高分子物理 取向态

合集下载

高分子物理名词解释

高分子物理名词解释

1.名词解释凝聚态,内聚能密度,晶系,结晶度,取向,高分子合金的相容性。

凝聚态:为物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。

内聚能密度:CED定义为单位体积凝聚体汽化时所需要的能量,单位:晶系:根据晶体的特征对称元素所进行的分类。

结晶度:试样中的结晶部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度)。

取向:聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。

高分子合金的相容性:两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。

3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么?答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体;(2)形态特征:单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右;树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度;串晶:在电子显微镜下,串晶形如串珠;柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状;伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。

1.溶度参数的含义是什么?“溶度参数相近原理”判断溶剂对聚合物溶解能力的依据是什么?答:(1)溶度参数:是指内聚能密度的平方根;(2)依据是:,因为溶解过程>0,要使<0,越小越好,又因为?,所以与越相近就越小,所以可用“溶度参数相近原理”判断溶剂对聚合物的溶解能力。

2.什么叫高分子θ溶液?它与理想溶液有何本质区别?答:(1)高分子θ溶液:是指高分子稀溶液在θ温度下(Flory温度),分子链段间的作用力,分子链段与溶剂分子间的作用力,溶剂分子间的作用力恰好相互抵消,形成无扰状态的溶液。

此时高分子—溶剂相互作用参数为1/2,内聚能密度为0.(2)理想溶液三个作用力都为0,而θ溶液三个作用力都不为0,只是合力为0.4.什么叫排斥体积效应?Flory-Kingbuam稀溶液理论较之晶格模型理论有何进展?答:(1)排斥体积效应:在高分子稀溶液中,“链段”的分布实际上是不均匀的,高分子链以一个被溶剂化了的松懈的链球散布在纯溶剂中,每个链球都占有一定的体积,它不能被其他分子的“链段”占有。

高分子聚合物中分子链的取向度

高分子聚合物中分子链的取向度

高分子聚合物中分子链的取向度1.1 高分子聚合物的取向由于高分子聚合物取向后多数分子链段指向同一个方向,在这一方向上,高分子聚合物的宏观性能显然与其他方向存在差异,材料呈各项异性性质。

在力学性能上,取向方向的强度、刚度会明显提高,而与之垂直方向上的强度和刚度则可能会降低。

在光学性能上,高分子聚合物的取向导致双折射现象的出现。

热性能上,热膨胀系数在取向和非取向方向上不同。

高分子聚合物在外力作用下的取向有两种方式:单轴取向,双轴取向单轴取向:高分子聚合物在单一方向上被外力拉伸;聚合物的长度增加,厚度和宽度减小。

分子链受外力的影响指向受力方向。

双轴取向:外力在两个互相垂直的方向拉伸高分子聚合物。

聚合物的在受力方向的长度增加,厚度减小,高分子链段相对于拉伸平面平行排列,在拉伸平面内则为随机排列。

可见,双轴取向后,高分子聚合物在拉伸平面内的性能呈各项同性。

1.2 取向度高分子聚合物中分子链段向特定方向排列的程度叫做取向度。

取向度一般用取向函数F表示:F=0.5 (3cos2θ—1)在定义取向函数时,通常取一特定的方向(如拉伸方向)作为参考方向,取分子的链轴方向与参考方向的夹角为取向角,θ。

对于实际的高分子聚合物,θ不是一个定值,而是按一定的方式分布,因此取向函数方程中的θ往往采用实际取向角的平均值。

2.取向度的测定方法2.1 广角X射线衍射法(WAXS)选定取向单元(例如高分子主链轴、高聚物结晶主轴),然后选择取向度的参考方向,如拉伸方向。

用广角X射线衍射仪获取样品的衍射图,取赤道线上Debye环(常用最强环)的强度分布曲线的半高宽(单位为“度”),计算聚合物样品中高分子链及微晶体的取向度:式中,Π为聚合物样品中高分子链及微晶体沿样品被拉伸方向的取向度,H°为赤道线上Debye 环强度分布曲线的半高宽度。

Π值没有明确物理意义,只能做相对比较的参考数据。

2.2 双折射法表征纤维的取向度。

用偏光显微镜观测浸于油中的纤维。

关于高分子物理习题答案

关于高分子物理习题答案

高分子物理习题答案第一章高分子链的结构3.高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。

答:(1)H. Staudinger(德国):“论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。

1953年获诺贝尔化学奖。

贡献:(1)大分子概念:线性链结构(2)初探[?]=KM?关系(3)高分子多分散性(4)创刊《die Makromol.Chemie》1943年(2)P. J. Flory(美国),1974年获诺贝尔化学奖贡献:(1)缩聚和加聚反应机理(2)高分子溶液理论(3)热力学和流体力学结合(4)非晶态结构模型6.何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。

答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV等。

而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。

高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。

其表征方法主要有:x-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。

8.什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。

答:由化学键所固定的原子或基团在空间的几何排布。

1,2:头-头,全同、间同、无规;头-尾,全同、间同、无规3,4:头-头,全同、间同、无规;头-尾,全同、间同、无规1,4:头-头,顺、反;头-尾,顺、反9.什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。

高分子物理名词解释

高分子物理名词解释

1.高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。

2.近程结构:构成大分子链的结构单元的化学组成和物理结构。

3.远程结构:由数目众多结构单元构成的分子链的长短及其空间形态和结构。

4.凝聚态结构:从物理学角度界定聚合物的微观结构类型。

5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。

6.物理结构:而将分子链内,链间或基团与大分子之间的形态学表述均界定为物理结构。

7.构型:大分子链内相邻原子或原子团之间所处空间相对位置的表征。

8.构象:指大分子链内非化学键连接的邻近原子或原子团之间空间相对位置的具体表征或状态描述。

9.链段:链段指分子链内可自由取向并在一定范围独立运动的最小单元。

10.链段长:既可用其实际长度l表示,也可用其所含结构单元数N表示。

11.均方末端距:众多分子链矢量末端距的均平方值,系表征线型聚合物分子链柔性的重要参数。

12.均方半径:由组成分子链的所有链段的质心至整个分子链质心矢量距离的均方值。

13.热力学链段长与动力学链段长:按照统计势力学方法测定并计算的链段长度称为“热力学链段长度”。

按照动力学方法测定并计算的链段长度则称为“动力学链段长度”,其表征外界条件改变时分子链从一种平衡态构象转变为另一种平衡态构象的难易和快慢。

14.自由结合链:内旋转不受任何限制。

15.Huhn等效链:以链段为内旋转单元的高斯链。

16.无扰尺寸A:选择适当溶剂分子对聚合物分子链构象和结构参数的影响降到最低甚至可忽略的理想条件下测定的分子链尺寸。

17.熔点:晶体完全熔化时的温度。

18.熔限:没有一个确定的熔点,而是一个相对较宽的温度范围。

19.凝聚态:根据微观结构有序程度差异而将聚合物归类于非晶态,晶态,取向态,液晶态和多组分5种凝聚态。

20.力学态:根据宏观力学特性将聚合物归类于玻璃态,橡胶态和黏流态3种力学态。

21.内聚能:将组成1 mol固态或液态物质的所有分子远移到彼此不再有相互作用的距离所消耗的能量,或者众多分子从无限远处凝聚成为1mol固态或液态时所释放的能量。

高物名词解释

高物名词解释

高分子物理整理近程结构:是构成高分子的最基本微观结构,包括其组成和构型。

远程结构:大分子链的构象,即空间结构,以及链的柔顺性等。

链段:高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。

静态链柔性:高分子链处于热力学稳定状态时的蜷曲程度。

动态链柔性:高分子链从一种平衡构象状态转变到另一种平衡构象状态的难易程度。

均方末端距:末端距的平方的平均值,通常用来表征高分子链的尺寸。

均方回转半径:从高分子链的质量中心到各链段的质量中心距离的平方的平均值。

自由结合链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相同。

全同立构:因含有不对称碳原子而引起旋光异构现象的异构体,取代基排布于高分子主链的同侧就叫做全同立构。

刚性因子:实测的无扰均方末端距与自由旋转链的均方末端距比值的平方根。

构型:指分子中由化学键所固定的原子在空间的排列。

构象:指由于单键的内旋转而产生的分子在空间的不同形态。

晶胞:晶体结构的最小重复单元。

晶型:晶胞的类型结晶形态:由晶胞排列堆砌形成的晶体的外观几何形状。

尺寸可达几十微米。

取向态:聚合物中的分子链或链段或微晶的某一晶轴或晶面,朝着某一方向或平行于某一平面占优势的排列,即取向,这种聚合物就处于取向态。

液晶态:兼有晶体和液体部分性质的状态。

取向态和结晶态的区别:分子链的有序排列结构和热力学稳定性热致性液晶:通过升高温度使结晶物质熔融后在某一温度范围内形成液晶态的物质。

溶致性液晶:通过加入溶剂使结晶物质在溶剂中溶解在一定的浓度范围内形成液晶态的物质。

内聚能:克服分子间作用力,1mol的凝聚体汽化时所需要的能量厶E。

内聚能密度:单位体积的凝聚体汽化时所需要的能量。

它代表了聚合物内部分子间作用力的大小。

溶解度参数:内聚能密度的平方根Huggi ns参数:超额化学位中包括Hugg ins参数x 1,它反映了高分子链段与溶剂混合时相互作用能的变化,是衡量溶剂分子与高分子相互作用程度大小的一个重要参数。

高分子聚合物的取向表征

高分子聚合物的取向表征

高分子聚合物的取向表征用途高分子和它的链段本身具有较大的长度,因此在空间上必然指向一定的方向。

当高分子链段在空间随机取向时,由概率论可知,此时分子或分子链段指向各个方向的几率是相同的。

在宏观上,高分子的这种取向方式使高分子聚合物在各个方向上呈现相同的品质,即各向同性性质。

高分子链段也可能沿某些方向规整地周期性排列,从而形成高分子晶体。

在一些条件下,如外力,流动等,相当数量的高分子链段会平行指向同一方向,由此形成的高分子聚集态结构被称作取向态结构。

高分子链段平行地向同一方向排列的现象叫做高分子聚合物的取向。

表征方法及原理1.高分子聚合物中分子链的取向度1.1 高分子聚合物的取向由于高分子聚合物取向后多数分子链段指向同一个方向,在这一方向上,高分子聚合物的宏观性能显然与其他方向存在差异,材料呈各项异性性质。

在力学性能上,取向方向的强度、刚度会明显提高,而与之垂直方向上的强度和刚度则可能会降低。

在光学性能上,高分子聚合物的取向导致双折射现象的出现。

热性能上,热膨胀系数在取向和非取向方向上不同。

高分子聚合物在外力作用下的取向有两种方式:l 单轴取向l 双轴取向单轴取向:高分子聚合物在单一方向上被外力拉伸;聚合物的长度增加,厚度和宽度减小。

分子链受外力的影响指向受力方向。

双轴取向:外力在两个互相垂直的方向拉伸高分子聚合物。

聚合物的在受力方向的长度增加,厚度减小,高分子链段相对于拉伸平面平行排列,在拉伸平面内则为随机排列。

可见,双轴取向后,高分子聚合物在拉伸平面内的性能呈各项同性。

1.2 取向度高分子聚合物中分子链段向特定方向排列的程度叫做取向度。

取向度一般用取向函数F表示:F=0.5 (3cos2θ —1)在定义取向函数时,通常取一特定的方向(如拉伸方向)作为参考方向,取分子的链轴方向与参考方向的夹角为取向角,θ。

对于实际的高分子聚合物,θ不是一个定值,而是按一定的方式分布,因此取向函数方程中的θ往往采用实际取向角的平均值。

高分子物理 4取向态

高分子物理 4取向态
例5:PVC热收缩包装膜(电池外包装用得最多) 具有受热而收缩的特点,特点是强度高,透明性 好,防水防潮,防污染,绝缘性好,用它作包装 材料,不仅可以简化包装工艺,缩小包装体积, 而且由于收缩后的透明薄膜裹紧被包物品,能清 楚的显示物品色泽和造型,故广泛使用商品包装
取向有利于结晶
常数, 负值
负值 对于结晶过程: Gc Hc T Sc 0
例2:薄膜也可单轴取向。目前广泛使用的包扎绳 用的全同PP,是单轴拉伸薄膜,拉伸方向十分结 实(原子间化学键),Y方向上十分容易撕开(范 氏力)。
例3:尼龙丝未取向的抗张700-800kg/cm2;
尼龙双取向丝的抗拉4700-5700 kg/cm2。
双轴取向
材料沿两个相互垂直的方向(X、Y)拉伸,面积增大, 厚度减小,高分子链或链段倾向于与拉伸平面(X、Y平 面)平行排列,在X、Y平面上分子排列无序,是各向同 性的(即在X、Y平面上各个方向都有原子与原子间的化 学键存在)。
2 取向态和结晶态
相同:都与高分子有序性相关
相异:取向态是一维或二维有序,结晶 态是三维有序
无定形 取向未结晶 结晶未取向 结晶取向
未取向的聚合物材料是各向同性的,即各个方向上 的性能相同(isotropic)。而取向后的聚合物材料是各 向异性的(anisotropic),即方向不同,性能也不同。
例3:外形较简单的塑料制品,利用取向来提高强度: 取向(定向)有机玻璃——可作战斗机的透明航罩。 未取向的有机玻璃是脆性的,经不起冲击,取向后, 强度提高,加工时利用热空气封平板,吹压成穹顶 的过程中,使材料发生双轴取向。
例4:ABS生产安全帽,也采用真空成型(先挤出 生成管材,再将管材放到模具中吹塑成型)获得 制品。各种中空塑料制品(瓶,箱,油桶等)采 用吹塑工艺成型,也包含通过取向提高制品强度 的原理

高分子物理名词解释(期末复习)

高分子物理名词解释(期末复习)
几何不 对称性(分子的长宽比>4),另外还需具有在液态下维持分子某种有 序结构排列所必须的凝聚力(如强极性基团、氢键等)
4.液晶的分类:a.按生产方式分类:热致型液晶、溶致性液晶;b.按有序
状况分:向列型液晶、近晶型液晶、胆甾型液晶。
5.取向:高分子链在特定情况下沿某特定方向的择优平行排列,聚合物呈各
第七章 聚合物的粘弹性 粘弹性:高分子材料的力学行为,在通常情况下总是或多或少地表现为粘性和 弹性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性
称为粘弹性。
蠕变现象:在一定的温度和较小的恒定应力下,聚合物的形变随时间延长而逐 渐增大的现象。包括三个形变过程:普弹形变、高弹形变、粘流形变。
机械强度:材料抵抗外力破坏的能力。
韧性:材料在塑形变形和断裂过程中吸收能量的能力。 冷拉:韧性聚合物在屈服后发生细颈之后细颈逐渐扩展,应变增加而应力不
变,这种现象称为冷拉。
脆性断裂:在外力作用下,材料未出现屈服点就断裂的情况。 韧性断裂:在外力作用下,材料在出现屈服点之后才断裂的情况。 冲击强度:试样受冲击荷载而折断时单位面积所吸收的能量。
聚合物分子运动的特点:运动单元的多重性、分子运动的时间依赖性和温度依
赖性。 玻璃化温度:无定形聚合物由玻璃态向高弹态转变的温度,用Tg表示。
粘流温度:链段沿作用力方向的协同运动导致大分子重心发生相对位移,聚合
物呈现流动性,对应的转变温度为粘流温度Tf。 自由体积:聚合物内部分子间存在的空隙体积。 物理老化:一般聚合物制品的许多性能随时间的推移而发生变化的现象。 退火:将晶态聚合物升温到接近其熔点并维持一定时间的过程。 淬火:将温度升高接近熔点的材料急速冷却到室温的过程。
合物的聚合度。测定方法:密度法、x射线衍射法、红外光谱法、DSC法等。

高分子物理名词解释1

高分子物理名词解释1

一、概念与名词第一章高分子链的结构高聚物的结构指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。

高分子链结构表明一个高分子链中原子或基团的几何排列情况。

聚集态结构指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。

近程结构指单个大分子内一个或几个结构单元的化学结构和立体化学结构。

远程结构指单个高分子的大小和在空间所存在的各种形状称为远程结构化学结构除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。

物理结构而一个分子或其基团对另一个分子的相互作用构型分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。

旋光异构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。

全同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。

间同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。

无规立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。

有规立构全同和间同立构高分子统称为有规立构。

等规度全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。

几何异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。

顺反异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。

高分子物理高分子物质的配向性和流动性质分析

高分子物理高分子物质的配向性和流动性质分析

高分子物理高分子物質的配向性和流動性質分析高分子物理是研究高分子材料性质和结构与物理原理之间相互联系的学科。

高分子物理是材料科学和化学工程中的重要分支领域,它研究的目标是理解高分子物质的行为和性质,为材料设计和工艺提供理论基础。

其中,高分子物质的配向性和流动性质正是高分子物理研究的关键方面之一。

本文将重点介绍高分子物质的配向性和流动性质的分析方法和应用。

一、高分子物质的配向性分析高分子物质的配向性是指高分子链的取向程度和排列规律性。

配向性的提高可以使高分子材料具有更好的机械性能、导电性能和热性能等。

下面将介绍一些常见的配向性分析方法:1. X射线衍射(XRD)X射线衍射是一种常用的用于分析晶体结构的方法,它也可以应用于高分子物质的配向性分析。

通过测量X射线在高分子材料中的衍射模式,可以推断出高分子链的排列方向和取向程度。

2. 偏振显微镜(POM)偏振显微镜是一种通过观察高分子材料在偏振光下的显微图像来研究其配向性的方法。

通过观察材料在不同方向上的偏振光干涉图案,可以判断高分子链的取向程度和排列规律性。

3. 核磁共振(NMR)核磁共振是一种通过测量高分子材料中不同核自旋的共振信号来研究其分子结构和取向情况的方法。

通过对核磁共振信号的分析,可以获得高分子链的取向程度和排列规律性的信息。

二、高分子物质的流动性质分析高分子物质的流动性质是指高分子链在受力作用下的变形和流动行为。

了解高分子物质的流动性质可以为材料的加工和成型提供理论指导。

下面将介绍一些常见的流动性质分析方法:1. 熔体流动性测试熔体流动性测试是一种通过测量高分子材料在一定温度下经过不同剪切速率时的流动性能来研究其流变性质的方法。

常用的熔体流动性测试方法包括毛细流动法、旋转流变法等。

2. 断裂性能分析断裂性能指高分子材料在受力作用下的断裂行为和力学性能。

通过测试高分子材料的拉伸、压缩、弯曲等断裂性能,可以了解其流动性质和力学性能。

3. 动态力学热分析(DMA)动态力学热分析是一种通过测量高分子材料在不同温度和频率下的力学性能来研究其流动性质的方法。

高分子的取向态结构

高分子的取向态结构

其他因素对取向态结构的影响
高分子材料的化学结构
高分子材料的化学结构对其取向态结构具有重要影响。不同的化 学结构可能导致不同的取向态结构。
高分子材料的分子量
高分子材料的分子量也会影响其取向态结构。分子量较高的高分子 链更容易形成有序的取向结构。
外界环境因素
如温度、湿度、光照等外界环境因素也可能对高分子材料的取向态 结构产生影响。
感谢您的观看
高分子取向态结构的理论研究
基于统计力学、量子力学、分子动力学等理论框架,对高分子取向 态结构的形成机理和物理性质进行深入研究。
高分子取向态结构与性能关系
探讨高分子取向态结构对其力学、热学、光学、电学等性能的影响 规律。
存在的问题与挑战
实验表征技术的局限性
现有实验技术在表征高分子取向态结构时存在一定的局限性和不足,需要进一步发展新的实验方 法。
高分子链的取向
取向态结构的表征方法
高分子链在外力作用下会发生取向, 即高分子链会沿着某个方向排列,形 成有序的结构。
取向态结构可以通过X射线衍射、红 外光谱、拉曼光谱等方法进行表征。
取向态结构的类型
根据高分子链取向的程度和方向,取 向态结构可以分为单向取向、双向取 向和液晶态等。
研究目的和意义
揭示高分子取向态结构与性能的关系
能源领域
高分子取向材料在太阳能电池、燃料电池、储能 器件等方面具有应用前景,为新能源领域的发展 提供支持。
环保领域
高分子取向材料可用于制备高效过滤材料、吸附 材料等环保产品,为环境保护和可持续发展做出 贡献。
06 高分子取向态结构的研究 进展与展望
研究进展概述
高分子取向态结构的实验表征
包括X射线衍射、红外光谱、拉曼光谱、核磁共振等技术手段的应 用和发展。

高分子物理 取向态

高分子物理 取向态

4、晶态高聚物的取向
晶态高聚物的拉伸取向比较复杂,过变:
在拉伸的初始 阶段,球晶被拉长 而成椭球形,此过 程可逆。
2)、结晶结构的破坏:
继续拉伸会出现结晶结构的破坏,从而形成以 下两种结构:
(1)微纤结构:由取向的折叠链片晶和在取向 方向上贯穿于片晶之间的伸直的分子链段所组成。
5、取向度及其测定
为了研究高聚物的取向程度,引入取向度 的概念。
取向度—取向的程度,是表征取向聚合物结
构与性能关系的一个重要参数,用取向函数(F)
表示:
F 1 3cos2 1 2
θ—平均取向角,
取向方向 分子链
是分子链主轴方向与取向方向之间的夹角 θ
完全未取向(无规取向):F=0 cos2θ=1/3 θ=54°44″
(2)伸直链晶体:
形成新的取向的折叠链片晶
形成完全伸直链片晶
思考:是结晶高聚物的取向态稳定还 是非晶高聚物的取向态稳定?
结晶高聚物的取向态更稳定,因为取向后 结晶高聚物中有很多物理交联点。使解取 向变得困难,使取向结构更容易被固定下 来。
如:战斗机的座舱罩就是定向的PMMA经 双轴拉伸取向后制成的。
取向造成各向异性,因此取向使高聚物的力学 性能、光学性能以及热性质等都发生显著的变化。
聚合物取向材料
双轴拉伸或吹塑的薄膜 熔融挤出的管材或棒材
1)单轴取向 高分子材料只沿一个方向拉伸,分子链和链
段倾向于沿着与拉伸方向平行的方向排列。
单轴取向的材料呈明显的各向异性,平行于取 向方向上,力学强度大大提高,而垂直于平行方向 则降低。这是因为取向方向上强度是共价键的加和, 而垂直于取向方向是范德华力的加和。
4.3 高聚物的取向态
1、取向现象 取向:外场作用下,聚合物分子链沿外场

高分子物理名词解释

高分子物理名词解释

二、问题1.高聚物溶解过程的特点答:1.高分子溶液是真溶液,但热力学性质与到理想溶液相差很大。

分子分散体系,热力学稳定,溶解过程可逆2.聚合物溶解过程复杂而缓慢,先溶胀,后溶解。

原因:聚合物构造复杂:分子量大且具有多分散性;分子的形状有线形、支化和交联之分;聚集态又分为晶态和非晶态3.交联聚合物在交联键的束缚下,只能溶胀不能溶解。

(溶胀:溶剂分子渗入聚合物内部,使之体积膨胀的现象。

)4.溶解度与分子量有关:1、线形分子:随分子量增大,溶解度下降;2、交联分子:随交联度增大,溶胀度减小5.溶解度与聚集态有关:1、非晶态比晶态聚合物容易溶解;2、晶态聚合物因满足两个条件:先吸热,后溶解;先溶融,后溶解;3、随结晶度增大,溶解度下降6.极性结晶聚合物常温下不溶解,要溶解有两方式:1先溶融,后溶解;2选择强极性溶剂2.溶剂选择的三原那么答:a 极性相近原那么:极性大的聚合物溶于极性大的溶剂中;极性小的聚合物溶于极性小的溶剂中;非极性的聚合物溶于非极性的溶剂中。

b 溶剂化原那么:溶质与溶剂上带有具相异电性的两种基团,极性强弱越接近,彼此间的结合力越大,溶解性就越好。

c 溶度参数相近原那么 d.高分子-溶剂相互作用参数原那么3.CED 与溶度参数的测量答?:CED 为内聚能密度。

溶度参数是内聚能密度的平方根。

21)(CED ≡δ4.溶解过程的热力学分析答:(1) 溶解过程中体系熵的增加很多,但吸热量不大,是次要因素。

(2) 体系熵的增加量,如以溶解高分子的分子数目计算,那么熵的增加要比一样数目的小分子大,而如以高分子的链段为单位计算,那么熵的增加又要比小分子小,其原因在于高分子具有的长链构造,链段之间要受到化学键连接的限制。

5.高分子溶液的性质答:高分子溶液是真溶液,但热力学性质与到理想溶液相差很大。

分子分散体系,热力学稳定,溶解过程可逆6.与理想溶液相比拟,高分子溶液的偏差答?:1﹤0,溶剂对高分子的作用强,是良溶剂。

高分子的取向结构

高分子的取向结构

第六节 高分子液晶结构
阻燃性优异
高分子液晶分子链由大量芳香环所构成,除 了含有酰肼键的纤维外,都特别难以燃烧。 如:Kevlar 在火焰中有很好的尺寸稳定性, 若在其中添加少量磷等,高分子液晶的阻燃 性能更好。
第六节 高分子液晶结构
电性能和成型加工性优异
高分子液晶的绝缘强度高和介电常数低,而 且两者都很少随温度的变化而变化,并导热 和导电性能低。 由于分子链中柔性部分的存在,其流动性 能好,成型压力低,因此可用普通的塑料加工 设备来注射或挤出成型,所得成品的尺寸很 精确。
第六节 高分子液晶结构
研究发现,处于145℃和179℃之间的液 体部分保留了晶体物质分子的有序排列, 因此被称为“流动的晶体”、“结晶的液 体”。1889年,德国科学家将处于这种状 态的物质命名为“液晶”(liquid crystals, LC)。研究表明,液晶是介于晶态和液态 之间的一种热力学稳定的相态,它既具有 晶态的各向异性,又具有液态的流动性。
第六节 高分子液晶结构
(4)精密温度指示材料和痕量化学药品指示剂 胆甾型液晶的层片具有扭转结构,对入射光具有 很强的偏振作用,因此显示出漂亮的色彩。这种 颜色会由于温度的微小变化和某些痕量元素的存 在而变化。利用这种特性,小分子胆甾型液晶已 成功地用于测定精密温度和对痕量药品的检测。 高分子胆甾型液晶在这方面的应用也正在开发之 中。
第六节 高分子液晶结构
按照液晶的形成条件不同,可将其主要分为 热致性和溶致性两大类。热致性液晶是依靠温度 的变化,在某一温度范围形成的液晶态物质。液 晶态物质从浑浊的各向异性的液体转变为透明的 各向同性的液体的过程是热力学一级转变过程, 相应的转变温度称为清亮点,记为Tcl。不同的物 质,其清亮点的高低和熔点至清亮点之间的温度 范围是不同的。

高分子物理概念及考试要点 期末考研都用的着

高分子物理概念及考试要点  期末考研都用的着

第一章 高分子的链结构1.1 高分子结构的特点和内容高聚物结构的特点:1. 是由多价原子彼此以主价键结合而成的长链状分子,相对分子质量大,相对分子质量往往存着分布。

2. 一般高分子主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。

3.晶态有序性较差,但非晶态却具有一定的有序性。

4.要使高聚物加工成有用的材料,往往需要在其中加入填料,各种助剂,色料等.。

5. 凝聚态结构的复杂性: 结构单元间的相互作用对其聚集态结构和物理性能有着十分重要的影响。

1.2 高分子的近程结构(,)(,)⎧⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩结构单元的化学组成结构单元键接方式结构单元空间立构近程结构支化高分子链结构交联结构单元键接序列高聚物结构高分子链尺寸分子量均方半径和均方末端距远程结构高分子链的形态构象柔性与刚性非晶态结构晶态结构高分子聚集态结构液晶结构取向结构多相结构 链结构:指单个分子的结构和形态.链段:指由高分子链中划出来的可以任意取向的最小链单元.近程结构:指链结构单元的化学组成,键接方式,空间方式,空间立构,支化和交联,序列结构等问题. 共聚物:由两种以上单体所组成的聚合物.有规立构聚合物:指其化学结构单元至少含有一个带有两个不同取代原子或基团的主链碳原子,并且沿整个分子链环绕这种碳原子是有规律的.全同立构:高分子全部由一种旋光异构单元键接而成.间同立构:由两种旋光异构单元交替键接.无规立构:两种旋光异构单元完全无规则键接时.等规度:高聚物中含有全同立构和间同立构的总的百分数.临界聚合度:聚合物的分子量或聚合度一定要达到某一数值后,才能显示出适用的机械强度,这一数值称为~.键接结构:是指结构单元在高分子链中的连接方式.支化度:以支化点密度或相邻支化点之间的链的平均分子量来表示运货的程度.交联结构:高分子链之间通过支链联结成一个三维空间网型大分子时即成为交联结构.交联度:通常用相邻两个交联点之间的链的平均分子量Mc 来表示.交联点密度:为交联的结构单元占总结构单元的分数,即每一结构单元的交联几率.1.3 高分子的远程结构构造: 是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等.构象:由于单键内旋转而产生的分子在空间的不同形态称为~构型: 是指某一原子的取代基在空间的排列.遥爪高分子:是端基具有特定反应性技的聚合物.聚集态结构:是指高分子材料整体的内部结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构以及织态结构.无规线团:不规则地蜷曲的高分子链的构象称为~.自由联结链:假定分子是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中生个键在任何方向取向的几率都相等.自由旋转链:假定分子链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响.末端距:指线型高分子链的一端至另一端的直线距离,用h 表示.均方末端距:求平均末端距或末端距的平方的平增色值.22h nl =(n 为键数)自由结合链:假定分子是由不占有体积的化学键自由结合而成,内旋转时没有键角限制和位垒障碍,其中每个键在任何方向取向的几率都相等.自由旋转链:假定分子链中每一个键都可以在键角所允许的方向自由转动,不考虑空间位阻对转动的影响.均方旋转半径:假定高分子链中包含许多个链单元,每个链单元的质量都是m ,设从高分子链的重心到第i 个链单元的距离为S i ,它是一个向量,则全部链单元的S i 2的重量均方根就是链的旋转半径S ,其平均值为:2222006/i i i i ih S S m S m =→∑∑远程相互作用:指沿柔性链相距较远的原子或原子基团由于主链单键的内旋转而接近到小于范德华半径距离时所产生的推斥力.体积效应:实际链段总是有一定体积的,任何两个链段不可能同时占有同一空间.持久长度a :无限长链的末端距在链初始(即第一键)方向上的平均投影.其值越大,链的刚性越强.蠕虫状链模型:把模型链分成很小的单元,以使链上任何一点的取向相对相邻的点几乎呈连续变化,链轮廓上任一点的曲率方向假定是无规的,这样的模型链就好似一条弯曲的蠕虫.1.4 高分子链的柔顺性柔顺性:高分子链能够改变其构象的性质称为~.高分子链的柔顺性主要取决于以下因素:1. 主链中含有共轭双键、芳杂环结构的高分子链的柔顺性较差.2. 侧基的极性越强,相互间的作用力越大,其~越差.侧基体积越大,空间位阻越大,对链的内旋转愈不利,使链的刚性增加.3. 分子链越长,~越大.平衡态柔性:又称热力学柔性)指在热力学平衡条件下的柔性.动态柔性:指在外界条件的影响下从一种平衡态构象向另一种平衡态构象转变的难易程度.第二章 高分子的聚集态结构2.1 高聚物的非晶态内聚能:定义为克服分子间的作用力,把一摩尔液体或固体分子移到其分子间的引力范围这外所需要的能量.V E H RT ∆=∆-内聚能密度(CED):是单位体积的内聚能. 内聚能密度小290兆焦/米3的高聚物,都是非极性高聚物,由于它们的分子链上不含有极性基团,分子间力主要是色散力,分子间相互作用较弱,加上分子链的柔顺性较好,使这些高聚物材料易于变形,富有弹性,可用作橡胶。

取向态和热力学状态

取向态和热力学状态

取向态和热力学状态在高分子科学中具有特定的含义:
1. 取向态:
- 在聚合物材料中,取向态指的是在外力作用下(如拉伸、剪切、电场或磁场等)形成的分子链择优排列的状态。

这种状态下,高分子链沿着外力作用的方向呈现一维或二维的有序排列,形成各向异性结构。

- 取向态是非热力学平衡状态,因为它是由外部能量输入导致的一种有序化过程,并且在没有持续外力维持的情况下,由于分子热运动的存在,取向度会随时间逐渐减少,即发生解取向。

2. 热力学稳定状态:
- 热力学稳定状态是指系统处于最小自由能状态,即在给定的温度和压力条件下,系统自发地趋向于达到的最大熵和最小内能的平衡态。

- 聚合物结晶是一种热力学平衡态的例子,晶体中的分子按照固定的三维周期性排列,这一过程是自发进行的,一旦形成,在没有外界扰动的情况下可以长时间保持稳定。

总结来说,聚合物的取向态是依赖于外力实现的非自
发有序结构,属于非热力学平衡状态;而其结晶态则是自发形成的三维有序结构,为热力学平衡态。

在实际应用中,通过适当的加工方法,如定向拉伸等,可以利用聚合物的取向性质来调整和改善材料的物理性能,但这些取向结构通常需要特定条件才能得以保持。

高分子物理简答题

高分子物理简答题

第二章高分子的链结构1.聚合物的层次结构聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构一级结构和远程结构二级结构;一级结构包括化学组成,结构单元连接方式,构型,支化于交联;二级结构包括高分子链大小相对分子质量,均方末端距,均方半径和分子链形态构象,柔顺性;三级结构属于凝聚态结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构和织态结构; 2.结构单元的键接方式,许多实验证明自由基或离子型聚合产物中大多数是头—尾键接的,链接方式对聚合物的性能有比较明显的影响;例1:纤维要求分子链中单体单元排列规整,结晶性能好,强度高,便于抽丝和拉伸例2:维尼纶纤维缩水性较大的根本原因:聚乙烯醇PVA做维尼纶只有头—尾键接才能使之与甲醛缩合生成聚乙烯醇缩甲醛;如果是头—头键接额,羟基就不易缩醛化,是产物中保留一部分羟基,羟基的数量太多会使纤维的强度下降;3.聚合物的空间构型概念:结构单元为—CH2—CHR—型的高分子,在每一个结构单元中都有一个手性碳原子,这样,每一个链节就有两种旋光异构体,高分子全部由一种旋光异构体键接而成称为全同立构,由两种旋光异构单元交替键接,称为间同立构,两种旋光异构单元完全无规键接时,则称为无规立构全同立构和间同立构的高聚物有时统称为等规高聚物高聚物中含有全同立构和间同立构的总的百分数是指等规度由于内双键的基团在双键两侧排列的方向不同而有顺式构型与反式构型之分,他们称为几何异构体例:几何构型对聚合物的影响聚丁二烯1,2-加成的全同立构或间同立构的聚丁二烯PB,由于结构规整,容易结晶,弹性很差,只能作为塑料使用;顺式1,4-聚丁二烯链的结构也比较规整,容易结晶,在室温下是一种弹性很好的橡胶,反式1,4-聚丁二烯分子链的结构也比较规整,容易结晶,在室温下是弹性很差的塑料;4. 高分子共聚物共聚物的序列结构常用参数平均序列长度L和嵌段数R;当R=100时表明是交替共聚,R=0时表明是嵌段共聚物例1:聚甲基丙烯酸甲酯PMMA分子带有极性酯基是分子间作用力比聚苯乙稀PS大,因此在高温的流动性差,不宜采取注塑成型法加工;需将PMMA和少量PS共聚可以改善树脂的高温流动性,适用于注塑成型ps. 和少量的丙烯晴AN共聚后,其冲击强度,耐热性,耐化学腐蚀性都有所提高,可供制造耐油的机械零件例2:ABS树脂在结构组成制备工艺上可提高产品的力学性能的方法ABS树脂是丙烯晴,丁二烯和苯乙烯的三元共聚物;其中丙烯晴有CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯使聚合物呈现橡胶状韧性,这是材料抗冲击强度增高的主要因素;苯乙烯的高分流动性能好,便与加工成型,而且可以改善制品表面光洁度.,ps. ABS是一类性能优良的热塑性塑料例3:SBS在结构和组成上的特点及加工方法概述用阴离子聚合法制得的苯乙烯与丁二烯的嵌段共聚物SBS树脂;丁二烯常温是一种橡胶,而聚苯乙烯是硬性塑料,两者不相容,因此SBS具有两项结构;聚丁二烯段形成连续的橡胶相,聚苯乙烯是热塑性的,聚苯乙烯起交联作用高温下可以破坏也可以重组,所以SBS是一种可以注塑方法进行加工而不需要硫化的橡胶;聚氨酯与其相似,统称热塑性弹性体;5.高分子链的支化例:为什么高压聚乙烯的冲击强度好于低压聚乙烯的冲击强度支化对物理性能的影响有时相当显著,高压聚乙烯低密度聚乙烯LDPE由于支化破坏了分子的规整性,使其结晶度大大降低,低压聚乙烯高密度聚乙烯HDPE是线型分子,易于结晶,故在密度,熔点,结晶度和硬度方面都高于强者;分子链支化程度增加,分子间的距离增加,分子间的作用力减小,因而使拉伸强度降低,但冲击强度会提高;6.高分子链的交联支化高分子能够溶解,交联高分子不熔不熔,只有交联度不大的时候能在溶剂中溶胀;热固性塑料和硫化橡胶都是交联高分子例:硫化橡胶未经硫化交联的橡胶分子之间容易滑动,受力后会产生永久变形,不能回复原状,经硫化的橡胶分子间不能滑移,才有大的可逆弹性变形,所以橡胶一定要经过硫化变成交联结构后才能使用;交联度小的橡胶含硫5%一下弹性较好,交联度大的橡胶含硫20%~30%弹性就差,交联度再增加,机械强度和硬度都将增加,最终失去弹性而变脆;7.高分子链的构象概念:构象:单间内旋转而产生的分子在空间的不同排列形态,由于热运动分子的构象在时刻改变,因此高分子的键的构象是统计性的,由此可知,这种构象是不固定的;构型:大分子链中由化学键所固定的原子在空间的几何排列,这种排列是稳定的要改变构型必经过化学键的断裂和重组;构型包括单体单元的键合顺序,空间构型的规整性,支化度,交联度以及共聚物的组成及序列结构;无规线团:单键内旋转是导致分子链呈蜷曲构象的原因,内旋转愈自由,蜷曲的趋势越大,我们称这种不规则的蜷曲高分子链的构象为无规线团;理想链理想柔性链,自由链接链:高分子键的一种理想化的简单模型,假定高分子的主链由足够多的不占体积的化学键自有链接而成,这些键的取向不受键角以及相邻旋转交的限制,没有位垒的障碍,在空间上的取向几率都相等;自由旋转链:每个链都能在键角限制范围内自由旋转,不考虑空间位阻影响,有足够多的不占体积的化学键自有链接而成,这些键的取向受键角及相邻旋转交的限制,没有位垒障碍;受阻旋转链:同自由旋转链,除不能自由旋转;末端距:对于线性高分子,分子链的一端至另一端的直线距离即为末端距;均方末端距:末端距的平方的平均值,通常用来表征高分子链的尺寸;高斯链:把真实的高分子末端距模型化的一种由n个长度为l的统计单元组成,他的末端距大小分布符合高斯统计函数,这种假想链叫做高斯链Ps.末端距的计算见附录例1. 自由连接链和高斯链的区别1.高斯链的统计单元为链段,自由链接链的链接单元为化学键2.高斯链可以产生链段的回转和取向,自有链接连不能产生化学链的旋转和取向3.高斯链是实际存在的,自有链接连是不存在的4.高斯链研究高分子链的共性,自有链接链是理想化的;例2.聚丙烯是否可以通过单键的内旋转由全同立构变成间同立构,为什么答:不可以;因为全同立构和间同立构是属于构型的范畴,构型是指分子中有化学键所固定的原子在空间的排列;单键的内旋转只会改变构象,而改变构型必须经过化学键的断裂才能实现;例3.为什么只有柔性高分子链才适合做橡胶答:橡胶具有高弹性,弹性模量很小,形变量很大的特点;只有处于蜷曲状态的长链分子才能在外力的作用下产生大形变,才能作为橡胶;蜷曲程度与柔性是相对应的,蜷曲程度越高,柔性越好,所以适合做香蕉的高分子必须具备相当程度的柔性;例4.试述近程相互作用和远程相互作用的含义以及它们对高分子链构象以及柔性的影响答:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近;事实上,即使是沿高分子长链很远的枝节也会由于主链单间内旋转而在三维空间上相互靠的很近;近程相互排斥作用的存在使得实际高分子的内旋转受阻,是指在空间可能有的构象数远远小于自由内旋转的情况,受阻程度越大构象数就越少,高分子链的柔性就越小;远程相互作用可为斥力,也可称为引力;当大分子链中相距较远的原子或原子团由于单键的内旋转,可是其间的距离小于范德瓦尔斯半径而表现为斥力,大于范德瓦尔斯半径为引力,五轮哪种力都使单间内旋转受阻构象数减小,柔性下降,末端距变大;例5. 分子链柔顺性大小顺序聚乙烯PE,聚丙烯PP,聚丙烯晴PAN,聚氯乙烯PVC取代基极性越大,取代基之间的相互作用就越强,高分子链内旋转越困难,柔性越小;取代基的极性顺序为—CN>—CL—CH3—H,所以PE>PP>PVC>PAN例6.请排出分子间作用力的大小聚苯乙烯,聚对苯二甲酸乙二酯和尼龙66,聚乙烯尼龙66>据对苯甲酸乙二酯>聚苯乙烯>聚乙烯尼龙66分子间能形成氢键,因此分子间作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大,聚苯乙烯含有侧基,连段运动较困难,分子间作用力较小,聚乙烯是非极性分子,又不含侧基,分子间作用力最小;例7. 请排出结晶难易程度的排序1聚对苯二甲酸乙二酯和聚间苯二甲酸乙二酯,聚乙二酸乙二酯2尼龙66,尼龙1010聚己二酸乙二酯>聚对苯二甲酸乙二酯>聚间苯二甲酸乙二酯,这是由于聚己二酸乙二酯的柔顺性好,聚间苯二甲酸乙二酯对称性不高,尼龙66>尼龙1010尼龙66中氢键密度大于尼龙1010第三章高分子溶液1.聚合物溶解过程和溶剂选择概念:内聚能密度:内聚能是将一摩尔液体或固体分子汽化时所需要的能量,单位体积的内聚能即为内聚能密度;δ溶度参数:溶度参数是内聚能密度的平方根;溶质与溶剂的溶度参数越接近越可能相互溶解;冻胶:是由范德瓦尓斯力交联而成的,加热可以拆散范德瓦尓斯力的交联,使冻胶溶解;凝胶:是高分子链之间以化学键形成的交联结构的溶胀体;例1.聚合物的溶解过程答:聚合物的溶解过程分为两个阶段,先是溶剂分子深入聚合物内部,是聚合物体积膨胀,称为溶胀,然后才是高分子均匀分散在溶剂中形成完全溶解的分子分散的均相体系,对于交联聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联分子拆散,只能停留在溶胀阶段,不会溶解;例2.聚合物的溶解度与分子量的关系:溶解度与聚合物的分子量有关,分子量大的溶解度小,分子量小的溶解度大,对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大;例3.非晶聚合物和结晶聚合物对溶解的影响非晶聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解;静态聚合物由于分析排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子深入聚合物内部非常困难,因此晶态聚合物的溶解比非晶态聚合物困难得多;溶液的热力学性质溶解过程的自发需要满足△Fm=△Hm-T△Sm<0对于极性聚合物在极性溶剂中,由于高分子溶剂强烈相互作用,分子排列趋于混乱所以△Sm增加溶解时放热△Hm<0且使体系△Fm降低所以溶解过程能自发进行非极性聚合物,溶解过程一般是吸热的△Hm>0,故只有在升高温度T或者减小混合热△Hm才能使体系自发溶解;非极性溶液的混合热△Hm的大小取决于溶度参数,如果两种液体溶度参数接近,则混合热越小,两种液体越能互相溶解;Ps.聚丙烯腈不能溶解在溶度参数与他相接近的乙醇,甲醇,苯酚;乙二醇等溶剂中,这是因为这些溶剂的极性太弱了,只有二甲基甲酰胺,二甲基乙酰胺,乙腈,二甲基亚砜,丙二腈才能使其溶解;丙酮不能溶解聚苯乙烯是丙酮极性太强而聚苯乙烯是弱极性的;可以得出结论,极性聚合物,不但要求它与溶剂的溶度参数中的非极性部分接近,还要求极性部分也接近才能溶解;注:如果溶质与溶剂间能形成结晶性非极性聚合物的溶剂选择最困难,它的溶解包括两个过程:其一是结晶部分的熔融;其二是高分子与溶剂的混合,两者都是吸热的过程,所以要提高温度;除非生成氢键,因为氢键的生成是放热反应;例1.溶剂的选择原则:1)极性相近,要求溶剂的极性和高聚物极性相近,极性高聚物选择极性相当的溶剂;2)溶度参数相近原则,参数越接近,溶解可能性越大,非晶态—非极性比较合适,对于晶态的非极性高聚物需加外界条件,对晶态极性不适用;3)溶剂化原则基团的相互作用溶剂分子与高分子链之间相互吸引作用是高分子链与链之间相互分离导致高分子溶解于溶剂形成溶液;理想溶液概念:理想溶液:是指溶液中溶质分子间溶剂分子间和溶质分子间的相互作用能都相等,溶解过程没有体积变化也没有焓的变化;Huggins参数:是表示高分子溶液混合时相互作用能的变化θ温度:是高分子溶液的一个参数,当T=θ时高分子溶液中的过量化学位为零,与理想溶液中溶剂的化学位没有偏差θ条件:通过选择溶剂和温度使高分子溶液中溶剂的过量化学位为零的条件,这种条件称为θ条件或θ状态;无扰状态:高分子在稀溶液中,一个高分子很难进入另一个高分子所占的区域,即每个高分子都有一个排斥体积;如果高分子链段和溶剂分子相互作用能大于高分子链段与高分子链段的相互作用能,则高分子被溶剂化而扩张,使高分子不能彼此接近,高分子的排斥体积就很大;如果高分子链段与溶剂分子相互作用能等于高分子链段与高分子链段的相互作用能;高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样排斥体积为零,相当于高分子处于无扰状态;这种状态的尺寸就称为无扰尺寸;扩张因子:高分子在良溶剂中,由于溶剂化的作用,是卷曲的高分子链伸展,高分子的均方末端距和均方旋转半径扩大;扩张因子α是指高分子链的均方末端距或均方旋转半径与高分子链在θ状态下的均方末端距或均方旋转半径之比,它表示高分子链的扩张程度;溶胀比:交联高聚物在溶胀平衡时的体积与溶胀前的体积之比例1. 根据高分子的混合自由能,推导出其中溶剂的化学位变化,并讨论在什么条件下高分子溶液中溶剂的化学位变化,等与理想溶液中溶剂的化学位变化答:见附录例2. 高分子溶液在什么情况下与理想溶液的一些热力学性质相近当T=θ时;高分子溶液中溶剂的过量化学位为零;χ1=1/2,高分子处于θ状态,此时高分子溶液与理想溶液的一些热力学性质相近;例3. 什么是θ温度当高于,低于或等于θ温度时,大分子的自然构象有何不同为什么θ温度是高分子溶液的一个参数;当T=θ时,高分子溶液中溶剂△μ=0与理想溶液中的溶剂化学位没有偏差;当T>θ时,溶剂为高分子良溶剂,在良溶剂中,高分子链由于溶剂化而扩张,高分子线团伸展,当T<θ时,溶剂为高分子的不良溶剂,在不良溶剂中,高分子链由于溶剂化作用很弱,高分子链紧缩;当T=θ时,溶剂为高分子的θ溶剂,在θ溶剂中,高分子链段与高分子链段的相互作用能等于高分子链段与溶剂的相互作用能,高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样高分子链的排斥体积为零,相当与高分子链处于无干扰的无规线团;例4.试举出可判定聚合物溶解性好坏的三种热力学参数,并讨论当它们分别为何值时,溶剂是良溶剂,θ溶剂,劣溶剂:过量化学位△μ₁,Huggins参数χ₁,第二维利系数A₂可以判定聚合物溶解性的好坏的三种热力学参数,△μ₁<0,χ₁<1/2,A₂>0时为良溶剂;△μ₁=0,χ₁=1/2,,A₂=0时为θ溶剂;μ₁>0,χ₁>1/2,A₂<0时为劣溶剂;Ps.θ状态与真正的理想溶液还是有区别的,真正的理想溶液没有热效应,任何温度下都呈现理想行为,而在θ温度时的高分子稀溶液只是过量化学位等于0而已;偏摩尔混合热和偏摩尔混合熵都不是理想值,只是两者的非理想效应近似相互抵消;例5.临界共溶温度:是聚合物溶解曲线极大处的温度就是Tc;溶质的分子量越大,溶液的临界共溶温度越高;当温度降至Tc一下某一定值时,就会分离成稀相和浓相,当体系分成两相最终达到相平衡时,每种组分在两相间扩散达到动态平衡,这就要求每种组分在两相间的化学未达到相等;相分离的起始点就是临界点,在临界点,两个相浓度相等;简述荣章法测定聚合物的δ的原理和方法溶胀法可以测定交联聚合物的平衡溶胀比,及交联聚合物达到溶胀平衡时的体积与溶胀前的体积之比;若交联聚合物与溶剂的溶度参数越接近,高分子与溶剂的相互作用愈大,及高分子溶剂化程度愈大,交联网链愈能充分伸展,是交联聚合物的平衡溶胀比增大,若用若干种不同溶度参数的溶剂溶胀聚合物,用溶胀法分别测定聚合物在这些溶剂中的平衡溶胀比,以平衡溶胀比对溶剂的溶度参数作图,找出平衡溶胀比极大值所对应的溶度参数,此溶度参数可作为交联聚合物的溶度参数;Ps.增塑剂为了改善聚合物材料的成型加工性能和使用性能,通常在聚合物树脂中加入高沸点,低挥发性的小分子液体或低沸点固体,以降低玻璃化转变温度和粘流温度,改善树脂流动性,降低粘度石制品有较好的柔韧性,和耐寒性;第四章高分子的多组分体系高分子的相容性概念高温临界共溶温度UCST:高温互容低温分相;低温临界共溶温度LCST:低温互容高温分相;曲线分析见附录临界胶束浓度:将嵌段共聚物溶解在小分子溶剂中,如果溶剂溶解共聚物前段时没有很强的选择性,那么嵌段共聚物的溶液性质与一般均聚物的溶液性质没有和大的差别;但如果溶剂对其中的某一嵌段具有很强的相互吸引作用,在固定温度改变浓度或固定浓度改变温度两种条件下,嵌段共聚物类似于小分子的表面活性剂,与溶剂作用强的嵌段倾向于与溶剂混合,而另一嵌段就倾向于与其它链的相似嵌段聚集在一起,形成胶束,形成胶束的临界条件被称为临界胶束浓度,和临界胶束温度;进一步增加浓度,这些胶束逐渐发生交叠,形成物理凝胶几乎不能流动,形成凝胶的临界浓度称为临界胶束浓度静态光散射通过测定溶液中形成结构的平均分子量来估算是否形成了胶束Ps.UCST,LCST曲线见附录第五章聚合物的非晶态非晶态聚合物的结构模型概念无规线团模型:在非晶态聚合物本体中,分子链的构象与在溶液中的一样,成无规线团状,线团的尺寸在θ状态下高分子的尺寸相当,线团分子之间是任意相互贯穿和无规缠结的,前端的堆砌不存在任何有序的结构,因而非晶态聚合物在凝聚态结构上是均相的;玻璃化转变:玻璃态和高弹态之间的转变称为玻璃化转变,对应的转变温度即玻璃化转变温度;玻璃态:当非晶聚合物在较低的温度下受外力时,有与链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,聚合物形变是很小的,形变与受力的大小成正比,当外力除去后,形变能立刻回复;这种力学性质称虎克型弹性体,又称普弹体,非晶态聚合物处于具有普弹性的状态,称为玻璃态;玻璃化温度:高聚物分子链开始运动或冻结的温度;它是非晶态高聚物作为塑料使用的最高温度,橡胶使用的最低温度;高弹态:在聚合物受到外力时,分子链可以通过单键的内旋转和链段的改变构象以适应外力的作用,由于这种变形是外力作用促使聚合物主链发生内旋转的过程,它需要的外力显然比聚合物在玻璃态时变形所需外力要小得多,而变形量却大得多,这种性质叫做高弹性,它是非晶态聚合物处在高弹态下特有的力学特征;粘流态:整个分子链运动,松弛时间缩短,在外力作用下发生粘性流动,它是整个分子链互相滑动的宏观表现;形变不可逆外力除去后,形变不能再自发回复自由体积理论:Fox和Flory提出,认为液体或固体物质,其体积由两部分组成:一部分是被分子占据的体积;另一部分是未被占据的自由体积;后者以“孔穴”的形式分散于整个物质之中,正是由于自由体积的存在,分子链才可能发生运动;自由体积理论认为,当聚合物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积达到一最低值,这是聚合物进入玻璃态;在玻璃态下,有与链段运动被冻结,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及分布也将基本上维持固定;因此对任何聚合物,玻璃化温度就是自由体积达到某一临界值的温度,在这临界值一下,已经没有足够的空间进行分子链构象的调整了;因而聚合物的玻璃态可视为等自由体积状态;不管什么聚合物,发生玻璃化转变时,自由体积分数都等于2.5%;Ps. WLF方程见附录例1::无规线团模型的实验证据1.橡胶的弹性理论完全是建立在无规线团模型基础上的,而且实验证明,橡胶的弹性模量和应力-温度系数关系并不随稀释剂的加入而有反常的改变,说明在非晶态下,分子链是完全无序的,并不存在可被进一步溶解或拆散的局部有序结构2.在非晶聚合物的本体和溶液中,分别用高能辐射是高分子发生交联,实验结果并未发现本体体系中发生分子内教练的倾向比溶液中更大,说明本体中并不存在诸如紧缩的线团或折叠连那些局部有序的结构;3用X光小角散射的实验结果,提别有力的支持了无规线团;.对于分子量相同的聚甲基丙烯酸甲酯试样,用不同的方法光散射,X光散射和中子散射,不同条件下本体或溶液中,测得分子的回转半径相近;并且本体的数据与θ溶剂氯代正丁烷的数据以及所得指向的斜率更为一致,证明非晶态本体中,分子的形态与它在θ溶剂中一样,它们的尺寸都是无扰尺寸例2.两相球粒模型1模型包含了一个无序的粒间相,从而能为橡胶弹性变形的回缩力提供必要的构象熵,因而可以解释橡胶的弹性回缩力;2实验测得许多聚合物的非晶和结晶密度比按分子链成无规线团形态的完全无序的模型计算的密度高,说明有序的粒子相与无序的粒间相并存,两相中由于嵌段的堆砌情况有差别,导致了密度的差别;3模型例子中嵌段的有序堆砌,为洁净的迅速发展准备了条件,这就不难解释许多聚合物结晶速度很快的事实;4某些非晶态聚合物缓慢冷却或热处理后密度增加,电镜下还观察到球粒的增大,这可以用粒子相有序程度的增加和粒子相的扩大来解释;例3.非晶态聚合物形变-温度曲线如果取一块非晶聚合物试样,对它施加一恒定的力,观察试样发生的形变与温度的关系,我们将所得到的曲线称为形变-温度曲线或热机械曲线;当温度较低时,试样呈刚性固体状,在外力作用下只发生非常小的形变;温度升到某一范围后,式样的形变明显的增加,并随后,并在随后的温度区间达到一相对稳定的形变,在这一个区域中,试样变成柔软的弹性体,温度继续升高,形变基本上保持不变;温度再进一步升高,则形变量又逐渐加大,试样最后完全变成粘性流体; Ps.形变温度曲线见附录例4.试用分子运动的观点说明非晶聚合物的三种力学状态和两种转变在玻璃态下,由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基,支链和小链节能运动,当收到外力时,由于链段处于冻结状态,只能使主链的键长和键角有微小的改变,形变很小,当外力除去后形变能立刻回复;随着温度的升高,分子热运动的能量增加,当达到某一温度Tg时,链段运动被激发,聚合物进入高弹态,在高弹态下,链段可以通过单键的内旋转和链段的运动不断地改变构象,但整个分子仍然不能运动;当受到外力时,分子链可以从蜷曲状态变为伸直状态,因而可发生较大形变;温度继续升高,整个分子链也开始运动,聚合物进入粘流态,这时高聚物在外力作用下便发生粘性流动,它是整个分子链互相滑动的宏观表现,外力去除后,形变不能自发回复;玻璃化转变就是链段有运动到冻结的转变,流动转变使整个分子链由冻结到运动的转变;例5.为什么聚合物通常有一份相对确定的玻璃化温度,却没有一个确定的粘流温度随着相对分子量的增加,玻璃化温度会升高,特别是在较低的相对分子质量范围内,这种影响较为明显,但是当相对分子质量增加到一定程度后,玻璃化温度随着相对分子质量的变化很小;而聚合物的粘流温度是整个分子链开始运动的温度,相对分子质量对粘流温度的影响比较明。

《高分子物理》名词解释

《高分子物理》名词解释

第一章高分子链的结构*近程结构:单个高分子内一个或几个结构单元的化学结构和立体化学结构。

又称高分子的一次结构。

*远程结构:整个分子的大小和在空间的形态,又称高分子的二次结构。

*构型:分子中由化学键所固定的原子在空间的几何排列。

*构象:由于围绕单键内旋转而产生的分子在空间的不同形态称作构象。

*键接结构:指聚合物大分子结构单元的连接方式。

*全同立构(等规立构):结构单元含有不对称碳原子C*的聚合物,C -C 链成锯齿状放在一个平面上。

当取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。

*间同立构(间规立构):结构单元含有不对称碳原子C*的聚合物,C —C 链成锯齿状放在一个平面上。

当取代基相间的分布于主链平面的二侧或者说两种旋光异构单元交替键接。

无规立构:结构单元含有不对称碳原子C*的聚合物,C —C 链成锯齿状放在一个平面上。

当取代基在平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接。

*柔顺性:高分子长链能发生不同程度卷曲的特性或者说高分子链能改变其构象的性质,简称柔性。

静态柔顺性:又称平衡态柔性,指的是高分子链处于较稳定状态时的卷曲程度。

*动态柔顺性:又称动力学柔性,指的是分子链从一种平衡态构象转变成另一种平衡态构象的容易程度。

*链段:高分子链上能独立运动的最小单元。

*等效自由结合链:在库恩统计法中,以链段为统计单元,链段看作刚性棒,自由连接,称为等效自由结合链。

*空间位阻参数σ:以σ来度量由于链的内旋转受阻而导致的分子尺寸增大程度的量度,σ愈小分子愈柔顺。

无扰尺寸A :因为均方末端距与键数n 成正比,而n 又比例于分子量M ,所以可以用单位分子量的均方末端距作为衡量分子柔性的参数,A 值愈小,分子链愈柔顺. 极限特征比C ∞:链均方末端距与自由结合链的均方末端距的比值,当n →∞时的极限值。

链的柔性愈大,则C ∞值愈小。

*均方末端距:线型高分子链的两端直线距离的平方的平均值。

高分子的取向态结构

高分子的取向态结构

2. 高分子的取向机理
Flory 等人认为:在非晶态时,柔性高分子链周围有数 以百计的近邻分子与之缠结,但形成结晶后,这些缠结部 分将集中在非晶区。
2. 高分子的取向机理
由于非晶区缠结的很厉害,分子运动比较困难,
拉伸时不可能一开始就发生较大的形变。因此结晶高 分子的拉伸将首先发生晶区结构的破坏。
3. 高分子的取向度及其测定方法
对于理想单轴取向,在链取向方向上,平均取向角
θ =0 ° ,,则 F=1;在垂直链取向方向上 θ =90 °,则
F=0.5;在完全无规取向时,F=0,θ =54°44´。 实际取向试样的平均取向角为
1 arccos (2 F 1) 3
3. 高分子的取向度及其测定方法 2. 测定方法
1. 高分子取向现象 4. 分类
取向的高分子材料按取向方式分为两类。 单轴取向,取向单元在一维方向上择优排列; 双轴取向,取向单元在二维方向上择优排列。
1. 高分子取向现象
单轴取向可通过单向拉伸等方法在材料的一维方向 上施以应力来实现,如合成纤维中的牵伸是单轴取向。 而双轴取向长常通过双向拉伸、吹塑等过程来实现,用 于薄膜制品。
取向度的测定方法较多,一般常用的有声波传播法、 光学双折射法、广角X射线衍射法、红外二色法及偏振荧 维有序。
1. 高分子取向现象
通常,对于未取向的高分子材料来说,链段的取 向是随机的,这样的材料客观上是各相同性的,而取
向的高分子材料,其链段在某些方向上择优取向,呈
现各向异性。
1. 高分子取向现象 3. 取向高聚物的性能
对于取向的高分子材料来说其力学性能、光学性质 及热性能等方面发生了较大的变化。比如在力学性能中, 抗张强度和疲劳强度在取向方向上显著增加,而与取向 方向相垂直的方向则下降。因此 ,人们可以通过取向现 象来改善产品的某些性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形成新的取向的折叠链片晶
形成完全伸直链片晶
思考:是结晶高聚物的取向态稳定还 是非晶高聚物的取向态稳定?
结晶高聚物的取向态更稳定,因为取向后 结晶高聚物中有很多物理交联点。使解取 向变得困难,使取向结构更容易被固定下 来。
如:战斗机的座舱罩就是定向的PMMA经 双轴拉伸取向后制成的。
5、取向度及其测定 为了研究高聚物的取向程度,引入取向度 的概念。
非晶高聚物的取向比较简单,根据取向单元的 不同,可分为: 1、小尺寸取向 一般指链段的取向,此过程短,一般在Tg附近就可完成 2、大尺寸取向 整链取向,链段可能没有取向,此过程长,需要在 高温下完成
如何获得高强度和适当弹性的材料?
取向可提高强度,而分子具有一定的活动能力 是保持弹性的条件。 (1)、适当的工艺过程可以使高分子大尺寸取 向而小尺寸解取向(利用的原理就是链段与整链 取向速度不同)。 (2)、刚柔相济的分子链
取向度—取向的程度,是表征取向聚合物结 构与性能关系的一个重要参数,用取向函数( F) 表示: 1 F 3cos 2 1 2


取向方向 θ—平均取向角, 是分子链主轴方向与取向方向之间的夹角 θ
分子链
完全未取向(无规取向):F=0 完全取向 (平行取向):F=1
cos2θ=1/3 θ=54°44″ cos2θ=1 θ=0°
(3)、结晶高分子取向
4、晶态高聚着
复杂的分子聚集态结构的变化,结晶结构被破坏。
1)、球晶的形变: 在拉伸的初始 阶段,球晶被拉长 而成椭球形,此过 程可逆。
2)、结晶结构的破坏:
继续拉伸会出现结晶结构的破坏,从而形成以 下两种结构:
(1)微纤结构:由取向的折叠链片晶和在取向 方向上贯穿于片晶之间的伸直的分子链段所组成。 (2)伸直链晶体:
2、取向对高聚物性能的影响
取向造成各向异性,因此取向使高聚物的力学 性能、光学性能以及热性质等都发生显著的变化。 双轴拉伸或吹塑的薄膜 聚合物取向材料 熔融挤出的管材或棒材
1)单轴取向 高分子材料只沿一个方向拉伸,分子链和链
段倾向于沿着与拉伸方向平行的方向排列。
单轴取向的材料呈明显的各向异性,平行于取 向方向上,力学强度大大提高,而垂直于平行方向
则降低。这是因为取向方向上强度是共价键的加和,
而垂直于取向方向是范德华力的加和。
如:纤维纺丝
薄膜的单轴拉伸
2)双轴取向 高分子材料沿一个平面的纵横两个方向拉伸,
分子链取向于薄膜平面的任意方向。(图5-44)
双轴拉伸的薄膜在拉伸平面上就是各向同性, 力学性能优越于单轴拉伸薄膜。
薄膜的双轴拉伸
3、非晶高聚物的取向
一般(实际取向):0<F<1
声速法 光学双折射法 广角X射线衍射法 偏振荧光法
分子的取向度 链段的取向度
取向度的测定
晶区的取向度
非晶区的取向度
4.3 高聚物的取向态
1、取向现象
取向:外场作用下,聚合物分子链沿外场 方向排列,这种过程称为取向。
取向的结构条件:有一定的长径比
聚合物的取向特别容易发生
取向单元:链段、分子链、晶片等 取向与结晶的区别: 取向 一维有序或二维有序 是一种热力学非平衡态 各向异性 结晶 三维有序 相变、平衡态 各向异性或各向同性
相关文档
最新文档