高考经典物理模型:人船模型
高中物理人船模型经典题训
作右图,系统动量守恒:
m甲v甲=m乙v乙+Mv 则:m甲s甲=m乙s乙+Ms
s
s甲
且s+L=s乙 s+s甲=L
s乙
联立方程解得:S m甲 m乙 L
M m甲 m乙
3.如图所示,质量为M的小车静止在光滑的水平
地面上,车上装有半径为R的半圆形光滑
5.如图,一排人站在沿x轴的水平轨道旁,原点O两 侧人的序号都记为n(n=1,2,3…)每人只有一个沙 袋,x>0一侧的每个沙袋的质量为m=14kg,x<0 一侧的每个沙袋的质量m'=10kg,一质量为M= 48kg的小车以某初速度从原点出发向正x方向滑行, 不计轨道阻力,当车每经过一人身旁时,此人就把沙 袋以水平速度u朝与车相反的方向沿车面扔到车上, u的大小等于扔此沙袋之前的瞬间车速大小的2n倍(n 是此人的序号数)(1)空车出发后,车上堆积了几个沙 袋时,车反向滑行?(2)车上最终有大小沙袋共多少 个?
人船模型
人与船静止在水面上,人从船头走向船尾,船将对地 有一位移。设人、船质量分别为m、M,船长为L, 设人、船匀速运动速率为v1、v2。
根据动量守恒定律,有: mv1-Mv2=0 即: mv1=Mv2
设运动时间为t,mv1t=Mv2t,即ms1=Ms2。 其中s1、s2分别是人、船对地位移大小。
又因为s1+s2=L,所以: 人对地位移:s1=ML/(m+M) 船对地位移:s2=mL/(m+M)
1.气球下系一条绳,总质量为M,有一质量为m 的人攀在气球下面,人和气球共同静止于空中, 这时人距地面的高度为H。若使人安全滑到地面, 绳子的长度至少为多少?(不计空气阻力,人可 看为质点)
系统动量守恒:mv1=Mv 则:mH=Ms,且s+H=L L=(1+m/M)H
《人船模型》课件
03 人船模型的实际应用
火箭发射
火箭推进原理
火箭发射利用了反作用力原理,即火箭燃料燃烧产生高速气 体,气体通过喷嘴向下喷出,产生向上的反作用力,使火箭 得以升空。人船模型在火箭发射中的应用体现在火箭的稳定 性和姿态控制上。
人船模型的应用
火箭在发射过程中,需要克服重力和空气阻力,保持稳定上 升轨迹。人船模型可以模拟火箭在发射过程中的动态特性, 通过调整火箭的推力和姿态,实现稳定可靠的发射。
太空行走
太空行走的挑战
太空行走是在太空中进行的活动,由于 缺乏地球引力的约束,宇航员在太空中 会处于失重状态,需要特殊的装备和技 术来维持身体姿态和位置。人船模型在 太空行走中的应用体现在宇航员的姿态 控制和运动分析上。
人船模型在机器人技术领域的应用, 如自主导航、人机交互等,将有助于 提高机器人的智能化水平。
人船模型在教育领域的发展
教育教学改革
人船模型将为教育教学改革提供 新的思路和方法,有助于推动教
育教学的创新和发展。
课程设计
人船模型在课程设计领域的应用, 将有助于提高课程设计的科学性和 有效性。
教师培训
人船模型在教师培训领域的应用, 将有助于提高教师的专业素养和教 育教学方法。人船Leabharlann 型在其他领域的发展医学领域
人船模型在医学领域的应用,如 人体模拟、医疗诊断等,将有助
于提高医学诊断和治疗水平。
交通领域
人船模型在交通领域的应用,如 智能交通系统、交通规划等,将 有助于提高交通系统的运行效率
和安全性。
安全领域
0衡水中学物理最经典-物理建模系列(十) 人船模型问题
物理建模系列(十) 人船模型问题1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停. 3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m 1v 1-m 2v 2=0的形式,式中v 1、v 2是m 1、m 2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v 1和v 2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m 1v 1-m 2v 2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.4.推广:原来静止的系统在某一个方向上动量守恒,运动过程中,在该方向上速度方向相反,也可应用处理“人船模型”问题的思路来处理.例如,小球沿弧形槽滑下,求弧形槽移动距离的问题.例 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的黏滞阻力,当人从船头走到船尾的过程中,人和船对地面的位移各是多少?【思路点拨】【解析】 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,根据动量守恒得m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系,由图还可看出: x 1+x 2=L ③联立②③两式得⎩⎨⎧x 1=M M +mLx 2=mM +m L【答案】M M +m L mM +mL[高考真题]1.(2017·课标卷Ⅰ,14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【解析】 由于喷气时间短,且不计重力和空气阻力,则火箭和燃气组成的系统动量守恒.燃气的动量p 1=m v =0.05×600 kg·m/s =30 kg·m/s , 则火箭的动量p 2=p 1=30 kg·m/s ,选项A 正确. 【答案】 A2.(2017·课标卷Ⅲ,20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零【解析】 A 对:前2 s 内物块做初速度为零的匀加速直线运动,加速度a 1=F 1m =22 m/s 2=1 m/s 2,t =1 s 时物块的速率v 1=a 1t 1=1 m/s.B 对:t =2 s 时物块的速率v 2=a 1t 2=2 m/s ,动量大小为p 2=m v 2=4 kg·m/s.C 错:物块在2~4 s 内做匀减速直线运动,加速度的大小a 2=F 2m =0.5 m/s 2,t =3 s 时物块的速率v 3=v 2-a 2t 3=(2-0.5×1)m/s =1.5 m/s ,动量大小p 3=m v 3=3 kg·m/s.D 错:t =4 s 时物块的速度v 4=v 2-a 2t 4=(2-0.5×2)m/s =1 m/s. 【答案】 AB3.(2017·天津卷,4)“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是( )A .摩天轮转动过程中,乘客的机械能保持不变B .在最高点时,乘客重力大于座椅对他的支持力C .摩天轮转动一周的过程中,乘客重力的冲量为零D .摩天轮转动过程中,乘客重力的瞬时功率保持不变【解析】 A 错:摩天轮转动过程中,乘客的动能不变,重力势能不断变化,故乘客的机械能不断变化.B 对:乘客在最高点时,具有向下的加速度,处于失重状态.C 错:根据I =Ft 知,重力的冲量不为0.D 错:根据P =mg v cos θ,θ为力方向与速度方向之间的夹角,摩天轮转动过程中,θ不断变化,重力的瞬时功率不断变化.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)如图所示,曲线是某质点只在一恒力作用下的部分运动轨迹.质点从M点出发经P点到达N点,已知质点从M点到P点的路程大于从P点到N点的路程,质点由M点运动到P点与由P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在M、N间的运动不是匀变速运动C.质点在这两段时间内的动量变化量大小相等,方向相同D.质点在这两段时间内的动量变化量大小不相等,但方向相同【解析】质点在恒力作用下从M到N的过程速度减小,确定是匀变速运动,故A、B均错;由动量定理F·Δt=Δp可知,质点在这两段时间内动量变化量大小相等,方向相同,C对,D错.【答案】 C5.(2018·山东烟台高三上学期期中)A、B两物体的质量之比m A∶m B=2∶1,它们以相同的初速度v0在水平面上在摩擦阻力的作用下做匀减速直线运动,直到停止.则在此过程中,A、B两物体所受摩擦力的冲量之比I A∶I B与A、B两物体克服摩擦力做的功之比W A∶W B分别为()A.4∶12∶1 B.2∶14∶1C.2∶12∶1 D.1∶21∶4【解析】由动量定理可知I=m v,再由动能和动量的关系可知,E k=I22m,所以W A∶W B=(I A∶I B)2·(m B∶m A)=2∶1,故C正确.【答案】 C6.(2018·山东潍坊高三上学期期中)质量为m的子弹,以水平速度v0射入静止在光滑水平面上质量为M的木块,并留在其中.在子弹进入木块过程中,下列说法正确的是() A.子弹动能减少量等于木块动能增加量B.子弹动量减少量等于木块动量增加量C.子弹动能减少量等于子弹和木块内能增加量D.子弹对木块的冲量大于木块对子弹的冲量【解析】子弹动能的减少量一部分转化为系统内能,一部分转化为木块动能,A、C 均错;由动量守恒可知,子弹动量减少量等于木块动量的增加量,B对;力的作用是相互的,故子弹对木块的冲量等于木块对子弹的冲量,D 错.【答案】 B课时作业(十八) [基础小题练]1.如图所示,质量为m 的物体(可视为质点),从h 高处的A 点由静止开始沿斜面下滑,停在水平地面上的B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在B 点需给物体的瞬时冲量最小应是( )A .2m ghB .m gh C.m gh 2D .4m gh【解析】 物体从A 到B 的过程,根据动能定理,有mgh -W f =0,物体从B 返回A 的过程,根据动能定理,有-mgh -W f =0-12m v 2,联立解得v =2gh ,在B 点需给物体的瞬时冲量等于动量的增加量,故I =m v =2m gh ,故A 正确,B 、C 、D 错误.【答案】 A2.下列四幅图所反映的物理过程中,系统动量守恒的是( )【解析】 A 中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B 中在弹簧恢复原长过程中,系统在水平方向始终受到墙的作用力,系统动量不守恒;C 中剪断细线后,以整体为研究对象,木球与铁球的系统所受合外力为零,系统动量守恒;D 中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.【答案】 AC3.(2018·山东潍坊高三上学期期中)在光滑水平地面上有两个完全相同的弹性小球a 、b ,质量均为m .现b 球静止,a 球向b 球运动,发生弹性正碰.当碰撞过程中达到最大弹性势能E p 时,a 球的速度等于( )A. E pm B . E p2m C .2E p mD .22E pm【解析】 设碰前a 球速度为v 0,弹性势能最大时刻即为两球共速之时,设共同速度为v ,则由动量守恒和能量守恒得:m v 0=(m +m )v ① 12m v 20=12(m +m )v 2+E p ② 由①②两式解得v = E pm,故A 正确. 【答案】 A4.在光滑的水平面上,有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【解析】 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,则b 球获得的动量大于a 球最初的动量.若m a =m b ,则两球交换速度,与图象不符;由E k =p 22m 知,若m a>m b ,则b 球的动能将会大于a 球最初的动能,违背能量守恒定律,则必然满足m a <m b .【答案】 B5.小船相对于静止的湖水以速度v 向东航行.某人将船上两个质量相同的沙袋,以相对于湖水相同的速率v 先后从船上水平向东、向西抛出船外.那么当两个沙袋都被抛出后,小船的速度将( )A .仍为vB .大于vC .小于vD .可能反向【解析】 以两沙袋和船为系统,抛沙袋的过程系统满足动量守恒定律的条件,即(M +2m )v =m v -m v +M v ′,解得v ′=M +2mMv >v ,故B 正确.【答案】 B6.如图所示,静止在光滑水平面上的木板,右端有一根轻质弹簧沿水平方向与木板相连,木板质量M =4 kg.质量m =2 kg 的小铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好到达木板的左端并与木板保持相对静止.在上述过程中弹簧具有的最大弹性势能为( )A .9 JB .12 JC .3 JD .24 J【解析】 当弹簧压缩至最短时,E p 最大,m v 0=(M +m )v ,v =2 m/s ,全程摩擦力做功W f =12m v 20-12(M +m )v 2=24 J ,E p =12m v 20-12(M +m )v 2-W f2=12 J. 【答案】 B[创新导向练]7.动量定理的实际应用——打篮球时的传球技巧篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量【解析】 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确. 【答案】 B8.动量守恒定律在航天科技中的实际应用一质量为M 的航天器,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( )A.v 2-v 0v 1MB .v 2v 2+v 1MC.v 2-v 0v 2+v 1M D .v 2-v 0v 2-v 1M【解析】 规定航天器的速度方向为正方向,由动量守恒定律可得M v 0=(M -m )v 2-m v 1,解得m =v 2-v 0v 2+v 1M ,故C 正确.【答案】 C9.应用动量守恒定律分析碰撞中的实际问题某研究小组通过实验测得两滑块碰撞前后运动的实验数据,得到如图所示的位移—时间图象.图中的线段a 、b 、c 分别表示沿光滑水平面上同一条直线运动的滑块Ⅰ、Ⅱ和它们发生正碰后结合体的位移变化关系.已知相互作用时间极短,由图象给出的信息可知( )A .碰前滑块Ⅰ与滑块Ⅱ速度大小之比为7∶2B .碰前滑块Ⅰ的动量大小比滑块Ⅱ的动量大小大C .碰前滑块Ⅰ的动能比滑块Ⅱ的动能小D .滑块Ⅰ的质量是滑块Ⅱ的质量的16【解析】 根据s -t 图象的斜率等于速度,可知碰前滑块Ⅰ的速度v 1=-2 m/s ,滑块Ⅱ的速度v 2=0.8 m/s ,则碰前速度大小之比为5∶2,故A 错误;碰撞前后系统动量守恒,碰撞前,滑块Ⅰ的动量为负,滑块Ⅱ的动量为正,由于碰撞后总动量为正,故碰撞前总动量也为正,故碰撞前滑块Ⅰ的动量大小比滑块Ⅱ的小,故B 错误;碰撞后的共同速度为v =0.4 m/s ,根据动量守恒定律,有m 1v 1+m 2v 2=(m 1+m 2)v ,解得m 2=6m 1,由动能的表达式可知,12m 1v 21>12m 2v 22,故C 错误,D 正确.【答案】 D10.应用动量定理分析安全带受力问题质量是60 kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,他被悬挂起来.已知安全带的缓冲时间是1.2 s ,安全带长5 m ,取g =10 m/s 2,则安全带所受的平均冲力的大小为( )A .500 NB .600 NC .1 100 ND .100 N【解析】 安全带长5 m ,人在这段距离上做自由落体运动,获得速度v =2gh =10 m/s.受安全带的保护经1.2 s 速度减小为0,对此过程应用动量定理,以向上为正方向,有(F -mg )t =0-(-m v ),则F =m vt+mg =1 100 N ,C 正确.【答案】 C[综合提升练]11.(2018·山东潍坊高三上学期期中)如图所示,质量为M 的轨道由上表面粗糙的水平轨道和竖直平面内的半径为R 的14光滑圆弧轨道紧密连接组成,置于光滑水平面上.一质量为m 的小物块以水平初速度v 0由左端滑上轨道,恰能到达圆弧轨道最高点.已知M ∶m =3∶1,物块与水平轨道之间的动摩擦因数为μ.求:(1)小物块到达圆弧轨道最高点时的速度; (2)水平轨道的长度.【解析】 设小物块到达圆弧轨道最高点时速度为v 1(1)从小物块滑上轨道到到达最高点的过程中,由动量守恒定律得m v 0=(M +m )v 1① 联立解得:v 1=14v 0.②(2)由能量守恒定律得:μmgL +mgR +12(m +M )v 21=12m v 20③ 由②③联立得:L =3v 208μg -R μ.④【答案】 (1)14v 0 (2)3v 208μg -R μ12.(2018·山东淄博一中高三上学期期中)如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的14固定圆弧轨道,两轨道恰好相切于B 点.质量为M 的小木块静止在O 点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C (木块和子弹均看作质点).(1)求子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有一颗相同的子弹射入小木块,并留在其中,则当第17颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【解析】 (1)由子弹射入木块过程动量守恒有m v 0=(m +M )v 1 木块和子弹滑到点C 处的过程中机械能守恒,有 12(m +M )v 21=(m +M )gR 联立两式解得 v 0=M +m m2gR .(2)以后当偶数子弹射中木块时,木块与子弹恰好静止,奇数子弹射中木块时,向右运动.第17颗子弹射中时,由动量守恒定律可知 (M +17m )v =m v 0射入17颗子弹后的木块滑到最高点的过程中机械能守恒,有 12(M +17m )v 2=(M +17m )gH 由以上两式解得 H =(M +m )2(M +17m )2R .【答案】 (1)M +m m 2gR (2)(M +m )2(M +17m )2R。
人船模型的经典例题讲解
人船模型的经典例题讲解
人船模型是一种物理模型,用于描述两个物体在相互作用下各自的运动情况,其中物体所受的合外力为零,总动量守恒。
下面通过一个例题来讲解人船模型的运用。
题目:在平静的湖面上停泊着一条长为L,质量为M的船。
如果有一质量
为m的人从船的一端走到另一端,求船和人相对水面的位移各为多少?
解析:
1. 设人从船的一端走到另一端所用时间为t,人、船的速度分别为v和u。
2. 由人和船组成的系统在水平方向上满足动量守恒,则mv=Mu。
3. 由于人在走动过程中任意时刻人和船的速度v和u均满足上述关系,所
以运动过程中,人和船平均速度大小也应满足相似的关系,即mv=Mu。
而v=x/t,u=y/t,所以上式可以转化为:mx=My。
4. 又因为x+y=L,得:x=[M/(m+M)]L,y=[m/(m+M)]L。
综上,人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
以上就是运用人船模型解决的一个经典例题。
如需更多信息,建议查阅相关文献或咨询专业物理老师。
人船模型
人船模型“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
模型特点:①人动船动,人左船右,人快船快,人慢船慢,人静船静;②人船平均速度(瞬时速度)比等于质量反比;所以人船位移比等于质量的反比;③人船位移和等于相对位移。
一.选择题(共4小题)1.一条质量约为180kg的小船漂浮在静水中,当人从船尾走向船头时,小船也发生了移动(不计水的阻力).以下是某同学利用有关物理知识分析人与船相互作用过程时所画出的草图(如图所示),图中虚线部分为人走到船头时的情景.请用有关物理知识判断下图中所描述物理情景正确的是()A.B.C.D.2.如图所示,光滑圆槽质量为M,静止在光滑的水平面上,其内表面有一小球被细线吊着恰位于槽的边缘处,如将线烧断,小球滑到另一边的最高点时,圆槽的速度为()A.0 B.向左C.向右D.不能确定3.如图所示,质量为m、半径为R的小球,放在半径为2R、质量为2m的大空心球内.大球开始静止在光滑的水平面上.当小球从图示位置无初速度地沿大球内壁滚到最低点时,大球移动的距离为()A.B.C.D.4.如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成θ角时,圆环移动的距离d是()A.d= B.d=mL(1﹣cosθ)C.d= D.d=二.多选题(共1小题)5.如图所示,绳长为l,小球质量为m,小车质量为M,将m拉至水平右端后放手,则(水平面光滑)()A.系统的动量守恒B.水平方向任意时刻m与M的动量等大反向C.m不能向左摆到原高度D.M向右移动的最大距离为三.解答题(共2小题)6.如图所示,一辆质量M=3kg的小车A静止在光滑的水平面上,小车上有一质量m=1kg的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:(1)小球脱离弹簧时小球和小车各自的速度大小;(2)在整个过程中,小车移动的距离.7.气球质量200kg截有质量为50kg的人,静止在空中距地面20m高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?参考答案与试题解析一.选择题(共4小题)1.一条质量约为180kg的小船漂浮在静水中,当人从船尾走向船头时,小船也发生了移动(不计水的阻力).以下是某同学利用有关物理知识分析人与船相互作用过程时所画出的草图(如图所示),图中虚线部分为人走到船头时的情景.请用有关物理知识判断下图中所描述物理情景正确的是()A.B.C.D.【解答】解:船和人组成的系统,在水平方向上动量守恒,人在船上向右行进,船向左退,所以人的位移方向向右,船的位移方向向左。
人船模型必修精品
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u 和 也应满足相似的关系,即m ν=M u而x t =,yu t=,所以上式可以转化为:mx=My 又有,x+y=L,得: M x L m M =+ my L m M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中, 竖直方向系统所受外力之和为零,即系统竖直方 向系统总动量守恒。
得: mx=Myx+y=L 这与“人船模型”的结果一样。
变形2:如图所示,质量为M 的14圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x 和y ,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
“人船”模型及应用
“人船”模型及应用重庆市 垫江中学(408300) 张 雄“人船”模型,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一。
利用“人船”模型及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷,有时甚至一眼就看出结果。
一、“人船”模型原理——质心运动守恒 一个质点系的动量等于质点系的总质量与质心速度之积,方向与质心速度方向一致。
所以,当系统不受外力或所受合外力为零时,质心的动量守恒——质心将保持原来的匀速直线运动状态或静止状态,即当0F =或0F =∑时0υ=或υ=恒量二、“人船”模型的基本公式和适用条件 如图1所示,长为L 、质量为M 的船停在静水中,一个质量为m 的人站立在船头。
设船的质心在O 处,距船头、船尾分别为1L 和2L 。
当人在船头时,人、船系统的质心在1O 处,距离O 为1l ;当人走到船尾时,人、船系统的质心在2O 处,距离O 为2l 。
若不计水的粘滞阻力,在人丛船头走到船尾的过程中,系统在水平方向不受外力作用,动量守恒,即水平方向的总动量始终为零——系统的质心位置不变。
所以,当人向右相对船移动距离L ,引起系统的质心向右移动(12l l +)时,船将向左移动同样的距离,即12l l l =+船根据人和船的质量与到质心距离之积相等,有111()m L l Ml -=222()m L l Ml -=将两式相加,可得1212()m m l l L L L M m M m +=+=++所以,当人对船的位移为L 时,船对地的位移为m l L M m=+船 ①人对地的位移为Ml L l L M m=-=+人船 ②若人相对船以水平初速度υ跳出,可以认为在极短的时间t 内,人相对于船的位移为L 。
根据①②式和速度的定义Ltυ=,所以船和人对地的速度分别为mM m υυ=+船 ③MM mυυ=+人 ④这就是“人船”模型的四个基本公式,其物理意义和适用条件如下1、人、船对地的位移与其相对位移和对方的质量之积成正比,与系统的总质量成反比,而与运动性质无关。
高考经典物理模型:人船模型(一).
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即m ν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M 的14圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x 和y ,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
高考物理专题分析:人船模型之一
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离? 分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度和u 均满足上述关系,所以运动过程中,人和船平均速度大小也应满足相似的关系,即 m =M 而,,所以上式可以转化为: mx=My 又有,x+y=L,得: ννu ν 和 νu x t ν=y u t=M x L m M=+ML mM L xy以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离? 分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M 的圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x 和y ,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得: mx=Myx+y=L m y L m M=+14mMxy这又是一个“人船模型”。
2010年经典高中物理模型--人船模型之一
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u ,则由动量守恒定律得:m v =Mu由于人在走动过程中任意时刻人和船的速度ν和u 均满足上述关系,所以运动过程中,人和船平均速度大小u ν 和 也应满足相似的关系,即 m ν=M u 而x t ν=,y u t=,所以上式可以转化为: mx=My又有,x+y=L,得: M x L m M=+ m y L m M=+ 以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
高中物理人船模型知识点归纳
高中物理人船模型知识点归纳全文共四篇示例,供读者参考第一篇示例:高中物理人船模型知识点归纳人船模型是物理学教学中经常使用的实验模型之一,通过这个实验可以学习到很多物理知识。
在进行人船模型实验时,可以观察到一些现象和规律,从而帮助学生更好地理解一些物理原理。
以下是关于高中物理人船模型的知识点归纳:1.浮力的作用:在人船模型实验中,我们可以观察到当人站在浮力极小的模型船上时,模型船会下沉,而人站在浮力足够的大的船上时,模型船会浮起。
这是因为浮力是与物体浸没在液体中的体积成正比的,当物体浸没在液体中时,浮力的大小与物体的体积大小有关。
根据浮力的作用,我们可以知道在不同密度的液体中,物体的浮沉情况会有所不同。
2.密度的影响:在人船模型实验中,我们也可以观察到密度对物体的浮沉情况有影响。
在模型船上放入不同密度的物体,可以发现密度越大的物体,模型船下沉的情况会更为明显。
这是因为密度是物体质量与体积的比值,密度越大的物体在液体中受到的浮力越小,从而导致它下沉的情况显著。
3.牛顿第三定律:在人船模型实验中,我们还可以学习到牛顿第三定律的作用。
牛顿第三定律规定了任何两个物体之间的相互作用力是大小相等、方向相反的,这个定律在人船模型实验中也得到了体现。
当人站在模型船上时,在人的重力作用下,模型船受到的向下的推力,从而使得模型船下沉;而在同一时间,模型船也对人施加一个向上的反作用力,使得人站在模型船上时不至于下沉太快。
这个过程中模型船和人之间就体现了牛顿第三定律的作用。
4.平衡力的平衡:在进行人船模型实验时,我们还可以学习到平衡力的平衡原理。
在模型船上放置小石块,可以观察到石块的位置会对模型船的浮沉情况产生影响。
当石块处于船的中心位置时,模型船可以平衡地漂浮在水面上;而当石块位置偏移时,模型船可能会发生倾斜或下沉的情况。
这个现象说明了平衡力的平衡在人船模型实验中的重要性,只有当平衡力平衡时,模型船才能稳定地浮在水面上。
高中物理《动量之人船模型》教学课件
【人快船快、人慢船慢、人停船停、人左船右】
03. 模型分析
情境简化:静止在水面上的小船长为L,质量为M,在船的最右端站有一质量为m的人, 当人从最右端走到最左端的过程中(不计水的阻力)小船移动的距离是多大? 【微元的思想:将全过程分成很多个极短的时段Δt ,每个Δt 内人与船的运动可视为匀速运动】
2、找位移之间的等量关系。
3、根据动量守恒定律列出方程。
4、代入数据求解。
反冲
05. 模型特点——总结归纳
1、速度的关系 :m v人 +M 船 v船=0
人动船动,人静船静,人快船快,人慢船慢,人左船右。
2、距离的关系 :S人 + S船 =L
S人
M mM
L
S船
m mM
L
3、比例的关系
:
v人 v船
S人 S船
M m
人船位移比等于它们质量的反比。 人船平均速度(瞬时速度)比等于它 们质量的反比。
4、适用的条件 :①某一方向上系统的初动量为0 ②在该方向上系统动量守恒
06. 模型拓展
类人船模型
分析该类问题时:画位移大小的等量关系图
07. “类人船模型”判断
1
人沿绳子下滑运动的过程
类人船模型
感受物理学之美
当堂演练
【例题1】西晋史学家陈寿在《三国志》中记载:“置象大船之上,而刻其水痕所 至,称物以载之,则校可知矣。”这就是著名的曹冲称象的故事。某同学欲挑 战曹冲,利用卷尺测定大船的质量。该同学利用卷尺测出船长为L,然后慢速 进入静止的平行于河岸的船的船头,再从船头行走至船尾,之后,慢速下船,
第一章:动量守恒定律 人船模型及应用
高中物理·选择性必修第一册
高考经典物理模型:人船模型(一)
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离?分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该m系统在水平方向总动量守恒,由动量守恒定律得:mx=Myx+y=L这又是一个“人船模型”。
人船模型(解析版)—动量守恒的十种模型解读和针对性训练——2025届高考物理一轮复习
动量守恒的十种模型解读和针对性训练人船模型模型解读1.模型图示2.模型特点(1)两物体满足动量守恒定律:m v 人-M v 船=0。
(2)两物体的位移大小满足:m s 人t -M s 船t =0,s 人+s 船=L 得s 人=M M +m L ,s 船=mM +m L 。
3.运动特点(1)人动则船动,人静则船静,人快船快,人慢船慢,人左船右。
(2)人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即s 人s 船=v 人v 船=M m。
“人船模型”的拓展(某一方向动量守恒)【典例分析】【典例】 如图,质量为M 的匀质凹槽放在光滑水平地面上,凹槽内有一个半椭圆形的光滑轨道,椭圆的半长轴和半短轴分别为a 和b ,长轴水平,短轴竖直。
质量为m 的小球,初始时刻从椭圆轨道长轴的右端点由静止开始下滑。
以初始时刻椭圆中心的位置为坐标原点,在竖直平面内建立固定于地面的直角坐标系xOy ,椭圆长轴位于x 轴上。
整个过程凹槽不翻转,重力加速度为g 。
(1)小球第一次运动到轨道最低点时,求凹槽的速度大小;(2)凹槽相对于初始时刻运动的距离。
答案 (2)maM +m 解析 (1)小球从静止到第一次运动到轨道最低点的过程,小球和凹槽组成的系统水平方向上动量守恒,有0=m v 1-M v 2mgb =12m v 21+12M v 22联立解得v 2(2)根据人船模型规律,在水平方向上有mx 1=Mx 2又由位移关系知x 1+x 2=a解得凹槽相对于初始时刻运动的距离x 2=ma M +m。
【名师点拨】应用“人船模型”解题的两个关键点(1)“人船模型”的应用条件:相互作用的物体原来都静止,且满足动量守恒条件。
(2)人、船位移大小关系:m 人x 人=m 船x 船,x 人+x 船=L (L 为船的长度)。
【针对性训练】1. (2024河南名校联考).如图,棱长为a 、大小形状相同的立方体木块和铁块,质量为m 的木块在上、质量为M 的铁块在下,正对用极短细绳连结悬浮在平静的池中某处,木块上表面距离水面的竖直距离为h 。
高中物理人船模型知识点归纳
高中物理人船模型知识点归纳全文共四篇示例,供读者参考第一篇示例:高中物理人船模型知识点归纳人船模型是一种常见的物理实验器材,用于研究浮力、压力等物理现象。
在高中物理教学中,人船模型是一个重要的学习工具,通过实验操作,学生可以更直观地了解浮力和压力的原理和应用。
下面我们将对高中物理人船模型的知识点进行归纳和总结,希望能帮助同学们更好地掌握这一重要实验内容。
一、浮力的原理浮力是指液体或气体对浸入其中的物体的向上的支持力。
根据阿基米德原理,浮力大小等于排挤的液体的重量,方向垂直向上。
在人船模型实验中,我们可以通过调节水面上的人船的放水量,观察人船的浮沉情况,来验证浮力的原理。
二、浮力的计算浮力的大小可以通过以下公式来计算:F=ρVgF表示浮力的大小,ρ表示液体的密度,V表示物体的体积,g表示重力加速度。
在实验中,我们可以通过称量水的重量,并根据液体的密度和重力加速度的数值,计算出物体的浮力大小。
三、浮力的应用浮力是人船模型实验的重要内容之一,通过实验操作,我们可以了解浮力的原理和应用,比如船只在水面上浮沉的原因、潜水艇的下潜和浮起等现象。
浮力的应用还涵盖了许多实际生活中的场景,比如气球、潜水器等设备的设计和制造,都需要考虑浮力对物体的支持作用。
压力是指单位面积上所受的力,通常用P表示,计量单位为帕斯卡(Pa)。
根据压力的定义,压强和压力有着密切的关系,可以通过以下公式来计算:P=F/AP表示压强,F表示作用力,A表示面积。
在人船模型实验中,我们可以通过在人船上施加外力,调节重物的放置位置,来观察人船表面的压强分布情况。
五、浮力和压力的关系浮力和压力是密切相关的物理现象,在液体中,物体受到的浮力大小和液体的密度、物体的体积以及重力加速度有关;而压力是液体对物体作用的力,并受到液体的密度和液体的深度的影响。
在人船模型实验中,我们可以通过调节水面上的人船和水面之间的距离,探究浮力和压力之间的关系,进一步加深对这两个物理现象的理解。
高考经典物理模型:人船模型
人船模型之一“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离分析:“人船模型”是由人和船两个物体构成的系统;该系统在人和船相互作用下各自运动,运动过程中该系统所受到的合外力为零;即人和船组成的系统在运动过程中总动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:m v=Mu由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小uν和也应满足相似的关系,即mν=M u而x tν=,yut=,所以上式可以转化为:mx=My又有,x+y=L,得:Mx Lm M=+my Lm M=+以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即系统竖直方向系统总动量守恒。
得:mx=Myx+y=L这与“人船模型”的结果一样。
变形2:如图所示,质量为M的14圆弧轨道静止于光滑水平面上,轨道半径为R,今把质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该系统在水平方向总动量守恒,由动量守恒定律得:mMmx=Myx+y=L这又是一个“人船模型”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人船模型之一
“人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。
1、“人船模型”质量为M的船停在静止的水面上,船长为L,一质量为m的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水
面移动的距离
分析:“人船模型”是由人和船两个物体构成的系统;该
系统在人和船相互作用下各自运动,运动过程中该系统所
受到的合外力为零;即人和船组成的系统在运动过程中总
动量守恒。
解答:设人在运动过程中,人和船相对于水面的速度分别为ν和u,则由动量守恒定律得:
m v=Mu
由于人在走动过程中任意时刻人和船的速度ν和u均满足上述关系,所以运动过程中,人和船平均速度大小u
ν和也应满足相似的关系,即
mν=M u
而x t
ν=,
y
u
t
=,所以上式可以转化为:
mx=My
又有,x+y=L,得:
M
x L
m M
=
+
m
y L
m M
=
+
以上就是典型的“人船模型”,说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。
2、“人船模型”的变形
变形1:质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离
分析:由于开始人和气球组成的系统静止在空中,
竖直方向系统所受外力之和为零,即系统竖直方
向系统总动量守恒。
得:
mx=My
x+y=L
这与“人船模型”的结果一样。
变形2:如图所示,质量为M的1
4
圆弧轨道静止于光滑水平面上,轨道半径为R,今把
质量为m的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离
分析:设小球和轨道相对于地面各自滑行的距离为x和y,将小球和轨道看成系统,该
m
系统在水平方向总动量守恒,由动量守恒定律得:
mx=My
x+y=L
这又是一个“人船模型”。
3、“人船模型”的应用
①“等效思想” 如图所示,长为L 质量为M
别站立质量为m 1、m 2(m 1>m 2)的两个人,那么,当两
个人互换位置后,船在水平方向移动了多少
分析:将两人和船看成系统,系统水平方向总动量守恒。
本题可以理解为是人先后移动,但本题又可等效成质量为12()m m m m ∆∆=-的人在质量为2'2M M m =+的船上走,这样就又变成标准的“人船模型”。
解答:人和船在水平方向移动的距离为x 和y ,由动量守恒定律可得:
'mx M y ∆=
x y L +=
这样就可将原本很复杂的问题变得简化。
②“人船模型”和机械能守恒的结合
m 1 m 2 M
x y L
如图所示,质量为M 的物体静止于光滑水平面上,其上有一
个半径为R 的光滑半圆形轨道,现把质量为m 的小球自轨道
左测最高点静止释放,试计算:
1.摆球运动到最低点时,小球与轨道的速度是多少
2.轨道的振幅是多大?
分析:设小球球到达最低点时,小球与轨道的速度分别为v 1和v 2,根据系统在水平方向动量守恒,得:12mv Mv = 又由系统机械能守恒得:22121122
mgR mv Mv =+
解得:1v =
2v =当小球滑到右侧最高点时,轨道左移的距离最大,即振幅A 。
由“人船模型”得:
mx My =
2x y R += 解得:2M x R m M =+,2m y R m M
=+ 即振幅A 为:2m A R m M =
+。