石墨铝基自润滑材料的制备及性能表征

合集下载

石墨润滑剂配方

石墨润滑剂配方

石墨润滑剂配方石墨润滑剂是一种高效的润滑材料,广泛应用于各种机械设备的摩擦部位,以降低磨损、提高设备效率和使用寿命。

本文将详细介绍石墨润滑剂的配方及其制备工艺,旨在为读者提供有关该领域的全面知识。

一、石墨润滑剂概述石墨润滑剂主要由石墨、基础油和各种添加剂组成。

石墨是一种具有层状结构的碳质材料,具有良好的润滑性能和耐高温性能。

基础油则起到稀释和分散石墨颗粒的作用,同时为润滑剂提供必要的粘度。

添加剂则用于改善润滑剂的某些性能,如抗氧化性、抗腐蚀性等。

二、石墨润滑剂配方组成1. 石墨:作为润滑剂的主要成分,石墨的粒度和纯度对润滑性能有重要影响。

一般来说,粒度越细,润滑效果越好。

同时,高纯度的石墨可以减少杂质对润滑剂的不良影响。

2. 基础油:基础油的选择应根据润滑剂的使用环境和要求来确定。

常用的基础油有矿物油、合成油等。

矿物油价格较低,但性能一般;合成油价格较高,但性能优越,如耐高温、抗氧化等。

3. 添加剂:为了提高润滑剂的某些性能,可以添加适量的添加剂。

例如,抗氧化剂可以防止润滑剂在高温下氧化变质;抗腐蚀剂可以保护金属表面不受腐蚀;极压添加剂可以提高润滑剂的极压性能,适用于高负荷的摩擦部位。

三、石墨润滑剂配方制备工艺1. 原料准备:按照配方比例称取石墨、基础油和添加剂。

石墨应进行粉碎、筛分处理,以获得所需的粒度。

2. 混合搅拌:将石墨、基础油和添加剂放入搅拌器中,进行充分搅拌,使各组分均匀分散。

3. 过滤:将搅拌后的混合物进行过滤,以去除其中的杂质和颗粒较大的石墨。

4. 灌装:将过滤后的石墨润滑剂灌装到适当的容器中,密封保存。

四、石墨润滑剂性能及应用石墨润滑剂具有优良的润滑性能、耐高温性能和抗腐蚀性能。

在高速、高温、重负荷的摩擦部位使用石墨润滑剂,可以有效降低磨损、延长设备使用寿命。

此外,石墨润滑剂还具有良好的自润滑性,适用于无法经常加油或换油的场合。

在实际应用中,石墨润滑剂广泛用于各种机械设备的滑动轴承、齿轮、导轨等摩擦部位。

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展石墨烯是一种由碳原子以sp2杂化的二维晶格构成的新型材料,具有优异的导热、导电、机械强度和化学稳定性等特性,因此在材料科学领域备受关注。

铝基复合材料因其轻质、高强度和耐腐蚀等优点,被广泛应用于航空航天、汽车制造、电子器件等领域。

将石墨烯与铝基复合材料结合起来,可以在保持其优良性能的基础上进一步提高其性能,因此石墨烯增强铝基复合材料的研究备受关注。

本文将从石墨烯增强铝基复合材料的制备方法、性能表征以及应用领域等方面进行综述,以期为相关领域的研究提供参考。

制备石墨烯增强铝基复合材料主要有机械合金化、电化学沉积、湿法共沉淀和热压等多种方法。

机械合金化是将石墨烯和铝粉通过球磨混合,然后进行热压成型得到复合材料。

这种方法简单易行,但由于石墨烯具有高度的层间结合力,很难与金属基体充分接触,从而影响复合材料的性能。

电化学沉积法是将金属离子在石墨烯表面还原沉积得到铝基复合材料,这种方法可以获得较好的界面结合性能,但沉积过程较为复杂,且需要特定的实验条件。

湿法共沉淀是将石墨烯和铝盐共沉淀得到复合材料,虽然可以实现大面积的石墨烯分散,但其界面结合能力有待提高。

热压法是将铝粉与石墨烯加热压制成型,这是一种简单易行的方法,能够在保持石墨烯的完整性的同时实现石墨烯与铝基体的良好结合。

石墨烯增强铝基复合材料的制备方法各有优缺点,需要根据具体需要选择合适的方法。

二、石墨烯增强铝基复合材料的性能表征石墨烯增强铝基复合材料的性能主要包括力学性能、导热性能和导电性能等方面。

力学性能是衡量复合材料可靠性的重要指标,石墨烯作为增强相可以有效提高复合材料的力学性能。

研究表明,适量添加石墨烯可以显著提高复合材料的硬度、强度和韧性等性能指标。

导热性能是石墨烯的一大特点,将石墨烯引入铝基复合材料中可以显著提高其导热性能,从而提高材料的热稳定性和散热性能。

导电性能是石墨烯的另一大特点,石墨烯具有优异的电导率,将其引入铝基复合材料中可以显著提高材料的导电性能,有利于提高材料在电子器件领域的应用性能。

含纳米石墨水基润滑剂润滑性能研究

含纳米石墨水基润滑剂润滑性能研究

油 、水溶 液等液态介 质 中的使 用仍 需进 一步 的研 究
和试验 。本 文作者采 用 球磨 机制 备 了纳米 级膨 胀 石墨 ,将其 添加到 蓖麻油硼 酸酯 水基 润 滑 剂 中 ,利 用膨胀 石墨的亲油 疏水 性 ,使 其 吸附在 蓖麻 油硼 酸
料与润滑技术 相结合 ,制备 出同时具有减摩 、抗磨 和
1 . 2 含 纳 米石 墨 水基 润 滑 剂 的 制 备 1 . 2 . 1 纳 米 膨 胀 石 墨 的制 备
将1 0 m L 9 8 %浓硫 酸与 1 . 5 m L 3 0 %过 氧化氢混 合 ,将混 合溶液添加到烧杯 中 ,与 6 g天然 片状 石墨 在搅拌下 反应 1 . 5 h ;反应后 的混合 物过滤 后用 去离 子水彻底 清洗 ,直至溶液 p H值 为 中性 ;在干燥 箱 中
修复功能 的润滑材料 ,是 近年来摩擦与润滑领域研究 的热点 ,也 是 微 纳 米 材 料 与 润 滑 剂 相 结 合 的 切 人
点 一 。
膨 胀石 墨 多作 为 吸 附剂 、电极 材 料 或 复 合 材 料 ,在摩 擦 学 领 域 的 应 用 也 集 中 在 作 为 润 滑 剂 ( 脂 ) 的载 体或 固体 喷 涂材 料 上 的应 用 ,但 在 润 滑
近年来 ,碳纳米结构以其独特 的性能受到研究者 的广泛关注 …。膨胀石墨是一种重要的碳材料 ,具有 极强 的 自润滑性和优 良的吸附性能 』 ,能够应用在许 多场合 。其结构是 紧密 的、有 弹性 的弯 曲石 墨片层 , 该片层 结构 比天然石 墨鳞片小 ,含有大量 不同尺 寸的 孔和纳米石 墨层 。膨胀 石 墨通 过球磨 机 球磨 后 , 能够得到纳米 级的石 墨。 水基润滑剂因具有清洗性能好 、节约能源 、比热 容及导热系数 大 、阻燃 、价格低 、冷却效果好等诸多 优点 ,成为绿 色润滑剂 的重要发展方 向。将微 纳米材

石墨烯摩擦学及石墨烯基复合润滑材料的研究进展

石墨烯摩擦学及石墨烯基复合润滑材料的研究进展

石墨烯摩擦学及石墨烯基复合润滑材料的研究进展一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维晶体材料,自2004年被科学家首次成功分离以来,其独特的物理和化学性质引起了全球科研人员的广泛关注。

石墨烯以其超高的电导率、热导率、强度以及优良的摩擦学性能,在众多领域展现出巨大的应用潜力。

特别是在摩擦学领域,石墨烯及其基复合润滑材料的研究,对于提高机械部件的运行效率、降低能耗、延长使用寿命等方面具有深远的意义。

本文旨在全面综述近年来石墨烯摩擦学及石墨烯基复合润滑材料的研究进展。

我们将从石墨烯的基本性质出发,深入探讨其摩擦学特性,包括摩擦系数、磨损率等关键指标。

随后,我们将重点介绍石墨烯基复合润滑材料的制备工艺、性能优化及其在实际应用中的表现。

本文还将对石墨烯在摩擦学领域的未来研究方向和应用前景进行展望,以期为相关领域的科研工作者和工程师提供有益的参考和启示。

二、石墨烯的摩擦学特性石墨烯,作为一种新兴的二维纳米材料,自其被发现以来,便因其独特的物理和化学性质引起了摩擦学领域的广泛关注。

石墨烯的摩擦学特性主要表现在其超常的力学性能和极低的摩擦系数上。

石墨烯的力学性能卓越,其杨氏模量高达0 TPa,抗拉强度约为130 GPa,这使得石墨烯在承受压力时表现出极高的稳定性。

因此,在摩擦过程中,石墨烯可以作为有效的承载层,减少摩擦界面的磨损。

石墨烯具有极低的摩擦系数。

研究表明,石墨烯在多种材料表面上的摩擦系数都低于1,甚至在某些条件下可以达到超低摩擦状态。

这种低摩擦特性使得石墨烯在润滑材料领域具有巨大的应用潜力。

石墨烯还具有出色的热稳定性和化学稳定性,这使得它在高温、高湿、高腐蚀等恶劣环境下仍能保持稳定的摩擦性能。

因此,石墨烯不仅可以在常规条件下作为润滑材料使用,还可以在极端条件下发挥出色的润滑效果。

然而,尽管石墨烯具有诸多优点,但在摩擦学应用中也存在一些挑战。

例如,石墨烯的层间剪切强度较低,容易在摩擦过程中发生滑移,导致摩擦系数的波动。

《润滑与密封》投稿要求

《润滑与密封》投稿要求

冯 伟 陈 闽杰 贺 石 中 (9 9)
陶瓷材 料磨损机制及磨损程度评价方法综述 … ……

田 晓 贾克军 祝
彦 王翠表 (0 ) 15
欢迎 投稿 《 汽车零部件》杂 志
大直径 高压密封 的研制 …… …… ……… …… ……
— —
关注科研动态 ,解读市 场走 向 …… ( 2 ) 1 0
盛业涛
李小瓯
陈志杰
黄 亚平 高宜琼 ( 1 ) 10
机械 密封标准汇总 …………………………… ( 2 ) 1 4
《 润滑 与密封》 投稿要 求


对来 稿 的 要 求
表在文 中均应有标 注,并对 每幅 图表冠 以具 有 自明性 的图 ( 表)题 ( 包括 中英 文 ) 。本 刊采 用 三线 表 ,表 中取 消 竖 线 。插 图应 由专业人员 用计算机 绘制或拍 摄 ;照片图上 不 要用手写字。插图做 到布局合理 、图形清晰 、比例适 中。
中科华与苏州宝骅共 同研发核电站反应堆大盖密封环
… … … … … … … … … … … … … … … … …
无硫膨胀石墨制备及影响因素分析 … …… …… …… 瑚 永— ( 0 乎 9)
… …
我 国国产核电站石墨密封件通过工业性鉴定 … ( 8 4)
西北橡胶塑料设计 院三项 目通过 鉴定
石墨铝基 自润滑材料 的制备及性能表征 … ……… …
… …
丙烷冷冻机聚醚合成油的研制与应用 … …… ………
… … … … … … … … …
朱 洪睿
张绪平
杨 永建
牛 志鹏 (3 7)
陈 美名 曹 夏宏基
毅 (1) 14

金属基自润滑复合材料固体润滑剂研究进展

金属基自润滑复合材料固体润滑剂研究进展

第47卷第5期燕山大学学报Vol.47No.52023年9月Journal of Yanshan UniversitySept.2023㊀㊀文章编号:1007-791X (2023)05-0398-13金属基自润滑复合材料固体润滑剂研究进展邹㊀芹1,2,王㊀鹏1,徐江波1,李艳国2,∗(1.燕山大学机械工程学院,河北秦皇岛066004;2.燕山大学亚稳材料制备技术与科学国家重点实验室,河北秦皇岛066004)㊀㊀收稿日期:2022-05-25㊀㊀㊀责任编辑:唐学庆基金项目:丹凤朝阳人才支持计划(丹人才办[2019]3号);河北省高等学校科学研究重点项目(ZD2021099)㊀㊀作者简介:邹芹(1978-),女,安徽淮北人,博士,教授,博士生导师,主要研究方向为超硬及特种陶瓷材料㊁摩擦磨损;∗通信作者:李艳国(1978-),男,河北唐山人,博士,副研究员,主要研究方向为金属基复合材料,Email:lyg@㊂摘㊀要:固体润滑剂在金属基自润滑复合材料中的应用正在迅速增加,特别是在极端环境(高温㊁高负载等)条件下工作的耐磨材料㊂目前,金属基自润滑复合材料中常使用的固体润滑剂主要有无机层状固体润滑剂㊁金属及其化合物㊁MAX 金属陶瓷㊁有机物固体润滑剂㊁碳纳米材料固体润滑剂㊁多元复合固体润滑剂等,其种类很多,且各自有其适用的环境和基体㊂根据基体材料以及工况环境选择相匹配的固体润滑剂,可以保证金属基自润滑复合材料具有良好的减摩耐磨效果㊂针对上述内容,本文综述了金属基自润滑复合材料采用的固体润滑剂种类㊁基本性质㊁优缺点㊁润滑机理,总结了固体润滑剂的适用温度及其在金属基自润滑复合材料中的应用情况,并对金属基自润滑复合材料固体润滑剂的发展趋势进行了展望㊂关键词:金属基自润滑复合材料;固体润滑剂;润滑机理;研究进展;展望中图分类号:TB331㊀㊀文献标识码:A㊀㊀DOI :10.3969/j.issn.1007-791X.2023.05.0030㊀引言固体润滑剂[1]是金属基自润滑复合材料的重要组成部分,在金属基自润滑复合材料中的应用具有很长的历史㊂早在19世纪初期[2-3],石墨和Pb 已经作为润滑剂用于低速运转的机器上㊂20世纪30年代,添加固体润滑剂的铁基自润滑轴承在德国出现㊂20世纪60年代,添加MoS 2的金属基自润滑复合材料逐渐产生,并对超音速飞机的问世起到了重要的推动作用[4]㊂到目前为止,由于固体润滑剂可在一些特殊工况下(见表1)起润滑作用,这对高新技术的发展起到了重要的推动作用[5]㊂金属基自润滑复合材料固体润滑剂种类很多,包括无机层状固体润滑剂㊁金属及其化合物㊁MAX 金属陶瓷㊁有机物固体润滑剂㊁多元复合固体润滑剂等,其各有优缺点,且仍处于不断发展阶段㊂表1㊀固体润滑剂的适用场景Tab.1㊀Applicable scenaries of solid lubricants适用场景具体应用高负载滑动场景重型机械中的摩擦部件高温环境下磨损场景航空航天发动机㊁导弹燃油泵等摩擦部件强辐射环境下摩擦场景核电站㊁卫星等设备上的裸露活动部件强腐蚀性介质中摩擦场景化学反应器轴承,压缩机螺丝等部件摩擦接触表面导电场景电刷㊁受电弓滑板等灰尘或碎片环境中工作场景矿山机械和织机机械中的摩擦部件需要保证清洁的摩擦场景食品机械㊁纺织机械等摩擦部件微颤环境下的摩擦场景汽车和飞机上的摩擦部件1㊀无机层状固体润滑剂1.1㊀石墨石墨价格低廉,在潮湿环境中由于水的氢离第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展399㊀子和氢氧根离子的饱和导致层间范德华键减弱,从而促进了层间分裂,在金属表面形成一层具有减摩作用的润滑膜[6],使得其可在潮湿环境提供有效润滑㊂目前,石墨作为金属基自润滑复合材料固体润滑剂的研究主要集中在改善不同钢种在不同工业应用中的摩擦磨损性能上,而制备时石墨与部分金属基体(Cu㊁Al等)润湿性较差,导致两者界面结合变差,影响复合材料的力学性能以及摩擦学性能,另外使用过程中产生的高温会导致石墨氧化和烧蚀,严重影响润滑效果[6-8]㊂对石墨进行金属化改性,如采用金属(Ni㊁Cu等)包覆石墨的办法,能有效改善石墨与基体的界面结合,同时防止石墨氧化和腐蚀,改善石墨高温润滑效果,从而提高复合材料摩擦学性能,扩大使用范围㊂张鑫等[9]采用Cu包覆石墨制备了Cu基粉末冶金摩擦材料,其材料表面形成的摩擦膜主要为氧化膜,而采用普通石墨时,由于材料表面较多的石墨会抑制氧化反应,会形成石墨膜,其对材料表面的保护效果不及氧化膜㊂但相对于原基体,两种材料摩擦性能均有明显提高㊂Zhao等[10]证明了石墨与青铜无法充分润湿,而加入Ni或Cu包覆石墨的复合材料可以明显提高石墨与基体的结合性,Ni包覆石墨青铜基材料具有更稳定的摩擦系数㊁更低的磨损率㊁更高的维氏硬度,包覆石墨的Ni也可以提高复合材料的耐蚀性㊂牛志鹏等[11]发现加入镀Ni石墨可以降低石墨与Al的润湿角,提高基体的力学性能,降低复合材料的摩擦系数和磨损率,使金相组织变得更加致密㊂但石墨表面光滑且亲水性差,难以实现完全包覆㊂罗虞霞等[12]发现,采用机械化整形处理石墨表面,可以获得更为完整的Ni包覆层㊂冀国娟等[13]发现,在石墨表面进行微氧化以及在化学包覆反应溶液中加入醇类表面活性剂,均可提高包覆率㊂综上,采用金属包覆石墨作为固体润滑剂可显著提高其高温润滑特性㊂然而,石墨表面包覆金属层的完整性是决定其润滑性能的关键因素㊂故进一步提高石墨表面包覆金属层的完整性以及连续性将继续成为研究的重点㊂1.2㊀BNBN导电性能强㊁热稳定性高,在大气环境中适用温度为500~800ħ,是高温自润滑材料的优良润滑剂㊂其润滑机理为[14-15]:高于500ħ时,BN 会在摩擦过程中剥落而转移到摩擦表面形成润滑膜,起减摩作用㊂蒋冰玉等[16]以Ni-Cr合金为基体材料,BN为固体润滑剂,制备出燃气轮机中减摩耐磨用的高温自润滑复合材料㊂目前,尽管BN 是一种人们熟知的高温固体润滑剂,但由于其存在有效性差㊁不可润湿等问题,使得人们对于BN 单独应用在金属基自润滑复合材料上的报道较少,其常与其他固体润滑剂协同润滑[17]㊂2㊀金属及其化合物2.1㊀金属常见的金属固体润滑剂有Pb㊁Al㊁Ag㊁Au㊁Sn㊁Bi㊁In等,其具有纯度高㊁原料易得㊁低温环境不会丧失润滑性能等优点㊂金属固体润滑剂在强辐射㊁真空㊁低温等极端工作条件非常适合作为金属基自润滑复合材料的固体润滑剂使用,常与Cu㊁Al㊁TiAl等金属基体组成复合材料㊂其润滑机理为:在摩擦热的作用下,由于热膨胀系数不同,金属逐渐从基体内扩散到摩擦表面形成润滑膜,起减摩作用,但其适用环境受温度限制严重㊂Yao等[18]发现,在200ħ时,Ag在剪切应力作用下扩散到摩擦表面,起减摩耐磨作用㊂但在600ħ时Ag完全失去润滑作用(图1)㊂Dong 等[19]发现,Cu-24Pb-x Sn合金的自润滑性能和力学性能随Sn含量的增加而增加,Pb含量的增加有效地削弱了以摩擦系数变化为特征的粘滑现象㊂李聪敏等[20]以Al-Cu-Mg合金为基体,添加低熔点组元Bi后合金抗咬合能力明显提升,发现带状富Bi 相涂覆在磨损表面,起到减摩自润滑作用㊂金属在强辐射㊁真空㊁低温等极端环境仍具有润滑特性,但是也存在着一些缺点,如:Pb本身有毒,对人体和环境都有危害,Ag㊁Au㊁In等金属作为固体润滑剂时成本太高;金属在空气中暴露的时间过长时,易发生氧化反应,影响润滑效果㊂2.2㊀金属氧化物常见的金属氧化物固体润滑剂有PbO㊁CuO㊁MoO3㊁SnO㊁ZnO等㊂金属氧化物是最早应用的高温固体润滑剂,常与Fe㊁Ni㊁NiAl等金属基体组成复合材料㊂由于金属氧化物具有较低的剪切强度,可有效避免摩400㊀燕山大学学报2023擦过程中的咬合现象㊂Peterson 等[21]考察了大量氧化物的高温摩擦学特性,发现PbO 等少数氧化物可实现较宽温度范围内的有效润滑㊂但是,由于PbO 危害环境,国外已限制其应用㊂Zhu 等[22]通过PM 制备了添加氧化物(ZnO /CuO)的NiAl-C-Mo 自润滑材料,发现氧化物在低温时几乎不起减摩作用㊂但当温度达到600ħ时,磨损表面形成了ZnO㊁CuO 和MoO 3层,表现出了良好的减摩耐磨效果㊂结果表明,金属氧化物在高温时润滑效果显著㊂但是,目前关于二组元氧化物的润滑机理还未得到统一㊂图1㊀TiAl 基自润滑复合材料磨损表面的微观结构演变示意图Fig.1㊀Schematic diagram of microstructure evolution of wear surface of TiAl based self-lubricating composite2.3㊀金属氟化物常见的金属氟化物固体润滑剂有CaF 2㊁BaF 2㊁LaF 3等㊂金属氟化物热稳定性良好,从500ħ到1000ħ的温度范围都能起到良好的减摩耐磨作用,其原因主要为金属氟化物在500ħ时经历了由脆性到塑性的转变㊂Longson [23]发现,CaF 2和BaF 2具有良好润滑性的原因是其在摩擦过程中由脆性向塑性转变以及氟元素与金属表面发生化学反应的共同作用㊂尽管对CaF 2和BaF 2润滑机理进行了大量研究,但是对于其转移润滑机理的全面认识还有赖于进一步研究㊂综上,由于金属氟化物特殊的润滑机制导致其在低温时不提供润滑,故单独采用金属氟化物作为金属基自润滑复合材料固体润滑剂的报道很少,其多与石墨㊁Ag 等固体润滑剂复合使用,达到宽温度范围有效润滑的目的㊂2.4㊀金属硫化物常见的金属硫化物固体润滑剂有MoS 2㊁WS 2㊁FeS㊁CrS 等㊂MoS 2属于六方晶系,具有层状结构,常与Fe㊁Al㊁Ag 等金属基体组成复合材料㊂MoS 2在大气环境中适用温度可达350ħ,润滑机理与石墨相似,由于具有低摩擦㊁低接触电阻等优点,广泛用作航空㊁航天机构中的滑动电接触材料[24]㊂WS 2因其良好的热稳定性和抗氧化性而广泛应用于高温环境㊂研究表明[25-27],在大气环境中通过在金属基体中掺入MoS 2或WS 2颗粒可显著提高Ni [25]㊁Al [26]㊁Fe [27]等金属基复合材料的摩擦学性能,使其满足使用要求㊂但是,MoS 2和WS 2会因大气湿度高㊁氧气的存在以及高温而导致润滑性能降低㊂通过掺杂金属或无定形碳可以保护MoS 2边缘位置免受氧化,从而提高MoS 2和WS 2在潮湿或较高温度条件下的摩擦学性能㊂Rigato 等[28]发现在MoS 2层状结构中掺杂Ti 增加了MoS 2层间距离,从而改善了其摩擦学性能㊂此外,研究发现,在MoS 2层状结构中掺杂Ni [29]㊁Cu [30]等金属可提高复合材料在潮湿环境和真空条件下的摩擦磨损性能㊂FeS 与MoS 2相比,具有优异的耐高温特性,因其较疏松的鳞片状结构能储存润滑油,可进一步提升润滑性能㊂尹延国等[31]发现FeS /Cu 基复合材料在在干摩擦过程中,FeS 颗粒聚集在摩擦表面形成一层硫化物固体润滑膜,具有较好的减摩㊁抗粘着作用,在油润滑条件下,润滑油膜和FeS 固体润滑膜可以起协同润滑作用㊂Lu 等[32]采用NiCr /Cr 3C 2和WS 2粉末在Ti 6Al 4V 基体上激光熔覆制备了Ti 2SC /CrS 自润滑耐磨复合涂层,由于原位合第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展401㊀成的自润滑Ti2SC和CrS的存在,自润滑抗磨复合涂层显示出比不添加WS2粉末的抗磨复合涂层更好的摩擦学性能㊂综上,MoS2和WS2在高温真空条件下具有优良的润滑特性,被认为高温真空条件下的首选固体润滑剂㊂在大气环境中,温度低于350ħ时,金属基-MoS2自润滑材料表现出优异的摩擦学性能㊂但是,MoS2在大气环境中高温时容易发生氧化[29-30],限制了其应用环境㊂故如何进一步提高MoS2在潮湿和较高温度条件下的摩擦学性能将继续成为研究的重点㊂2.5㊀金属硒化物常见的金属硒化物固体润滑剂有NbSe2㊂NbSe2导电性能优异,相对摩擦系数低,常与Ag㊁Cu[33-34]等金属基体组成复合材料,广泛应用于电接触领域㊂早在20世纪80年代,美国NASA便采用Ag-NbSe2自润滑材料来制作卫星上的电刷,并取得良好效果㊂Ag-NbSe2自润滑材料具有良好润滑性能的原因[33]为在摩擦热和变形挤压的共同作用下,部分NbSe2转移到摩擦表面,形成了NbSe2润滑膜,起减摩作用㊂孙建荣等[34]发现,高负载㊁真空条件下,添加纤维状NbSe2的Cu-石墨复合材料摩擦系数远低于原复合材料㊂因此, NbSe2常作为真空条件下的固体润滑剂使用㊂3㊀MAX金属陶瓷MAX金属陶瓷因为其原子结构和独特的化学键特性,使MAX金属陶瓷兼具金属和陶瓷的优点,如高硬度㊁高弹性模量,具有良好的抗氧化性㊁耐腐蚀性㊁导电导热性㊁辐照性能㊁高温机械和摩擦学性能等[35]㊂理论计算约有600余种能稳定存在的三元MAX金属陶瓷,如今可以通过实验合成80多种[36],如Ti3SiC2㊁Ti3AlC2㊁Ti2AlC㊁Ti2AlN㊁Ta2AlC等㊂目前,除Ti3SiC2和Ti3AlC2外,对于其他MAX金属陶瓷应用于金属基自润滑复合材料的研究鲜有报道㊂在材料基体中添加一定量的Ti3SiC2/Ti3AlC2颗粒润滑相能够显著提升金属基体的摩擦学性能㊂研究表明[37-39]不同温度下的微观结构以及反应产物对Ti3SiC2㊁Ti3AlC2的润滑性能有重要的影响㊂Zou等[38]用放电等离子烧结制备Ti3SiC2增强TiAl基复合材料,Ti3SiC2均匀分布在TiAl基质中,部分分解形成Ti5Si3和TiC,室温摩擦时复合材料表面形成Ti3SiC2润滑膜,550ħ摩擦时形成Fe-Ti-Al-Si-氧化物润滑膜,起润滑作用㊂朱咸勇等[39]发现,当试验温度低于400ħ在轻载条件下难以形成稳定氧化物润滑膜,其润滑特性主要依赖于特殊的层状形貌,而试验温度超过500ħ会促使材料表面形成氧化物润滑膜,起到减摩耐磨的作用㊂同时,MAX金属陶瓷添加量对复合材料摩擦学性能影响较为显著㊂陈海吉[40]使用放电等离子烧结制备Ti3AlC2/Cu复合材料,研究表明,随着Ti3AlC2添加量增加,复合材料摩擦磨损性能得到提高㊂研究发现当含量过高时会导致其致密度降低,影响摩擦学性能㊂烧结温度对MAX金属陶瓷自润滑复合材料性能也有重要影响㊂Zhou等人[41]发现烧结温度在900ħ以上时,在Cu和Ti3SiC2界面会形成Cu㊁TiC x㊁Ti3SiC2和Cu x Si y混合区从而提高系统的润湿性和耐磨性㊂综上,MAX金属陶瓷应用在摩擦材料的大多数情况下,由于摩擦过程中形成的氧化物润滑膜具有特殊的层状结构,使复合材料润滑效果更好㊂另外,表面改性以及较高的烧结温度可进一步提高其润滑效果㊂4㊀有机固体润滑剂除上述固体润滑剂外,还有一类性能优越㊁可用于极端环境(真空㊁强辐射)条件下的单一固体润滑剂-有机固体润滑剂㊂有机固体润滑剂种类很多,如聚四氟乙烯(PTFE)㊁三聚氰胺氰尿酸盐(MCA)等,但较低的适用温度(-270~275ħ)限制了其在金属基复合材料中的应用㊂PTFE是所有聚合物中摩擦系数最低的[42]㊂其抗剪切强度较低,受剪切力时聚合物链脱开,可提供润滑作用㊂同时,由于含F外壳的存在,其抗咬合性优异,常采用电沉积法与Ni[43]㊁Fe[44]等金属基体组成复合材料㊂MCA润滑特性与MoS2相似,滑动面间极易受力断裂,提供润滑作用㊂Tang 等[43]发现,由于润滑转移层的存在,Ni-Co-PTFE 复合材料显示出良好的摩擦学性能(摩擦系数0.08)㊂Xiang等[44]则指出PTFE的低摩擦系数以及40Cr钢的高强度是40Cr钢-PTFE复合材料具有良好摩擦学性能的重要原因㊂但是PTFE的力402㊀燕山大学学报2023学性能较差,线膨胀系数大,故将PTFE用作固体润滑材料时通常要添加填充物对其进行改性或对金属基体进行阳极氧化处理[45]㊂魏羟等[46]用Pb 粉㊁石墨㊁玻璃纤维填充PTFE制成Cu基镶嵌型关节轴承材料,显示出较好的摩擦磨损性能㊂但李同生等[47]发现,与含铅PTFE镶嵌轴承相比,无铅PTFE镶嵌轴承在工作时所形成的润滑膜最为完整㊁均匀,耐磨性更好㊂同时,对金属基体进行阳极氧化处理改性可进一步提高PTFE与基体金属基体的附着性[45]㊂综上,添加填充物对PTFE进行改性或对金属基体进行阳极氧化处理可大大提高复合材料的机械和摩擦学性能㊂5㊀碳纳米材料固体润滑剂近年来,纳米技术的快速发展推动了金属基自润滑复合材料的开发,出现了新型碳纳米材料固体润滑剂,例如碳纳米管(CNTs)㊁石墨烯(GPLs)等㊂由于其尺寸小,容易进入摩擦接触区域,形成保护摩擦膜,产生自润滑效应㊂同时,界面以下的新型碳纳米材料还可以防止应力集中而引发的严重磨损㊂5.1㊀碳纳米管CNTs具有良好的润滑特性,被认为是金属基自润滑复合材料中石墨的替代品㊂在这方面,有相关报道称已经成功开发了用于汽车工业的CNTs-金属基自润滑复合材料[48]㊂Orowan环化机制以及CNTs与金属基体之间热膨胀失配所产生的位错在增强Al/Cu-CNTs复合材料中起着重要作用[49]㊂为达到预想的润滑效果,CNTs在基体中的均匀分布以及界面调控就显得尤为重要㊂对此,研究者们做了大量的工作㊂2004年,Noguchi等[50]开发了一种新方法制备复合材料,首先让CNTs均匀分布在弹性体基体内,然后用Al来置换弹性体基体,从而保证CNTs均匀分布在Al基体内㊂2019年,周川等[51]采用混酸处理㊁分子水平法结合行星球磨两步混合工艺成功制备出Cu-CNTs复合粉末㊂混酸处理将含O官能团成功引入CNTs表面,提高了CNTs与基体的界面结合㊂以上研究均表明,均匀分布的CNTs可显著提高材料的机械和摩擦学性能㊂5.2㊀石墨烯片GPLs是目前已知最薄㊁最硬㊁导电性能最好的材料,具有良好的润滑特性,同时,可以通过晶粒细化㊁位错强化和应力转移来提高复合材料强度[52]㊂在过去的十多年里,绝大多数报道均表明在基体中均匀分布且结合良好的GPLs能够明显改善金属基复合材料的摩擦学性能㊂但是,聚集状态的GPLs增强效果较差,与石墨薄片几乎无差别㊂研究表明[53-55],不同的因素(例如GPLs的类型㊁含量㊁基体材料㊁混料方法和球磨时间等)会显著影响GPLs在金属基体中的分散性㊂为了保证GPLs均匀地分散在基体中,部分研究者在粉体混合工艺中采用氧化石墨烯代替石墨烯,先得到均匀混合的氧化石墨烯/合金粉体,再通过氧化石墨烯的热还原性质得到高度均匀的还原石墨烯/合金粉体[56]㊂Bastwros等[53]则研究了球磨时间对GPLs增强Al基复合材料的影响㊂发现经过10 min球磨后的材料综合性能反而降低,而60min 球磨后GPLs均匀分散在到Al基体内,在摩擦学性能上,GPLs显示出了良好的增强效果㊂另一方面,化学镀和电化学沉积法制备金属包覆型碳纳米材料,也可以确保GPLs均匀地分散在基体中㊂李远军[55]通过化学镀将纳米铜颗粒负载于还原氧化石墨烯表面的方法来确保其在Cu基体上均匀分布㊂但研究表明,化学镀和电化学沉积法一般仅适用于Cu㊁Ni㊁Ag等电负性较低的金属基体㊂综上,碳纳米材料可显著提高材料摩擦学和机械性能㊂但是,CNTs严重团聚以及与基体结合不牢固会减弱增强效果,甚至导致材料失效㊁降低使用寿命,从而进一步增加制造成本,限制其在金属基自润滑复合材料上的广泛应用㊂这就对制造方法㊁材料尺寸大小以及空间分布提出来更为苛刻的要求,但是,由于弱的层间相互作用,碳纳米管㊁石墨烯在实现超滑方面有很大的潜力[57]㊂因此,目前研究者们对于碳纳米材料固体润滑增强金属基自润滑复合材料的研究也主要集中在这四方面:1)提高碳纳米材料在金属基复合材料中分散的均匀性;2)对碳纳米材料与金属形成的界面组织进行调控;3)掺杂其他固体润滑剂,进一步提高金属的减摩耐磨性能;4)微观尺度上,研第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展403㊀究石墨烯对材料性能的作用机理㊂综上,单一固体润滑剂对使用环境具有选择性,无法实现宽温度范围(25~800ħ)以及多种环境下的有效润滑㊂常见单一固体润滑剂的性能及优缺点见表2[1-57]㊂表2㊀单一固体润滑剂性能及优缺点Tab.2㊀Performance and relative merits of single solid lubricant固体润滑剂适用温度/ħ摩擦系数μ优点存在的问题最新解决方法石墨-270~5500.05~0.3(大气中)廉价㊁减震性良好㊁可在潮湿环境提供有效润滑强度较低,仅在大气环境提供有效润滑对石墨粉末进行表面改性,如镍包覆石墨MoS2-270~3500.006~0.25(大气中)0.001~0.2(真空中)高温真空条件下稳定性优异大气环境易氧化失效掺杂金属或无定形碳BN500~8000.15~0.25(大气中)良好的高温固体润滑剂成本较高,低温润滑性差与低温固体润滑剂协同润滑Ag㊁Au-270~4000.08~0.2(大气中).0.08~0.15(真空中)导电性能优异在酸碱条件下无效,成本高与其他固体润滑剂协同润滑PbO200~6500.1~0.3(大气中)可实现宽温度范围有效润滑有毒物质,摩擦系数较高㊁且形成润滑膜易脱落已被其他固体润滑剂替代CaF2㊁BaF2㊁LaF3500~9000.2~0.4(大气中)可实现高温有效润滑低温润滑性差与低温固体润滑剂协同润滑MAX金属陶瓷400~8000.005(大气中)高温机械和摩擦学性能优异,导电性能良好与Fe等基体复合时,界面结合差,易脱落1)添加增强相;2)对Ti3SiC2㊁Ti3AlC2进行表面改性,如镀铜PTFE-270~2750.04~0.2(大气中)0.04~0.15(真空中)真空润滑性能优异,抗咬合性好300ħ以上失效,不耐高温㊁力学性能较差,线膨胀系数大1)添加填充物对PTFE进行改性;2)对金属基体进行阳极氧化处理碳纳米材料-270~5000.05~0.2(大气中)轻质,可显著提高复合材料机械学㊁摩擦学性能团聚以及界面结合严重影响润滑效果,生产成本高昂1)氧化石墨烯代替石墨烯;2)混酸处理;3)金属包覆碳纳米材料;4)掺杂其他固体润滑剂6㊀多元复合固体润滑剂早在20世纪60年代初,人们就已经发现,两种或者多种固体润滑剂混合使用时,由于不同固体润滑剂之间的协同作用,使得其润滑效果好于其中任何一种固体润滑剂单独作用㊂6.1㊀Ni基自润滑材料的多元复合固体润滑剂在过去的20年中,已经成功开发了一系列Ni 基的高温自润滑复合材料[58-62]㊂该类由Ni基体与固体润滑剂(Ag-BaF2/CaF2/LaF3-金属氧化物/无机盐)组成的自润滑复合材料,在很宽的温度范围(25~800ħ)和高强度(800ħ,500MPa的抗压强度)并存的情况下表现出优异的润滑性能(图2[59])㊂其良好的润滑特性(摩擦系数(0.23~ 0.34)和低磨损率(10-6~10-5mm3N-1m-1)解释为Ag㊁氟化物㊁无机盐的协同作用㊂当高于500ħ时,氟化物中的低共熔物从基体中逸出,发生由脆性到塑性的转变,可进一步提升润滑效果[60]㊂Zhen等[61]指出由于Ag膜的存在,真空环境中该类复合材料摩擦系数和磨损率均低于大气环境中的摩擦系数和磨损率,是一种很有潜力的航空㊁航天材料㊂此外Zhen等[62]的另一份研究表明,在Ag-BaF2-CaF2固体润滑剂的基础上再添质量分数为0.5%~1%的石墨可以使Ni基复合材料获得稳定的摩擦性能(摩擦系数(0.19~0.29)和磨损率(5.3ˑ10-6~2.3ˑ10-5mm3N-1m-1)㊂404㊀燕山大学学报2023图2㊀Ni 基自润滑复合材料的摩擦学性能Fig.2㊀Tribological properties of Ni basedself-lubricating composites6.2㊀Ni 3Al 基自润滑材料的多元复合固体润滑剂进一步研究表明[63-65],该类由Ni 3Al 基体与固体润滑剂(Ag-CaF 2-BaF 2)和增强材料(Cr,Mo 等金属元素)组成的自润滑复合材料,在从室温到1000ħ的宽温度范围内表现出低摩擦系数(μ<0.4)和低磨损率(10-6~10-4mm 3N -1m -1),且具有令人满意的机械性能(硬度>300HV,抗压强度>1000MP)㊂Zhu 等[65]采用热压烧结法制备的Ni 3Al-6.2BaF 2-3.8CaF 2-12.5Ag-20Cr 复合材料实现了室温到1000ħ的有效润滑(摩擦系数(0.24~0.37)和低磨损率(5.2ˑ10-5~2.3ˑ10-4mm 3N -1m -1))㊂Ni 3Al 基体良好的高温机械性能,Ag㊁氟化物㊁无机盐的协同润滑以及Cr 元素对基体的增强作用使得其可以实现更宽温度范围的有效润滑㊂与Ni 基自润滑复合材料相比,Ni 3Al 基自润滑复合材料则可实现更宽温度范围内的有效润滑,其润滑机理见图3[66]㊂6.3㊀TiAl 基自润滑材料的多元复合固体润滑剂近年来,由于航空㊁航天工业的需要,科研人员制备了一系列基于TiAl 基的高温自润滑复合材料[67-69]㊂该类由TiAl 基体与固体润滑剂(Ag-Ti 3SiC 2-BaF 2/CaF 2)组成的自润滑复合材料,具有硬度高(>500HV)㊁轻质(ρ<3.9g /cm 3)等优点㊂结果表明[66-68],Ag-Ti 3SiC 2-BaF 2-CaF 2润滑体系在宽温度范围内下具有良好的协同效应:低温时,银扩散到金属基体的摩擦表面形成了一层富Ag 的摩擦膜,高温时,由于BaF 2㊁CaF 2的挤压和Ti 的氧化,在摩擦表面形成了一层含氟化物和氧化物的摩擦膜㊂但是,从室温到800ħ的宽温度范围内其摩擦系数(μ>0.3)和磨损率(10-4mm 3N -1m -1)较高,摩擦学性能有待进一步提高㊂图3㊀宽温度范围内Ni 3Al 基自润滑复合材料的润滑机理Fig.3㊀Lubrication mechanism of Ni 3Al based self-lubricating composites in a wide temperature range㊀㊀综上,可得出:1)多元复合固体润滑剂的协同作用在宽温度范围内对改善复合材料的摩擦学性能起重要作用;2)选择高温机械性能优异的金属基体以及适当添加Cr㊁Mo 等金属元素可实现更宽温度范围的有效润滑;3)Ag 与氟化物/无机盐/MAX 金属陶瓷材料等高温固体润滑剂的组合具有极佳的协同润滑作用㊂6.4㊀Fe /Cu /Ag 等金属基自润滑材料的多元复合固体润滑剂㊀㊀人们对多元复合固体润滑剂对Fe [70-71]㊁Cu [72]㊁Ag [73]等金属基体性能影响也进行了大量研究㊂Li 等[71]发现以LaF 3和MoS 2作为润滑组元的Fe 基复合材料可显示出超低的摩擦系数(0.09),。

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展石墨烯增强铝基复合材料的制备方法主要包括机械合金化、电化学沉积、热压、喷涂等多种技术。

机械合金化是将经过预处理的石墨烯与铝粉进行球磨混合,然后经过热压、热处理等工艺制备而成。

电化学沉积是将石墨烯通过电解液在铝基材料表面沉积而成。

热压是将石墨烯与铝粉混合后进行热压成型。

喷涂则是将石墨烯分散在液态载体中,通过喷涂技术在铝基材料表面喷涂而成。

这些方法各有优劣,可以根据具体需求选择合适的制备工艺。

二、石墨烯增强铝基复合材料的性能石墨烯增强铝基复合材料具有优异的性能,主要体现在以下几个方面:1. 机械性能:石墨烯增强铝基复合材料具有极高的强度和硬度,具有优异的抗拉伸、抗弯曲和抗压性能。

2. 导热性能:石墨烯具有出色的导热性能,能够有效提高铝基材料的导热性能,有助于提高复合材料的散热性能。

3. 耐腐蚀性能:石墨烯具有优异的化学稳定性,能够提高铝基材料的耐腐蚀性能,延长材料的使用寿命。

4. 密封性能:石墨烯增强铝基复合材料的表面平整度高、无毛刺,密封性好,可广泛应用于需要高密封要求的场合。

5. 其他性能:石墨烯增强铝基复合材料还具有较好的耐磨性、耐疲劳性和减震性能,可满足不同领域对材料性能的要求。

近年来,石墨烯增强铝基复合材料的研究进展迅速,不断涌现出新的制备工艺和性能优化方法。

从制备工艺上来看,热压技术制备的石墨烯增强铝基复合材料具有高密度、界面结合强度高的特点,能够有效提高材料的力学性能;而喷涂技术制备的复合材料则具有成本低、生产效率高的优势,能够满足大规模生产的需求。

在性能研究中,研究者们通过调控石墨烯的分散度、改善石墨烯与铝基材料的界面结合强度等途径,不断提高石墨烯增强铝基复合材料的综合性能。

还有研究表明,在石墨烯增强铝基复合材料中引入纳米碳管、氧化铝等纳米颗粒能够显著提高材料的力学性能和耐磨性能,为复合材料的性能优化提供了新的思路。

石墨烯增强铝基复合材料具有广泛的应用前景。

石墨烯铝基复合材料的研究

石墨烯铝基复合材料的研究
• EVEN C, ARVIEU C, QUENISSET J M. Powder Route Processing of Carbon Fibres Reinforced Titanium Matrix Composites[J]. Composites Science and Technology, 2008, 68(6).
四.材料的性能——维氏硬度
但是随着石墨烯含量的增加,复合材料 的维氏硬度不增反降,当石墨烯含量为 0.4wt%时,复合材料的维氏硬度大幅下 降,甚至比纯铝还要低。分析原因是由 于当石墨烯添加量最多时,石墨烯的分 散变得更加困难,发生了团聚现象,复 合材料中的孔洞和裂纹缺陷最多时,复 合材料的致密度最低,残余孔隙率最高, 因此石墨烯的团聚和孔洞和裂纹的增多 均导致了复合材料的维氏硬度下降。
四.材料的性能——常温压缩性能
图5.4所示为纯铝及不同石墨烯含量复合材料压缩过程的应力应变曲线,从图中可以看出,纯铝 及四种复合材料均无明显的屈服阶段。 图5.5是屈服强度随石墨烯含量的变化图,整体来看,四种添加了石墨烯的复合材料的屈服强度 相对于纯铝基体均有了较为明显的提升,尤其是石墨烯含量为0.3wt%时,说明石墨烯作为增强 体可以改善纯铝基体的力学性能。
石墨烯铝基复合材料的研究
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
行业背景


制备方法



材料的组织形貌


材料的性能


应用前景
一.行业背景
铝基复合材料具有低密度,高耐蚀性,优异的 导电导热性能,良好的加工性能等优点成为当 前金属基复合材料研究的主流。相比于传统的 陶瓷纤维和颗粒增强体,碳质增强体因为高的 导热性,低的热膨胀系数,优异的阻尼能力和 非常好的自润滑性能引起了越来越多研究者的 关注。然而石墨烯在金属铝中非常容易发生团 聚,严重的制约了石墨烯增强铝基复合材料的 发展,因此寻求一种新的制备技术是发展石墨 烯增强铝基复合材料的关键。

碳石墨材料类别、型号及性能表

碳石墨材料类别、型号及性能表

高温润滑硬材料因此石墨属于导电体。

石墨是其中一种最软的矿物。

它的用途包括制造铅笔芯和润滑剂。

作耐磨润滑材料:石墨在机械工业中常作为润滑剂。

润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在200~2000 ℃温度中在很高的滑动速度下,不用润滑油工作。

许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞杯,密封圈和轴承,它们运转时勿需加入润滑油。

石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。

石墨做耐磨环,就是因为他的润滑所以不会磨损。

可以在高温下做润滑剂和轴承用。

石墨脆软碳石墨:是机械密封的主要耐磨材料之一,碳与石墨都不是理想的摩擦副材料,以碳为主体加入定量石墨粘结煅烧,成为碳—石墨,根据加入的石墨多少,可分为软、中、硬三种,石墨越多,越软。

机械用碳石墨制品产品简介特性:1、优良的自润滑性;2、良好的抗化学腐蚀性;3、较高的导热率和热稳定性4、足够的机械强度和抗冲击性能;5、易于机械加工可按要求加工各种几何的形的状产品1、静、动环主要用于机械密封耐酸、碱及化工釜用密封的动、静环,其主要材料为浸树脂碳-石墨、浸铜、锑、玻璃及纯碳等石墨材料。

2、泵用碳-石墨材料用于各种屏蔽泵、潜水泵、止推导向用轴承。

各种气泵、真空泵、压缩机旋片、档片、衫套、活塞环等,其主要材料为浸树脂碳-石墨材料,浸巴氏合金、浸玻璃、浸铝合金及纯碳石墨等碳-石墨材料。

3、镶嵌碳-石墨材料用于高温,重荷载,中低,无油润滑的建筑机械,运输机械,高重,自动扶梯,隧道窑车,及粉尘较大的条件下,其主基本材料为各种青铜,铸铁,铸钢等,润滑材料为自润滑性能较好碳-石墨材料。

用途:广泛用于现代工业的各种机械设备中。

如:离心泵、水轮机、化工反应釜、旋转煅烧炉、等设备的密封件;压缩机、制氧机、鼓风机等机器的活塞环衬套;屏蔽电机、潜水电机、极其其它机械、设备、仪器仪表中的轴承等;真空泵、气体压缩机、印刷机复合气泵等装置中的旋片;化工设备中的安全爆破膜、板;卷烟设备中的配气盘、弧形块;塔吊、浮吊、高空揽车、电梯的承重轴承;等等。

石墨润滑剂的制备方法与流程

石墨润滑剂的制备方法与流程

石墨润滑剂的制备方法与流程石墨润滑剂简介石墨润滑剂是指以石墨为主要成分的润滑剂。

石墨是一种黑色金属,常温常压下稳定,化学性质不活泼。

石墨本身的分子结构中含有大量的C-C单键,使得石墨的力学性能和导电性能都非常优异,因此石墨在许多领域里都有着广泛的应用。

石墨具有极好的润滑性能,因此被广泛应用于制造各种类型的润滑剂。

石墨润滑剂是最常见的一种,并且具有较低的成本、优异的润滑性、高温稳定性以及良好的抗腐蚀性。

制备方法石墨润滑剂的制备方法并不复杂,主要包括以下几个步骤:1. 石墨的选择和处理制备石墨润滑剂的第一步是选择适合的石墨。

由于石墨在自然界中分布广泛,成分也有所不同,因此需要根据实际需要选择纯度高、颗粒度合适的石墨原料。

在选择完石墨原料后,需要将其进行处理,主要是去除杂质和粉碎成适当的颗粒度。

2. 混合将处理好的石墨以适当比例混合,添加一定量的润滑油和其他助剂,如浸渍剂、粘度剂等,将其放入球磨机中进行混合,使其均匀混合。

3. 球磨将混合好的原料放入球磨机中,进行球磨处理。

球磨机处理时需要控制好球磨时间和球磨介质,以保证石墨润滑剂的质量和均匀度。

4. 干燥球磨完成后,需要将石墨润滑剂进行干燥,通常使用自然风干或加温干燥的方式。

干燥完毕后,可以进行包装或挤压成块状。

5. 包装或挤压成块状根据不同的需求,可将制备好的石墨润滑剂分成不同的规格,进行包装或挤压成块状。

通常使用纸质包装或者塑料包装,以保证石墨润滑剂的质量和易用性。

流程图为了更直观地展现石墨润滑剂的制备过程,以下是流程图:graph LRA[选择和处理石墨] --混合--> B[添加助剂混合]B --球磨--> C[球磨处理]C --干燥--> D[干燥包装或挤压]结论以上是石墨润滑剂的制备方法和流程。

石墨润滑剂作为一种价廉物美、性能优异的润滑剂,在工业制造中具有广泛的应用前景。

因此,对于石墨润滑剂的制备方法和流程的研究,不仅能够提升工业制造的效率和质量,同时也能够为环保和经济发展做出贡献。

石墨材料的润滑性能及其开发应用

石墨材料的润滑性能及其开发应用

石墨材料的润滑性能及其开发应用周 强 徐瑞清(中国农业大学机械工程学院,北京100083) 石墨具有耐高温、抗腐蚀、自润滑等特性,作为良好的固体润滑剂及润滑添加剂,以各种形式应用于机械设备以及加工工艺的润滑,起到了性能维护及节能降耗、提高生产效率的作用。

由于石墨无化学污染和经济低廉等特性,石墨系润滑剂包括高纯微细粉剂、复合干膜膏剂、醇基乳剂、水基以及油基润滑剂等新产品不断得到开发[1~5],如国外的David -H系列、国内的LWH-系列等;其应用领域也不断扩大。

随着科学技术的发展和研究工作的深入,石墨又以各种衍生物的形式出现,诸如氟化石墨、金属化合物插层石墨、膨化石墨等等,并在润滑实践中获得了良好的应用。

本文仅就石墨系润滑剂的性能和应用的探索进行综合论述,并就我们的近期研究作一报道,以便为新型石墨材料的开发利用提供一些参考。

1 石墨材料的润滑性能1.1 结构润滑性石墨系材料良好的润滑性来源于其本身层状的晶体结构。

在石墨层状的晶体结构中,碳原子以sp2杂化轨道构成了六角网状的石墨层面,其碳—碳间的键能属于一种共振R-键(R-电子共价键),键能高达627KJ/mol,它赋予了石墨层面坚固的性质;而石墨层与层之间的作用属于弱的范德华(Van der Waals)力,由石墨层面两侧的共轭大H-键相作用而产生,其键能只有5.4KJ/m ol,仅是层内碳原子间共价R-键强度的1/110。

这种结构上的特征,决定了石墨层耐负荷、耐腐蚀、抗高温、抗辐射的特性,以及层面间良好的滑移性,为石墨作为高性能的润滑材料奠定了基础。

石墨的衍生物诸如氟化石墨、金属化合物插层石墨、膨胀化石墨等,都保持着石墨的层状结构我,并且由于插层物质的作用,使得层间距明显增大,对润滑性能的提高是极为有利的。

1.2 环境气氛润滑性石墨系材料润滑作用的内在本质是其层状的晶体结构。

然而,石墨所处的环境气氛及环境介质明显影响其润滑作用的表现。

在潮湿的大气条件下,石墨的摩擦系数可低至0.05(高接触应力)到0.15(低接触压力);而在真空中,石墨的摩擦系数则上升到0.5~0.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s l—u rc tn tra sp e a e ylq i a tn . h rcin a d we e a ir fc mp stswih dfee tp o o- efl b ai gmae lwa rp d b iu d c si g T frn rp r i i r r s
to fg a ht d tefya h d o p dweei v siae h o g n - lc a etrMM -0 T emealga h cwa in o r p i a h s rp e r n e tg td t ru h ar g b a k we tse en l i r 2 0. h tl rp i s o o s re y Olmp smir s o e, n h i r u fc sw r x mie t -0 0 c n ig ee t n mirs o e T e b ev d b y u — c o c p a d t erwo n s r e ee e a n dwi S 3 0 N s a n n lcr c o c p . h a h o
ic e s s t n ie sr n t d h d e sd c e s . h rma y slc n i e n d b c u eo y ah d o p d,h te gh o n ra e ,e sl te gh a a n s e ra e T e p n r i r iio srf e e a s ff s r p e t esr n f i l t
石 墨 铝 基 自润 滑 材 料 的制 备及 性 能表 征
朱洪睿 张绪平 杨永建 牛志鹏
江苏徐州 2 1 ) 2 6 1 1
( 中国矿业大学材料科学与工程学 院
摘要 :以石墨为固体润滑剂 ,铝为基体材料 ,添加硅 、铜、铁等元素作为强化成分 ,添加 C3 : rC 、粉煤灰来提高 自 润滑材料 的耐磨性 ,通过液态铸造法制备铝基 自润滑材料。借助 M 20磨损试验机研究不 同石墨含量 以及粉煤灰 的添 M-0 加对铝基复合材料摩擦磨损性能 的影响 ;在 Oy p s l u 金相显微镜下观察材料显微组织 ;用 S30 N扫描 电子显微镜对材 m - 0 0 料拉伸断 口和磨损表 面进行观察 。结果表 明:随着石墨含量的增加 ,摩擦 因数逐渐降低 ,磨损率逐渐升高 ,抗拉强度 、 硬度都逐渐降低 ;粉煤灰的加入使得初生硅得到细化 ,自润滑材料的强度上升,摩擦因数得到进一步的改善。 关键词 :铝基 自润滑材料 ;石墨 ;粉煤灰 ;摩擦磨损性能
中图 分 类号 :T 2 ;T 1. 文 献标 识 码 :A 文 章编 号 :0 5 0 5 (0 2 1— 7 5 G 7 H17 1 2 4— 10 2 1 ) 03—
Pr c s i g, o e te nd Ap i a i n o o e sn Pr p r i s a pl to fAh m i i m - c nu
21 0 2年 1 月
润 滑与密封
L UBRI CATI ON ENGI NEERI NG
Jn 2 1 a.0 2
Vo. 7 No 13 .1
第3 7卷 第 1期
D :1 . 9 9 j i n 0 5 0 5 . 0 2 0 . 1 OI 0 3 6 /.s . 2 4— 1 0 2 1 . 1 0 7 s

rs l h w h ta h a h t o tn n ra e ,h rcin c efce tg a u l e ra e n h a ae ga u l e ut s o t a st e g p i c ne ti ce s s t e f t o fiin r d a y d ce s s a d t e we r t d al s r e i o l r r y
Ab ta t Gr p ie a h o i u rc n sd o p d it l mii m— a e tras Th i F n ssrn t e sr c : a h t st e s l lb ia twa rp e no au n u b sd mae l . eS , e a d Cu a te gh — d i nn lme t r rp e no t ec mp st s Th 3 n y a h wee do p d t mp o e t e we rr ssa c . e i g ee nswe e d o p d it h o o i . e CrC2a d f s r r p e o i rv h a e it n e Th e l
g a hie Pa tce Co p sts r p t ril m o ie
Z uH n ri Z a gX pn Y n o ga N uZ i n h o gu hn u i g a gY n j n i h e g i p
( col f a r l c neadE g er g C iaU i r t o M n g&T cnl yX zo i gu2 1 1 , h a Sho o ti i c n ni e n ,hn nv sy f i n M e aS e n i e i i eh o g ,uhuJ ns 2 16 C i ) o a n
s l-u rc t g mae as ic e s s, n h rcin c efce ti u t e mp o e eflb iai tr l n r a e a d te f to o f in sf rh ri rv d. n i i i Ke wo d : 一a e efl b c tn tras ga h t f s f cin a d we rp o e is y r s A1b s d s l-u r ai gmae l ; rp ie; y a h;r to n a r p r e i i l i t
相关文档
最新文档