宽禁带半导体ZnO材料的调研开题报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东建筑大学毕业论文开题报告表班级: 姓名:
论文题目宽禁带半导体ZnO的调研一、选题背景和意义
Zn0是一种新型的II-VI族宽禁带半导体材料,具有优异的晶格、光电、压电和介电特性,和III-V族氮化物及II-VI族硒化物比具有很多潜在的优点。首先,它是一种直接带隙宽禁带半导体,室温下的禁带宽度为,与GaN()相近,而它的激子结合能()却比GaN()高出许多,因此产生室温短波长发光的条件更加优越;而且ZnO薄膜可以在低于500℃温度下获得,不仅可以减少材料在高温西制备时产生的杂质和缺陷,同时也大大简化了制备工艺;同时ZnO来源丰富,价格低廉,又具有很高的热稳定性和化学稳定性。ZnO在UV、蓝光LED和LDS器件等研究方面被认为是最有希望取代GaN的首选材料,ZnO已经成为国内外半导体材料领域一个新的研究热点。国内外有很多科研团队都在进行ZnO的研究.虽然Zn0暂时不能完全取代si 在电子产业中的基础地位,但是ZnO以其特殊的性质成为Si电路的补充。
国内外对于ZnO的研究一直是近几年半导体材料研究的热点。无论是薄膜ZnO、纳米ZnO或是体单晶ZnO,文献很好地总结了2003年之前的国外ZnO晶体的研究与发展状况。随着高质量、大尺寸单晶ZnO 生产已经成为可能,单晶ZnO通过加工可以作为GaN衬底材料。ZnO与GaN的晶体结构、晶格常量都很相似。晶格失配度只有2.2%(沿〈001〉方向)、热膨胀系数差异小,可以解决目前GaN生长困难的难题。GaN作为目前主要的蓝、紫外发光半导体材料,在DVD播放器中有重要的应用。由于世界上能生产ZnO单晶的国家不多,主要是美国、日
本。所以ZnO单晶生产具有巨大的市场潜力。近年来,材料制备技术的突破,纳米ZnO半导体的制备、性能及其应用成为材料学的一个研究热点。
本文介绍了ZnO薄膜具有的许多优异特性,优良的压电性、气敏性、压敏性和湿敏性,且原料廉价易得。这些特点使其在表面声波器件(SAW)、太阳能电池、气敏元件等领域得到广泛的应用。随着对ZnO紫外受激发射特性的研究和P型掺杂的实现,ZnO作为光电材料在紫外探测器、LED、LD等领域也有着巨大的应用潜力。另外本文还介绍了纳米氧化锌的许多优点和在许多方面的应用。
目前,我国各类氧化锌处于供不应求的状况,而以活性氧化锌和纳米氧化锌取代传统氧化锌是不可阻挡的趋势,可见,今后纳米氧化锌必会有非常广阔的市场前景。
二、课题关键问题及难点
要深入研究该方面的知识,就要涉猎很多方面的知识。作为本科学生,如何在现有知识的基础上,阅读并理解有关书目、文献,总结归纳相关理论和研究方法,是本课题首先要解决的关键问题。
首先,要了解氧化锌作为宽禁带半导体的特性,然后再细致的查找氧化锌薄膜的诸多性质和这些性质在哪些方面的应用。同时要寻找纳米氧化锌材料与普通氧化锌材料相比有哪些优点、在发展中存在的问题和以后的研究方向。查询相关资料并阅读和理解之后,合理的安排介绍氧化锌作为宽禁带半导体材料的性质和应用。
三、文献综述
当前,电子器件的使用条件越来越恶劣,要适应高频、大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需
求,必须采用新的材料,以便最大限度地提高电子元器件的内在性能。近年来,新发展起来了第三代半导体材料——宽禁带半导体材料,该类材料具有热导率高、电子饱和速度高、击穿电压高、介电常数低等特点,这就从理论上保证了其较宽的适用范围。
Zn0是一种新型的II-VI族宽禁带半导体材料,具有优异的晶格、光电、压电和介电特性,和III-V族氮化物及II-VI族硒化物比具有很多潜在的优点。
ZnO晶体具有四种晶体结构,闪锌矿结构;纤锌矿结构;NaCl结构;CsCl结构。ZnO晶体随着环境条件的改变形成不同结构的晶体。ZnO晶体中的化学键既有离子键的成分,又有共价键的成分,两种成分的含量差不多,因而使得ZnO晶体中的化学键没有离子晶体那么强,导致其在一定的外界条件下更容易发生晶体结构上的改变。
ZnO的紫外受激发射性质与应用
ZnO是一种理想的短波长发光器件材料。能以带间直接跃迁的方式获得高效率的辐射复合。ZnO薄膜还具有较低的激射阈值,这主要是由于ZnO很高的激子束缚能(室温下为60meV)可以大大降低低温下的激射阈值,而且在室温下适当的激发强度,ZnO激子间的复合可取代电子-空穴对的复合,因而可预期一个低的阈值来产生受激发射。 ZnO的紫外受激发射中主要是紫外光波段、蓝绿光波段的发射。ZnO紫外光发射的主要机理是带间跃迁和激子复合。
因其紫外受激发射性质主要应用有ZnO基光电探测器,紫外光、蓝光等发光器件。光电探测器是一种把光辐射信号转变为电信号的器件,其工作原理是基于光辐射与物质的相互作用所产生的光电效应。
ZnO的透明导体特性与应用
ZnO的光学透明性是由宽禁带引起的。ZnO带隙宽,对可见光和红外光吸收很小,基本上是透明的。 ZnO的导电性主要不是依赖本征激发,而是靠附加能级的电子或空穴激发。具有光学透明特性的宽禁带氧化物半导体材料,一般都是绝缘体,但ZnO既有高透明性又有导电性。因此,ZnO材料在制备透明导电薄膜,紫外波段LED和LD以及能量窗口,液晶显示,太阳电池,气体传感器,超声振荡器和转换器等光电子器件有不错的应用前景。
ZnO的其他特性与应用
除此之外ZnO还具有气敏特性、压敏特性、P—n结特性等特性,可以引用在压电特性、压电器件、太阳能电池、气敏元件、压敏元件、声表面波器件(SAW)等许多领域。
纳米氧化锌的主要性质
表面效应:表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。这种变化使其表面与内部的晶格振动产生了显著变化,导致纳米材料具有许多奇特的性能。
体积效应:当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。
纳米氧化锌在防晒化妆品中的应用
纳米氧化锌具有紫外线屏蔽性、透明性及灭菌性。
当受到紫外线的照射时,价带上的电子可吸收紫外线而被激发到导带上,同时产生空穴-电子对,因此具有吸收紫外线的功能。纳米ZnO比普通ZnO对可见光的吸收弱得多,有很好的透过率,因此具有高度的透明性。纳米ZnO在阳光尤其在紫外线照射下,在水和空气(氧气)中,能自行分解出自由移动