二次根式PPT教学课件

合集下载

二次根式的ppt课件

二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。

二次根式ppt优秀课件

二次根式ppt优秀课件

1、练习册16.1 2、一课一练P1-2
已知 1 有意义,那A(a, a
在 二 象限.
∵由题意知a<0 ∴点A(-,+)
a )
?
下列式子 2x 6 1 中字母x的 2x
取值范围是___3____x____0

2x+6≥0 -2x>0

x≥-3 x<0
?
12 n为一个整数,
求自然数n的值.
∴当x= 3时, x2 2x 1 1 3
练习:算一算:
(1) 25 5 (2)( 7)2 7
(3)(3 2)2 18
(4)(1 2)2 2 1
(5) x2 2xy y2 y x
(x﹤y)
今天我们学习了很多新知识,你能谈谈 自己的收获吗?说一说,让大家一起来 分享。
二次根式的概念:
思考:若 (m 4)2 4 m,则m的取值范围是 _m____4____
例 求下列二次根式的值
(1) (3 )2 (2) x2 2x 1(x
3)
解:(1) (3 )2 | 3 |
∵3 0
∴ (3 )2
3
(2) x2 2x 1 (x 1)2 | x 1|
当x= 3 时,x-1<0
∴ x2 2x 1 1 x 1 3
(1 p)2
2
2 p
1 p (2 p)
p 1 2 p 1
在实数范围内分解因式: 4x2 3
解:
∵ 3 ( 3)2
∴ 4x2 3 (2x)2 ( 3)2
(2x 3)(2x 3)
?
1.已知0<x<1,化简 (x 1)2 4 x
|
x
+
1 x
|
-

《二次根式》PPT课件

《二次根式》PPT课件
二次根式的双重非负性
a 0, a 0.
二次根式的性质
2 a a(a 0) a2 =∣a∣=
a (a>0) 0 (a=0) -a (a<0)
1、练习册16.1 2、一课一练P1-2
有意1 义,那A(a,
) a
a
在 二 象限.
∵由题意知a<0
∴点A(-,+)
?
下列式子 2x 6 1 中字母x的 2x
a 2, b 2
原式 a2 b 12 2 2 2 12 2 1 3
实数p在数轴上的位置如下图,化简
(1 p)2
2
2 p
1 p (2 p) p 1 2 p 1
在实数范围内分解因式: 4x2 3
解:
∵ 3 ( 3)2
∴ 4x2 3 (2x)2 ( 3)2
(2x 3)(2x 3)
a2 先平方,后开方
2.从取值范围来看,
2 a
a≥0
a2 a取任何实数
3.从运算结果来看:
a 2 =a
a (a≥ 0)
a2 =∣a∣= -a (a<0)
思考:若 (m 4)2 4 m,则m的取值范围是 _m____4____
例 求以下二次根式的值
(1) (3 )2 (2) x2 2x 1(x
说一说: 以下各式是二次根式吗?
(1) 32 (2) 12 (3) 3 8 (4) 4 a2 (5) -m (m 0) (6) 2a -1
(7) a2 2a 3 (8) x2 1
(9) 4
2 (10)
1 3
?
a 有意义 , 被开方数a≥0
被开方数a可以是数也可以是式
例1 x取何值时,以下根式有意义?
所以,当x取任何实数时,1 x2有意义

二次根式课件ppt

二次根式课件ppt
计算过程。
பைடு நூலகம்
03
二次根式的应用
求解实际问题
求解最优化问题
二次根式可以用于求解最优化问题, 例如在投资组合、生产计划等领域, 通过二次根式求解最优解,以实现最 大利润或最小成本。
求解面积和体积问题
二次根式可以用于求解一些几何图形 的面积和体积,例如在计算矩形、三 角形、球体等的面积和体积时,可以 使用二次根式进行计算。
有界性
当$a \geq 0$时,$\sqrt{a} \leq \sqrt{a + b}$($b > 0$)。
正定性
当$a > b > 0$时,$\sqrt{a} > \sqrt{b}$。
05
二次根式的综合题
与方程有关的综合题
总结词
二次根式与方程的结合,涉及解方程、方程的根、根的判别式等。
详细描述
01
02
03
性质1
二次根式被开方数必须是 非负数,否则无意义。
性质2
二次根式的被开方数中不 能含有分母,否则不能化 简。
性质3
二次根式的被开方数中不 能含有能开得尽方的因数 或因式,否则也不能化简 。
二次根式的运算
加减运算
同类二次根式可以合并, 不同类二次根式不能合并 。
乘除运算
二次根式相乘除时,只需 将被除式与除式同时平方 再约分即可。
乘法法则
$(a\sqrt{b}) \times (c\sqrt{d}) = ac\sqrt{bd}$($a,b,c,d \geq 0$)。
除法法则
$\frac{(a\sqrt{b})}{(c\sqrt{d})} = \frac{a}{c}\sqrt{\frac{b}{d}}$($a,b,c,d \geq 0$,$bd \neq 0$)。

二次根式ppt课件

二次根式ppt课件

02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。

二次根式ppt课件

二次根式ppt课件

(1) 2 x 6 ;
解:由 -2x - 6 ≥ 0,得
(2)
1

3x 7
解:由 1
0
3x 7
3 x 7 0
7

x > 3.
x ≤ -3
当 x ≤ -3 时, 2 x 6 有意义.
当x >

,得
7
1
3 时, 3 x 7
有意义.
课堂练习
【知识技能类作业】选做题:
当a是负数时, a 没有意义.
a ( a≥0)表示非负数a的算术平方根,也就是说, a
(a ≥0)是一个
非负数,它的平方等于a,即有:
(1) a ≥0 ( a≥0);
(2)(
a
)2 =a(a ≥0).
新知讲解
二次根式的定义:
形如 a (a≥0) 的式子叫做二次根式. “
”称为二次根号.
注意:
2.二次根式实质上是非负数的算术平方根.
公式是:v gR ,
其中 g 为重力加速度,R 为地球半径.
本章我们就来学习带有”“的式子.
新知讲解
在第 11 章我们学习了平方根和算术平方根的意义,引进了一个
记号
a .
当a是正数时, a 表示a的算术平方根,即正数a的正的平方根.
a
当a是0时, a 等于0,表示0的平方根,也叫做0的算术平方根.
作业布置
【综合拓展类作业】
3.已知|3x - y - 1|和 2 x y 4 互为相反数,求 x + 4y 的平方根.
解:由题意得
3x - y - 1 = 0
2x + y - 4 = 0.

二次根式PPT课件

二次根式PPT课件
;
;()
; ()



教材P43 习题
必做题:1.3
选做题:2.4
谢 谢
7. 二次根式
新知导入
复习提问:
1.什么叫做算术平方根?
2.5的算术平方根怎么表示?
. 的算术平方根是多少?
4.什么数才有算术平方根?
学习目标
1.通过观察能说出二次根式和最简二次根式的概念,
并会进行判断.
2.通过“做一做”活动,能总结出二次根式的性质,
并能利用性质将二次根式化为最简二次根式.

最简二次根式:一般地,被开方数不含分母,也不含能开得尽方的因
数或因式,这样的二次根式,叫做最简二次根式.
归纳
注意:化简时,通常要求最终结果中分母不含有根号,而且各个二次
根式是最简二次根式.
例题解析
例2 化简:
解:
展示与交流
议一议
(1)你是怎么发现 的被开方数含有开的尽方的因数的?
你是怎么判断

除以 除式的算术平方根(被除式必须是非负数,除式必须是正数)
=


( ≥ , > )

注意:a、b的取值范围不能忽略.
例题解析
例1 化简:

() × ; () × ; ()

探究三:二次根式的化筒
例1的化简结果 ,
方的因数.

中,被开方数中,都开方数都不含分母,也不含能开得尽
二次根式
二次根式的性质
最简二次根式
当堂检测
1.下列式子中,不属于二次根式的是(
2.式子


有意义的条件是(
C

A

3.下列根式一定是最简二次根式的是(

《二次根式》PPT课件 (共31张PPT)

《二次根式》PPT课件 (共31张PPT)

练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a

a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质

二次根式的加法和减法PPT课件11张

二次根式的加法和减法PPT课件11张
课前反馈
如图,学校要砌一个正方形花坛,若两 个正方形的面积分别为27cm2、12cm2, 则两正方形的周长和为多少?
两个正方形的周长和为:
4 27 4 12
以上是什么运算? 如何计算?
学习目标
• 1、知道什么是同类二次根式,会辨别两 个根式是否是同类二次根式。
• 2、学会通过合并同类二次根式,进行二 次根式的加法ห้องสมุดไป่ตู้减法运算。
4- 2 2
• C、
D、
2、如果最简二次根式
的值是 2 。
可以合并,那么
• 3、计算
(1) 90 - 2 20 5 4


90 2
20 5
4
5
5
(2() 24 1) 2 2 ( 1 6)
2
38
解:
( 24
1)2
2 (
1
6)
2 38
3 10 2 2 5 5 2 5 2 6 1 2 2 6 1 2 6
(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
讨论
2 3?
仿照前一题,你能算出这个题吗? 有什么发现?
类比 迁移 感悟
交流提升
• 1、下列计算正确的是( C )
• A、 3 3 - 3 2 B、 2 3 6
2 2 23 2
5
2
34
3 10 4 5 2 5 3 10 2 5
5 63 2 34
梳理巩固
1.几个二次根式化成最简二次根式后,如果它们的被开 方式相同,那么,这几个二次根式称为同类二次根式.
2、 二次根式的加减即为对同类二次根 式的合并。

《二次根式》PPT课件(第1课时)

《二次根式》PPT课件(第1课时)
当a>0时,-5a<0,则 5a 不是二次根式. ∴ 5a 不一定是二次根式. (4) a +1(a≥0)只能称为含有二次根式的代数式,不能称为二次根式.
(5)当x=-3时,
x
1
3
2
无意义,∴
1
x 32 也无意义;
当x≠-3时,
x
1
32
>0,∴
1
x 32
是二次根式.

1 不一定是二次根式.
a2 1,⑤ 15 ,
A.1个
B .2个
C.3个
D.4个
2.下列式子不一定是二次根式的是( A )
A. a B. b2 1 C. 0
D. a b2
3.为要使二次根式 x2 2x 1 有意义,x应取 ( D )
A. x>1
B. x<1
C. x=1
D. x=-1
4.下列结论正确的是( A )
A. 62 6 C. 162 16
(a<0)
2.若 a b 0, 则 a=0,b=0.由于二次根式 a和 b 都是非负数,
所以它们的值都为0.
两个非负数的和为0时, 这两个非负数都为0.
例2 若 A.1
x y 1 y 32 0, 则x-y的值为( C )
B.-1
C.7
D.-7
解析:因为 x y -1 和(y+3)2都是非负数,它们的和为0,所以 所以 y 32 0, x y 1 0, x+y-1=0,y+3=0,解得x=4,y
知识点 3 二次根式 a 2 与 a2 的性质
1.小亮和小颖对二次根式“ a (a≥0)”分别有如下的观点.
你认同小亮和小颖的观点吗? 请举例说明.
小亮的观点 因为 a 表示的是非 负数a的算术平方根,所 以,根据算术平方根的意 义,有 a ≥0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用。
首先发生在英国,其他国家的工 业革命发展进程相对缓慢
同时发生在几个先进的资本主义国 家,新的技术和发明超出了一国的 范围,发展迅速。
有些资本主义国家两次工业革 命交叉进行
请思考: 垄断组织的出现造成什么影响?
议一议:
第二次工业革命对中国产生了 什么影响?
请结合两次工业 革命的相关知识,谈 谈工业革命给你带来 的启示。
(2)2x2 3 y 2
( 2x)2 ( 3y)2 2x 3y 2x 3y
练习.在实数范围内分解因式
(1) 3x2 15
(2) 2a2 4b2
练习与反馈
1.要使下列式子有意义,求字母X
的取值范围
1
(1) 3 x (2) 2x 5
由3 x 0得:x 3 由2x 5 0得:x 5
解:由题意,得 x-4=0 且 2x+y=0 解得 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12
2.已知x,y为实数,且
x 1 +3(y-2)2 =0,则x-y的值为( D )
A.3
B.-3
C.1
D.-1
题型3最简二次根式:
1、被开方数不含分数;
2、被开方数不含开的尽方的因数或因式;
注意:分母中不含二次根式。
箱型车身
各国汽车诞生史
在法国,定居在巴黎的里诺于 1858年发明了煤气发动机, 该发动机装在一辆三轮车上作动力,。一种使用液体燃料并采 用原始化油器的发动机,于1862年制成,且于1863年被装在 一辆三轮小客车上,从巴黎到乔维里博达来回跑了18公里。
在美国,第一辆汽车是 1891年约翰·兰伯特制造的三轮汽 车。 1896年,亨利·福特制造出一辆四轮汽车。
莱特兄弟及其 制造的飞机
请同学们认真阅读和 独立思考
两次工业革命的相同点
背景
内容
都有许多科技创造发明
本质 影响
都是生产技术和社会关系的变革
两次工业革命的不同点
第一次工业革命 第二次工业革命
发明来源于工匠的实践经验,科学 科学、技术和生产真正结合,科学在推
和技术尚为真正结合
动生产力发展方面发挥了更为重要的作
练习1:把下列各式化为最简二次根
式1
5
5 5
32
4 2
2
7
2 7 7
2x3 3y
x 6xy 3y
练习:把下列各式化成最简二次根式
(1) 1.5
(2) 4a 2 16a 2
3 6 22
20a2 2 5a
化简二次根式的方法:
(1)如果被开方数是整数或整式时,先因数分解或因 式分解,然后利用积的算术平方根的性质,将式子化简。 (2)如果被开方数是分数或分式时,先利用商的算术平 方根的性质,将其变为二次根式相除的形式,然后利用分 母有理化,将式子化简。
电能
原理:电磁感应
电能
电动机
机械能
2.电力的广泛应用:
❖ 发明数量多:正式注册的有 1300种
❖ 著名发明有:留声机 、活动电 影机 、电灯、电报、电话、第 一架 实用打字机……
❖ 他最伟大的发明:电灯(1879 年研制成功耐用碳丝灯泡)
“发明大王”爱迪生
人们对爱迪生作出高度的评价:希腊神 话中说,普罗米修斯给人类偷来了天火;而 爱迪生却把光明带给了人类。
二次根式 单元复习(1)
知识结构
最简二次根式
三个概念 同类二次根式
有理化因式
--不要求,只 需了解
1、 a 0(a 0)

三个性质 2、 a 2 aa 0

3、 a 2 a a 0

1、 ab a ba 0,b 0

两个公式
2、
a b
a b
(a 0,b 0)
四种运算
加 、减、乘、除
4.都丰富和改善了人们日常的社会 生活内容。
不是
题型1:确定二次根式中被开方数所含字母的取值范围.
1. 当 x ≤__3___时, 3 x 有意义。
2. a 4+ 4 a 有意义的条件是 a 4 .
3.求下列二次根式中字母的取值范围
x 5 1 3x
解: x 5 0 ① 3- x 0 ②
说明:二次根式被开方数 不小于0,所以求二次根 式中字母的取值范围常转 化为不等式(组)
马车型车身
世界上第一张汽车专利证书
由德国工程师卡尔·本茨 于1886年1月29日向德国皇 家专利局申请,同年11月2 日批准。专利号为37435, 类别属于空气及气态动力机 械类,专利名为气态发动机 车。即公认的世界上第一辆 三轮汽车"奔驰1号"。
奔驰西姆皮勒克 斯旅游车—— 1907年制造, 最高时速80公里 /小时。
题型4同类二次根式:
化为最简二次根式后被开方数相同的二次根式。 下列哪些是同类二次根式
18 27 8 9m 32
3 2 3 3 2 2 3 m 4 2
18 、 8 、 32 是同类二次根式
题型5:利用 a ( a)2(a 0) 进行分解因式
例:分解因式:
(1) x2 2
x2 ( 2)2 x 2 x 2
爱迪生的同事、中央电气公司的副 总监麦礼逊在与一位叫维尔的记者谈到 爱迪生的勋绩时说:“称爱迪生为一个 伟人,为一个杰出的发明家,为一个可 惊的天才,那是容易不过的事,毫无疑 义地,他是世界上一个最有用的人物— —他的功勋所影响于千万人的生活方面 的,比现在任何生着的人都要大”。
爱迪生成功的秘诀是什么?
对国际关系的影响:
1.各帝国主义国家加紧对外侵略扩张, 世界殖民体系最终形成。
2.各帝国主义国家之间的矛盾加剧 和尖锐化。
从影响来看:
1.都极大地促进了生产力的发展。
2.都使社会结主义世界体系最终得以确立, 世界进一步联成一个整体。
二次根式的概念
1.二次根式的定义:形如 a(a 0)的式子
叫做二次根式
a 2.二次根式的识别:(1).被开方数 0
(2).根指数是2
判别.下列各式中那些是二次根式? 那些不是?为什么?
① 15

④ a2 b2

② 3a

⑤ a2 1
不是
③ x 100

⑥ 144
不是
5 ⑦ a2b2 是 ⑧ 3
解得 - 5≤x<3
已知函数 y x 2 2 x x 1,求y x的值。
解:由2x
2 x
0 0
得:xx
2 2
x 2
y 3
y x 32 1 9
题型2:二次根式的非负性的应用.
注意:几个非负数的和为0,则每一个非负数必为0。
1.已知: x 4 + 2x y =0,求 x-y 的值.
2
(3) 1 x
x
由1
x
x 0得:x 0
1且x
0
2.(1) ( 3)2 ____3
(2)当 x 1 时, (1 x)2 __x__1
(3) (x 2)2 x 2 ,
则X的取值范围是_x__2
(4)若
(x 7)2 1

x7
则X的取值范围是_x__7
练一练
1.若 x 1 y 1 0
在英国,1895年 6月,伊夫特·埃利斯制造了英国第一辆汽 车,这种车没有车门和车顶,车速又慢,一路飞扬的灰尘是汽 车司机最大的烦恼。
1908年,美国的福特T型(Ford-T)汽车开始在市场上出 现,由此揭开了汽车批量生产的序幕。该车型从1908-1927年 19年间,一共累计生产了1500万辆,创造了当时汽车生产的 世界纪录。正因为如此,福特T型车被汽车界认为是大众化汽 车的开端.
第二次工业革命对经济的影响:
1.推动了生产力的发展,但资 本主义列强之间的经济发展不 平衡加剧。 2.形成了垄断和垄断组织。 3.丰富和改善了人们的生活内容 和生活方式。
对政治的影响:
1.主要资本主义国家进入帝国主义 阶段,资本主义国家逐渐成为垄断 组织利益的代言人。
2.无产阶级队伍发展壮大,国际工 人运动和社会主义运动迎来新的 高潮。
电话、电报为迅速传 递信 息提供了方便
世界各地的 经济、政治 和文化联系 进一步加强
4、汽车和飞机的问世
卡尔·本茨先生是 世界汽车工业的先驱者 之一(1844-1929), 是德国奔驰汽车公司的 创始人,被称为“汽车 鼻祖”。
奔驰1号三轮汽车于 1886年1月29日获汽 车制造专利 这一天被公认为汽车 的诞生日,车速最快 为15km/h
求 x2 y2 的值
2.计算 (1)( 5)2 (5)2
(2) ( 10)2 (3 3)2
内燃机和新交通工具的创制
科学技术应用于 工业的成就主要 表现在:
电力的广泛应用 新通讯手段的发明
汽车和飞机的问世
1、“电气时代”的到来
发电机和电 动机的发明
来电 气 时 代 ” 的 到

机械能
发电机
• 一颗好奇的心,一种亲自试验的本能,超乎 常人的艰苦工作的无穷精力和果敢精神。
• 他的勤奋和创造性才能以及集体的力量 。 • 敏锐的观察力、丰富的想象力、活跃的创造
性思维。
“天才是1%的灵感加99%的汗水。” ——爱迪

3、新通讯手段的发明
1892年纽约—— 芝加哥的电话线路 开通。贝尔第一个 试音:“喂,芝加 哥”,这一历史性 声音被记录下来。
启示:
1.科学技术是第一生产力。 2.经济的发展需要和平稳定的社会环境。 3.政治对经济具有反作用。 4.经济的发展需要雄厚的资金。 5.在经济发展的同时要注意保护环境。
从背景看:
1.都是在政权的建立和持续稳定的 基础上开展起来的。 2.都是生产力发展的产物。 3.都有充分的自由劳动力。 4.都有必要的科技积累。 5.都具备雄厚的资金。 6.都有广阔的市场,市场的需求对科技 提出新的革新要求。
相关文档
最新文档