ,∴∠PNM =12∠AOB ,∵OP 平分∠AOB ,∴∠POB =12∠AOB ∴∠PNM =∠POB ,故B 正确,故选:C【点睛】本题主要考查角平线的性质定理、全等三角形的判定和性质;能够结合角平分线的性质定理作出角平分线上点到两边的垂线段,构建全等三角形是解题的关键.二、填空题3(2023春·山东青岛·七年级山东省青岛实验初级中学校考期末)如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,AF 是△ABC 的中线,AB =16,AC =6,DE =5.则△ADF 的面积为.【答案】12.5【分析】过D 点作DM ⊥AB ,垂足为M ,根据角平分线上的点到角的两边距离相等可得DM =DE =5,然后根据三角形的面积公式可得S △ABD =40,S △ACD =15,可得S △ABC =S △ABD +S △ACD =55,然后由三角形的中线得S △ACF =27.5,根据S △ADF =S △ACF -S △ACD 求解即可.【详解】解:过D 点作DM ⊥AB ,垂足为M ,∵AD 是△ABC 的角平分线,DE ⊥AC ,AB =16,AC =6,DE =5,∴DM =DE =5,∴S △ABD =12AB ⋅DM =12×16×5=40,S △ACD =12AC ⋅DE =12×6×5=15,∴S △ABC =S △ABD +S △ACD =40+15=55,∵AF 是△ABC 的中线,∴S △ACF =12S △ABC =12×55=27.5,∴S △ADF =S △ACF -S △ACD =27.5-15=12.5,∴△ADF 的面积为12.5.故答案为:12.5.【点睛】本题考查角平分线上的点到角的两边距离相等的性质,三角形中线的性质,三角形的面积,作辅助线并利用角平分线的性质是解题的关键.4(2023春·湖南衡阳·七年级校联考期末)如图,在锐角三角形ABC中,AB=6,△ABC的面积为18,BD平分∠ABC,若E、F分别是BD、BC上的动点,则CE+EF的最小值为.【答案】6【分析】过点C作CP⊥AB于点P,交BD于点E,过点E作EF⊥BC于F,则CP即为CE+EF的最小值,再根据三角形的面积公式求出CP的长,即为CE+EF的最小值.【详解】解:过点C作CP⊥AB于点P,交BD于点E,过点E作EF⊥BC于F,∵BD平分∠ABC,PE⊥AB,EF⊥BC,∴PE=EF,∴CP=CE+PE=CE+EF的最小值.∵△ABC的面积为18,AB=6,×6×CP=18,∴12∴CP=6.即CE+EF的最小值为6,故答案为:6.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.三、解答题5(2023春·河南商丘·七年级统考阶段练习)如图,∠AOB=40°,OC平分∠AOB,点D,E在射线OA,OC上,点P是射线OB上的一个动点,连接DP交射线OC于点F,设∠ODP=x°.(1)如图1,若DE∥OB.①∠DEO的度数是°,当DP⊥OE时,x=;②若∠EDF=∠EFD,求x的值;(2)如图2,若DE⊥OA,是否存在这样的x的值,使得∠EFD=4∠EDF?若存在,求出x的值;若不存在,说明理由.【答案】(1)①20,70;②60;(2)存在这样的x的值,使得∠EFD=4∠EDF.当x=68或104时,∠EFD=4∠EDF.【分析】(1)①运用平行线的性质以及角平分线的定义,可得∠DEO 的度数,根据DP ⊥OE 求出x 的值;②根据三角形内角和求出∠FDE ,根据平行的性质∠ODC 的度数,相减即可得x 的值;(2)分两种情况进行讨论:DP 在DE 左侧,DP 在DE 右侧,分别根据三角形内角和定理,可得x 的值.【详解】(1)解:①∵∠AOB =40°,OC 平分∠AOB ,∴∠BOE =20°,∵DE ∥OB ,∴∠DEO =∠BOE =20°;∵∠DOE =∠DEO =20°,∴DO =DE ,∠ODE =140°,当DP ⊥OE 时,∠ODP =12∠ODE =70°,即x =70,故答案为:20,70;②∵∠DEO =20°,∠EDF =∠EFD ,∴∠EDF =80°,又∵∠ODE =140°,∴∠ODP =140°-80°=60°,∴x =60;(2)存在这样的x 的值,使得∠EFD =4∠EDF .分两种情况:①如图2,若DP 在DE 左侧,∵DE ⊥OA ,∴∠EDF =90°-x °,∵∠AOC =20°,∴∠EFD =20°+x °,当∠EFD =4∠EDF 时,20°+x °=490°-x ° ,解得x =68;②如图3,若DP 在DE 右侧,∵∠EDF =x °-90°,∠EFD =180°-20°-x °=160°-x °,∴当∠EFD =4∠EDF 时,160°-x °=4x °-90° ,解得x =104;综上所述,当x =68或104时,∠EFD =4∠EDF .【点睛】本题考查了三角形的内角和定理和三角形的外角性质的应用,三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.解题时注意分类讨论思想的运用.6(2023春·黑龙江哈尔滨·七年级统考期末)在△ABC 中,∠BAC =60°,线段BF 、CE 分别平分∠ABC 、∠ACB 交于点G .(1)如图1,求∠BGC 的度数;(2)如图2,求证:EG =FG ;(3)如图3,过点C 作CD ⊥EC 交BF 延长线于点D ,连接AD ,点N 在BA 延长线上,连接NG 交AC 于点M ,使∠DAC =∠NGD ,若EB :FC =1:2,CG =10,求线段MN 的长.【答案】(1)120°(2)见解析(3)5【分析】(1)根据三角形内角和定理求出∠ABC +∠ACB =120°,根据BF 平分∠ABC 、CE 平分∠ACB ,得出∠GBC =∠GBE =12∠ABC ,∠GCB =∠GCF =12∠ACB ,求出∠GBC +∠GCB =60°,根据三角形内角和得出∠BGC +∠GBC +∠GCB =180°,即可求出结果;(2)作GH 平分∠BGC 交BC 于点H ,证明△BGE ≌△BGH ,得出EG =GH ,证明△CGF ≌△CGH ,得出FG =GH ,即可证明结论;(3)作DP ⊥BC 交BC 延长线于点P ,作DQ ⊥AB 交BA 延长线于点Q ,作DR ⊥AC 于点R ,证明CD 平分∠ACP ,根据DR ⊥AC ,DP ⊥BC ,得出DR =DP ,根据BF 平分∠ABC ,DR ⊥AC ,DQ ⊥AB ,得出DP =DQ ,证明DR =DQ ,证明△NEG ≌△CFG ,得出NG =CG =10,证明△BEG ≌△MFG ,得出BE =MF ,作FL ⊥NG 于点L ,FK ⊥CG 于点K ,GW ⊥MC 于点W ,根据S △MGF =12MG ⋅FL =12MF ⋅GW ,S △CGF =12GC ⋅FK =12FC ⋅GW ,得出MG GC =MF FC=12,求出MG =5即可得出答案.【详解】(1)解:在△ABC 中,∠BAC +∠ABC +∠ACB =180°,∵∠BAC =60°∴∠ABC +∠ACB =120°,∵BF 平分∠ABC 、CE 平分∠ACB ,∴∠GBC=∠GBE=12∠ABC,∠GCB=∠GCF=12∠ACB,∴∠GBC+∠GCB=60°,在△BGC中,∠BGC+∠GBC+∠GCB=180°,∴∠BGC=120°.(2)解:作GH平分∠BGC交BC于点H,如图所示:∴∠BGH=∠CGH=60°,∵∠BGE=∠CGF=∠GBC+∠GCB=60°,∴∠BGH=∠CGH=∠BGE=∠CGF,∵∠GBC=∠GBE,BG=BG∴△BGE≌△BGH,∴EG=GH,∵∠GCH=∠GCF,CG=CG,∴△CGF≌△CGH,∴FG=GH,∴EG=FG;(3)解:作DP⊥BC交BC延长线于点P,作DQ⊥AB交BA延长线于点Q,作DR⊥AC于点R,如图所示:∵CE平分∠ACB,∴∠ACB=2∠ACE,∵CD⊥EC,∴∠ECD=90°,∴∠ACE+∠ACD=90°,∵∠ACB+∠ACP=180°,∴∠ACP=2∠ACD,∴CD平分∠ACP,∵DR⊥AC,DP⊥BC,∴DR=DP,∵BF平分∠ABC,DR⊥AC,DQ⊥AB,∴DP=DQ,∴DR=DQ,∴AD平分∠QAC,∵∠BAC=60°,∴∠DAQ=∠DAC=60°,∴∠NGD=∠DAC=60°,由(1)得∠BGC=120°,∴∠BEG=∠FGC=180°-∠BGC=60°,∵∠MGF=∠ABF+∠BNG=60°,∠FGC=∠FBC+∠ECB=60°,∠ABF=∠FBC,∴∠BNG=∠ECB,∵∠ECB=∠ACE,∴∠ACE=∠BNG,由(2)得EG=FG,∴△NEG≌△CFG,∴NG=CG=10,∠NEG=∠CFG,∵∠NEG+∠BEG=180°,∠CFG+∠MFG=180°,∴∠BEG=∠MFG,∴△BEG≌△MFG,∴BE=MF,∵BE:FC=1:2,∴MF:FC=1:2,作FL⊥NG于点L,FK⊥CG于点K,GW⊥MC于点W,∵∠MGF=∠CGF=60°,∴FK=FL,S△MGF=12MG⋅FL=12MF⋅GW,S△CGF=12GC⋅FK=12FC⋅GW,∴MG GC =MFFC=12,∴MG=5,∴MN=NG-MG=5.【点睛】本题主要考查了三角形全等的判定和性质,角平分线的判定和性质,三角形面积的计算,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握三角形全等的判定方法.7(2023春·八年级课时练习)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B,点C,连接AB,PB.(1)如图1,请指出AB与PB的数量关系,并说明理由.(2)如图2,当P,Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.【答案】(1)AB=PB,理由见解析(2)存在,理由见解析【分析】(1)连接BQ ,根据BC 垂直平分OQ ,可知BO =BQ ,则∠BOQ =∠BQO ,根据OF 平分∠MON ,则∠AOB =∠BOQ ,即∠AOB =∠BQO ,根据OA =QP ,可知△AOB ≌△PQB ,则可知AB =PB ;(2)如图,连接BQ ,根据BC 垂直平分OQ ,可知BQ =BO ,CQ =CO 结合条件可证△BQC ≌△BOC ,则∠BQO =∠BOQ ,根据OF 平分∠MON ,∠BOQ =∠FON ,可知∠AOF =∠FON =∠BOQ ,则∠AOF =∠BQO ,进而可知∠AOB =∠PQB ,由此可证△AOB ≌△PQB (SAS ),则AB =PB .【详解】(1)解:AB =PB理由如下:连接BQ∵BC 垂直平分OQ∴BO =BQ∴∠BOQ =∠BQO∵OF 平分∠MON∴∠AOB =∠BOQ∴∠AOB =∠BQO∵OA =QP∴△AOB ≌△PQB∴AB =PB ;(2)存在,理由:如图,连接BQ ,∵BC 垂直平分OQ ,∴BQ =BO ,CQ =CO在△BQC 和△BOC 中,BC =BCCQ =COBQ =BO∴△BQC ≌△BOC (SSS )∴∠BQO =∠BOQ ,∵OF 平分∠MON ,∠BOQ =∠FON ,∴∠AOF =∠FON =∠BOQ ,∴∠AOF =∠BQO ,∴∠AOB =∠PQB ,在△AOB 和△PQB 中,OA =PQ∠AOB =∠PQBBO =BQ∴△AOB ≌△PQB (SAS ),∴AB =PB .【点睛】本题考查了线段垂直平分线,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,本题属于中考常考问题.8(2023春·浙江宁波·七年级校考期末)角平分线性质定理描述了角平分线上的点到角两边距离的关系,小储发现将角平分线放在三角形中,有一些新的发现,请完成下列探索过程:【知识回顾】(1)如图1,P是∠BOA的平分线上的一点,PE⊥OB于点E,作PD⊥OA于点D,试证:PE=PD【深入探究】(2)如图2,在△ABC中,BD为∠ABC的角平分线交于AC于D点,其中AB+BC=10,AD=2,CD=3,求AB.【应用迁移】(3)如图3,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P为CE中点,连接PF,若CP=4,S△BFP=20,则AB的长度为.【答案】(1)见解析;(2)AB=4;(3)10【分析】(1)根据AAS证明△POD≌△POE即可;(2)作DM⊥AB于点M,作DN⊥BC于点N,由角平分线的性质得DM=DN,由三角形的面积公式可得AD CD =ABBC,结合AB+BC=10即可求解;(3)过E作EG⊥AB于G,连接CF,由P为CE中点,设S△EFP=S△CFP=y,根据BD是AC边上的中线,设S△CDF=S△AFD=z,根据三角形的面积的计算得到S△ABE=S△ABC-S△ACE=40+2y+2z-2y+2z=40,根据角平分线的性质得到EG=CE=2CP=8,于是得到结论.【详解】(1)证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD和△POE中,∠PDO=∠PEO ∠DOP=∠EOP OP=OP,∴△POD≌△POE AAS,∴PE=PD;(2)解:如图,过点D作DM⊥AB于点M,作DN⊥BC于点N,∵BD平分∠BAC,∴DM=DN,∵S△ABD=12AB⋅DM,S△CBD=12BC⋅DN,∴S△ABDS△CBD=ABBC,同理可证S△ABDS△CBD=ADCD,∴AD CD =AB BC.∵AD=2,CD=3,∴AD CD =ABBC=23,设AB=2x,则BC=3x ∵AB+BC=10,∴2x+3x=10,x=2,∴AB=4;(3)解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∴S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=20,∴S△BCD=20+y+z,∴S△ABC=2S△BCD=40+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC-S△ACE=40+2y+2z-2y+2z=40,∵AE是∠CAB的角平分线,CP=4,∴EG=CE=2CP=8,AB⋅EG=40,∴S△ABE=12∴AB=10,故答案为:10.【点睛】本题考查了三角形的面积的计算,全等三角形的判定与性质,角平分线的性质,三角形中线的性质,正确的作出辅助线是解题的关键.9(2023·贵州遵义·校考三模)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【答案】(1)①见解析 ②30°(2)见解析【分析】(1)①本题主要考查通过角度计算求证平行,继而证明△CBP是直角三角形,根据直角三角形斜边中线可得结论.②本题以上一问结论为解题依据,考查平行线以及垂直平分线的应用,根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°.(2)本题主要考查辅助线的做法以及垂直平分线性质的应用,需要延长DE到Q,使EQ=DE,连接CD,。

角平分线与垂直平分线练习(较难题型)

角平分线与垂直平分线练习(较难题型)

角平分线与垂直平分线练习(较难题型)1.如图1,点H在QR边上,PH所在的直线是△PQR的对称轴,且PQ≠QR。

设HM∥PR,交PQ于点M。

下列结论中正确的是:①HM=PM;②HM=QM;③M是PQ的中点;④HM平分∠PHQ;⑤HM⊥PQ。

答案:①、④、⑤。

2.如图2,在△ABC中,直线l为BC边的垂直平分线,直线l与∠XXX的角平分线相交于点P。

已知∠ACP=15°,∠BAC=100°。

求∠ABP的度数。

答案:∠ABP=35°。

3.如图3,在△ABC中,∠C=90°,AD为角平分线,BC=32cm,4.如图4,将△ABC绕顶点A旋转到△ADE的位置,BC 与DE相交于点F。

下列结论中正确的有:①BC=DE;③FA 平分∠CFD;④∠CAE=∠BAD;⑤∠CAE=∠BFD;⑥AC=CF。

答案:①、③、④。

5.(1) 如图,在△ABC中,ED垂直平分AB,交AC于点D,交AB于E,AC=5,BC=4.求△BCD的周长。

答案:△BCD的周长为12.2) 如图,在△ABC中,DE⊥BC,交AC于点E,垂足为D。

已知BC=10cm,△ABE的周长为15cm,△XXX的周长为25cm。

判断D是否是BC的中点。

答案:D不是BC的中点。

6.(1) 如图,在△ABC中,AB=AC,BC=12,∠BAC=120°。

AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点G,垂足分别为D,F。

求∠EAG的度数和△AEG的周长。

答案:∠EAG=30°,△AEG的周长为24.2) 如图,在△ABC中,BC=12,∠BAC=100°。

AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点G。

求∠EAG的度数和△AEG的周长。

答案:∠EAG=40°,△AEG的周长为24.3) 如图,在△ABC中,BC=12,∠BAC=70°。

平面几何的垂直平分线与平行线与角平分线与相交角练习题

平面几何的垂直平分线与平行线与角平分线与相交角练习题

平面几何的垂直平分线与平行线与角平分线与相交角练习题平面几何的垂直平分线、平行线、角平分线与相交角练习题一、垂直平分线1. 已知线段AB的中点为M,延长线段AB的垂直平分线相交于点O。

若AM = 4cm,MB = 6cm,求线段AO和线段OB的长度。

解析:由于垂直平分线将线段AB等分,所以线段AO和线段OB 的长度相等,设其长度为x,则有AO = OB = x。

又因为线段AM和线段MB的长度已知,根据线段分割定理可得,AM : MB = AO : OB。

代入已知数据可得4 : 6 = x : x,化简得2 : 3 = 1 : x,解得x = 3。

故线段AO和线段OB的长度均为3cm。

2. 已知四边形ABCD中,线段AB的中点为O,垂直平分线AC和BD相交于点E。

若AE = 6cm,DE = 10cm,求线段AB的长度。

解析:由于垂直平分线将线段AC和线段BD等分,所以线段AE和线段DE的长度相等,设其长度为x,则有AE = DE = x。

又因为线段AB的中点为O,根据线段分割定理可得,AE : EC = BO : OD。

代入已知数据可得6 : x = BO : 10,化简得6x = 10BO,再代入AE = DE = x得6x = 10x,解得x = 0,这显然不符合实际。

因此,题目中所给的条件是矛盾的,无解。

二、平行线1. 已知平行线l和m分别与线段AB相交于点C和点D,若AC =3cm,BC = 5cm,CD = 6cm,求BD的长度。

解析:由于平行线l和m与线段AB相交,根据平行线分割定理可得,AC : CB = CD : BD。

代入已知数据可得3 : 5 = 6 : BD,化简得3BD = 30,解得BD = 10。

故BD的长度为10cm。

2. 已知平行线l和m分别与线段AB相交于点C和点D,且AC =2BC,CD = 4cm,求BD的长度。

解析:由于平行线l和m与线段AB相交,根据平行线分割定理可得,AC : CB = CD : BD。

(完整版)垂直平分线与角平分线典型题

(完整版)垂直平分线与角平分线典型题

线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学角平分线和垂直平分线的性质综合
练习
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
七下数学《角平分线和垂直平分线的性质》综合练习
一.选择题(共9小题)
1.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()
A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP
2.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()
A.在AC、BC两边高线的交点处 B.在AC、BC两边中线的交点处
C.在∠A、∠B两内角平分线的交点处 D.在AC、BC两边垂直平分线的交点处3.如图:ΔABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则ΔDEB的周长是()
A.6cm B.4cm C.10cm D.以上都不对
4.(如图,在已知的ΔABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为
()
A.90° B.95° C.100° D.105°
5.如图,ΔABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=48°,则∠ABC的度数为()
A.48° B.36° C.30° D.24°
6.如图,在ΔABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,
∠DBC=15°,则∠A的度数是()
A.50° B.20° C.30° D.25°
7.如图,在ΔABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()
A.2个B.3个C.4个 D.5个
8.如图,在ΔABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
①EF=BE+CF;
②∠BOC=90°+∠A;
③点O到ΔABC各边的距离相等;
=mn.
④设OD=m,AE+AF=n,则S
△AEF
其中正确的结论是()
A.①②③B.①②④C.②③④D.①③④
9.如图,在ΔABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF 垂直平分AD.其中正确的有()
A.1个B.2个C.3个D.4个
二.填空题
10.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为.
11.如图,O是ΔABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若
∠BAC=70°,∠BOC=.
(第10题)(第11题)(第12题)
12.如图,在ΔABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,ΔABE的周长为14,则ΔABC的周长为.
13.如图,ΔABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,ΔADC的周长为9cm,则ΔABC的周长是cm.
(第13题)(第14题)(第15题)14.已知:如图,ΔABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则ΔADE的周长为.
15.如图,已知S
△ABC =8m2,AD平分∠BAC,且AD⊥BD于点D,则S
△ADC
= m2.
参考答案
一.选择题
1.D;2.C;3.A;4.D;5.A;6.A;7.D;8.A;9.C;
二.填空题
10.4;
11.125°;
12.22;
13.15;
14.14cm;
15.4;。

相关文档
最新文档