分式的概念教案

合集下载

分式的理解教案

分式的理解教案

分式的理解教案一、教学目标:1. 能够读懂含有分式的算式。

2. 能够在计算含有分式的算式时正确运用分式的运算法则。

3. 能够简化分式及将分式化简为通分式。

4. 能够应用分式解决实际问题。

二、教学重点:1. 引导学生正确理解分式的定义、基本概念和性质,掌握分式的基本运算方法,提高分式的应用能力。

2. 让学生能够利用分式解决实际问题,加深学生对分式的认识。

三、教学难点:1. 让学生理解分式的定义和基本概念。

2. 熟练掌握分式的基本运算方法。

3. 能够将分式化简为通分式。

四、教学过程:1. 导入环节教师通过问学生一些简单的数学问题来引起学生的兴趣,如:1/2 + 1/4等于多少? 2/3 - 1/3等于多少? 让学生在回答问题的过程中逐渐理解分式的概念。

2. 概念讲解让学生了解分式的基本概念和定义,如分子、分母、分式的类型等,同时讲解分式的基本运算、化简等知识点。

3. 实例讲解教师用简单的实例讲解分式的应用方法,如1/2 乘以 2/3等于多少? 2/3 减去 1/6等于多少? 通过实际例子让学生更容易地理解分式运算方法。

4. 分组练习让学生分组进行小组练习,让学生互相讨论并推导出正确答案,加深学生的理解与记忆,同时也能够有效地帮助学生巩固分式的基本概念与运算方法。

5. 问题解答教师选取一些典型问题进行解答,并与学生讨论解题思路及方法,强化学生的实际应用能力。

6. 总结回顾教师总结讲解内容,让学生更好地理解分式的基本概念与运算方法,同时检查学生的学习效果,评价学生对分式的掌握情况。

五、教学建议1. 客观评价学生的学习情况,及时发现苗头,并及时帮助学生解决问题,强化学生的自信心。

2. 提高教师对于分式的理解,强化分式的实际应用方法,能够更好地帮助学生掌握分式的基本概念。

3. 采取多种方式传授分式的知识,在讲解、实例讲解、分组练习等方面尤为重要,同时学生也需要更好地参与其中。

4. 教师要及时关注学生的学习效果,及时发现问题并适时解决问题,提高学生的学习效率。

分式的教案(优秀5篇)

分式的教案(优秀5篇)

分式的教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!分式的教案(优秀5篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。

分式的概念教案

分式的概念教案

分式的概念教案一、关键信息项1、教学目标理解分式的概念,能判断一个代数式是否为分式。

明确分式有意义、无意义及值为零的条件。

通过分式概念的学习,提高学生的分析、归纳和概括能力。

2、教学重难点重点:分式的概念及分式有意义、无意义和值为零的条件。

难点:理解分式值为零的条件。

3、教学方法讲授法讨论法练习法4、教学过程导入新课讲授课堂练习课堂小结作业布置5、教学资源多媒体课件教材练习册二、教学目标11 知识与技能目标让学生理解分式的概念,能够准确识别分式。

学生能够熟练掌握分式有意义、无意义以及值为零的条件,并能运用这些条件解决相关问题。

12 过程与方法目标通过对分式概念的学习和探究,培养学生观察、分析、归纳和概括的能力,提高学生的逻辑思维水平。

13 情感态度与价值观目标激发学生对数学的兴趣,增强学生学习数学的自信心,培养学生勇于探索、敢于创新的精神。

三、教学重难点111 教学重点明确分式的概念,以及分式有意义、无意义和值为零的条件。

这是学生正确理解和运用分式的基础,也是后续学习分式运算的关键。

112 教学难点理解分式值为零的条件。

因为分式值为零不仅要考虑分子为零,还要同时考虑分母不为零,这对学生的逻辑思维能力有较高的要求。

四、教学方法121 讲授法通过教师的讲解,让学生了解分式的概念、性质和相关条件,使学生对新知识有初步的认识。

122 讨论法组织学生进行小组讨论,让学生在交流中深化对分式概念的理解,共同探讨解决问题的方法,培养学生的合作精神和交流能力。

123 练习法通过课堂练习和课后作业,让学生巩固所学知识,提高学生运用分式概念解决实际问题的能力。

五、教学过程131 导入通过展示一些实际问题中的代数式,如路程问题中的速度公式 v =s/t,工作效率问题中的工作效率公式 w = m/n 等,引导学生观察这些代数式的特点,引出分式的概念。

132 新课讲授1321 分式的概念给出分式的定义:一般地,如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 叫做分式。

分式初中教案

分式初中教案

分式初中教案教学目标:1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的化简、运算和应用。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 分式的概念和基本性质。

2. 分式的化简和运算。

教学难点:1. 分式的理解和应用。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入分数的概念,复习分数的性质。

2. 提问:分数可以表示哪些实际问题?二、新课讲解(15分钟)1. 介绍分式的概念,解释分式的组成部分:分子、分母和分式。

2. 讲解分式的基本性质,如分式的正负性、分式的相等性等。

3. 示例讲解分式的化简,如约分、通分等。

4. 讲解分式的运算规则,如加减乘除等。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。

2. 选取部分学生的作业进行讲解和点评。

四、拓展与应用(10分钟)1. 通过实际问题,让学生运用分式进行解答。

2. 引导学生思考分式在生活中的应用,如比例、折扣等。

五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,提出疑问。

2. 教师进行解答和补充。

教学延伸:1. 进一步学习分式的应用,如解分式方程等。

2. 学习分式的综合应用,如分式的最大值和最小值等。

教学反思:本节课通过讲解分式的概念、基本性质和运算规则,让学生掌握了分式的基础知识。

在课堂练习环节,学生能够独立完成练习题,对分式的应用有一定的理解。

但在拓展与应用环节,部分学生对分式在生活中的应用还不够清晰,需要进一步加强引导和练习。

在今后的教学中,可以结合更多的实际例子,让学生更好地理解分式的应用。

同时,加强对学生逻辑思维能力的培养,提高他们解决问题的能力。

人教版八年级上册数学教案:15.1.1分式的概念

人教版八年级上册数学教案:15.1.1分式的概念
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式的基本概念。分式是由两个整式相除得到的一种数学表达形式,其中上面的整式叫做分子,下面的整式叫做分母。分式在解决比例问题和各类比例关系中起着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有3个苹果和2个橙子,我们如何表示每个水果的平均数量?通过分式3/5,我们可以表示每个水果的平均数量是3个苹果分给5个水果。
2.多设计一些与实际生活相关的案例和实践活动,提高学生们应用分式解决问题的能力。
3.对于约分和通分这两个难点,可以通过课后辅导、小组讨论等形式,帮助学生们更好地突破。
4.鼓励学生们提问,培养他们的探究精神和独立思考能力。
五、教学反思
在今天的课堂中,我们探讨了分式的概念及其在实际生活中的应用。整个教学过程下来,我发现学生们对于分式的定义和基本性质掌握得还不错,但在具体的运算和应用过程中,还存在一些问题。
首先,约分和通分这两个环节是学生们普遍觉得有难度的部分。在讲解时,我尽量通过具体的例子和步骤来阐述,但可能还需要在课后加强个别辅导,让学生们更加熟练地掌握这一技巧。同时,我注意到有的学生在分式运算时容易混淆运算法则,这说明我在教学中还需要进一步强化对运算规则的解释和练习。
4.培养学生的数学运算能力:通过分式的运算练习,提高学生准确、熟练地进行分式计算的能力,增强数学运算技巧。
5.培养学生的数学应用意识:使学生能够将所学分式知识应用于实际情境,体会数学在生活中的广泛应用,增强数学应用意识。
三、教学难点与重点
1.教学重点
(1)分式的概念:理解分式的定义,掌握分子、分母、分数线的组成,明确分式的性质。
-难点解析:学生在面对复杂的分式运算时,容易混淆运算顺序和法则。

分式的概念教案 (教案)

分式的概念教案 (教案)

分式的概念教案 (教案)教案:分式的概念概述:本教案介绍了分式的基本概念和相关术语,帮助学生理解分式的含义和用途,并通过实例演示以及练习题目巩固学生的学习成果。

学习目标:1. 理解分式的定义;2. 掌握分子、分母、真分数和假分数的含义;3. 把分数转化为小数,并能够进行相互转换;4. 通过实例和练习题目,运用分式进行简单计算和问题解决。

教学资源:1. 黑板和白板;2. 教学文稿及练习题。

教学过程:Step 1:引入和概念明确(5分钟)老师介绍分式的概念,简单解释分子、分母和分式的符号表示,鼓励学生提问并澄清疑惑。

Step 2:分式的定义及示例(10分钟)老师在黑板上写出分式的定义,并给出一些示例,如1/2、3/4等。

请学生举一些自己能够想到的分数示例。

Step 3:真分数和假分数(10分钟)老师解释真分数和假分数的概念,并通过具体例子说明两者的区别。

鼓励学生用自己的言语解释这两个概念。

Step 4:分数的转换(15分钟)老师教授如何将分数转化为小数,以及如何将小数转化为分数,并通过例题示范。

学生可以参与转换过程,进一步理解转换规则。

Step 5:分式的加减(15分钟)老师在黑板上写出相应的分式加法和减法算式,并步骤演示,引导学生理解分式的加减原理和运算法则。

Step 6:分式的乘除(15分钟)老师在黑板上写出相应的分式乘法和除法算式,并步骤演示,引导学生理解分式的乘除原理和运算法则。

Step 7:问题解决练习(15分钟)老师提供一些与实际问题相关的练习题目,要求学生应用所学的知识解决问题。

鼓励学生相互合作,互相讨论解决方法。

Step 8:总结与复习(10分钟)老师对本节课所学的内容进行总结回顾,并与学生一起复习重点知识点。

鼓励学生提问,并解答他们的问题。

扩展内容:1. 可以引入分式的乘方概念,介绍如何进行分式的乘方运算;2. 可以给学生一些更复杂的问题,如解决实际生活中的分式应用问题,激发学生运用知识解决实际问题的能力。

分式的概念教案设计

分式的概念教案设计

分式的概念教案设计一、教学目标1.理解分式的概念,掌握分式的基本性质。

2.学会运用分式解决实际问题。

3.培养学生对数学的兴趣和解决问题的能力。

二、教学重点和难点1.教学重点:分式的基本性质和运用。

2.教学难点:分式概念的理解和应用。

三、教学过程1.引入:通过实际例子引入分式概念,如一个水果摊上有苹果和梨两种水果,其中苹果的数量是总水果数量的2/3,梨的数量是总水果数量的1/4。

通过这个例子,让学生初步了解分数的概念和作用。

2.概念讲解:详细讲解分式概念、性质及意义,让学生明确分式是一种表达数量关系的数学模型,并掌握分式的基本性质。

3.实例分析:分析分式在实际问题中的应用,如工程问题、速度问题等,引导学生理解如何运用分式解决实际问题。

4.课堂练习:布置相关练习,包括基本练习和拓展练习,及时巩固学习成果。

5.作业布置:根据当天的学习内容,布置适当的作业,以进一步巩固和拓展学生的知识。

6.评价方式:通过学生的课堂表现和作业情况,及时评价学生的学习成果,并针对不足之处进行指导。

四、教学方法和手段1.教学方法:采用互动讲解、实例分析、对比教学等多种方法,引导学生主动思考,积极参与课堂互动。

2.教学手段:利用多媒体演示、板书讲解、互动讨论等多种手段,帮助学生更好地理解和掌握分式的概念和应用。

五、课堂练习、作业与评价方式1.课堂练习:在讲解过程中穿插练习环节,通过小组讨论、个人抢答等方式激发学生的积极性。

练习内容以基本概念和性质为主,目的是加深学生对分式概念的理解。

2.作业布置:根据当天的学习内容,布置适当的作业,包括基本练习、拓展练习和实际应用题等。

通过作业巩固和拓展学生的知识,培养学生的应用能力。

3.评价方式:采用多种评价方式,包括学生自评、互评和教师评价。

根据学生的课堂表现、作业情况和测试成绩,及时评价学生的学习成果,并针对不足之处进行指导。

六、辅助教学资源与工具1.多媒体教学资源:制作PPT演示文稿,展示分式概念、性质和应用案例等教学内容,帮助学生更好地理解知识。

2024年春八年级数学下册第5章分式与分式方程1认识分式教案新版北师大版

2024年春八年级数学下册第5章分式与分式方程1认识分式教案新版北师大版

1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。

分式教案_精编

分式教案_精编

分式教案一、教学目标1、知识目标:了解分式及其性质,掌握分式的加、减、乘、除运算,掌握分式的化简和提取公因数;能在实际问题中运用分式解决问题。

2、技能目标:运用加、减、乘、除运算来化简分式,提取分式中的公因数;能够灵活地运用分式解决实际问题。

3、情感目标:培养学生对数学的兴趣和好奇心,激发学生思维的活跃性,培养学生解决问题的方法和能力,发展学生的独立思考和团队协作能力。

二、教学重难点1、重点:掌握分式的基本运算法则,及加、减、乘、除的运算技巧。

2、难点:化简分式,提取分式中的公因数;掌握如何运用分式解决实际问题。

三、教学内容和方法1、教学内容:(1) 分式的概念及性质(2) 分式的基本运算法则及运算规律(3) 分式的化简(4) 分式的提取公因数(5) 运用分式解决实际问题案例2、教学方法:(1) 讲授法:通过讲解和演示,使学生了解分式及其基本运算法则。

(2) 实践法:教师提供实例,让学生自己思考解决方法,进行小组讨论,对所得出的结论进行总结。

(3) 合作学习法:通过小组或大组讨论,激发学生的思维活力,增强学生的合作意识和团队协作能力。

(4) 体验教学法:通过实际运用分式解决实际问题案例,使学生能够深刻理解分式的应用。

四、教学过程与方法1、第一节课时(40分钟)——分式的概念及性质教师提供课堂活动:活动1:探究分式的概念1. 向学生提出两个问题:(1) 什么是分式?(2) 分式的分子,分母有什么意义?2. 让学生思考和讨论,找出自己对分式的理解,并记录在黑板上。

3. 教师进行总结。

活动2:探究分式的性质1. 向学生提出两个问题:(1) 分式能否约分?(2) 分式加、减、乘、除的运算规律是什么?2. 分别通过实物和代数符号让学生进行探究。

3. 教师进行总结。

2、第二节课时(40分钟)——基本运算法则及运算规律教师提供课堂活动:活动1:分式加、减运算1. 让学生分别自习或小组合作,通过代数运算的法则进行分式的加、减运算。

初中分式的教案

初中分式的教案

初中分式的教案一、教学目标1. 让学生理解分式的概念,掌握分式的基本性质和运算方法。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

二、教学内容1. 分式的概念及其表示方法2. 分式的基本性质3. 分式的运算方法4. 分式在实际问题中的应用三、教学重点与难点1. 重点:分式的概念、基本性质和运算方法。

2. 难点:分式的运算规律和实际问题中的应用。

四、教学过程1. 导入:通过复习整式的知识,引导学生思考整式在表示数量关系方面的局限性,从而引出分式的概念。

2. 新课讲解:a) 分式的概念:用分数的形式表示两个整式的商。

b) 分式的表示方法:分子、分母及分式的约分和通分。

c) 分式的基本性质:分式的分子、分母都乘(或除以)同一个不为0的整式,分式的值不变。

d) 分式的运算方法:分式的加减法、乘除法及混合运算。

3. 例题解析:通过例题讲解,让学生掌握分式的运算方法,培养学生的解题能力。

4. 课堂练习:设计一些练习题,让学生巩固所学知识,提高运算能力。

5. 实际问题应用:通过解决实际问题,让学生了解分式在生活中的应用,提高学生的实际问题解决能力。

6. 课堂小结:对本节课的主要内容进行总结,强调分式的概念、基本性质和运算方法。

五、课后作业1. 完成教材后的练习题。

2. 收集生活中的分式问题,下节课分享。

六、教学反思1. 课后及时了解学生的学习情况,针对性地进行辅导。

2. 在教学中,注重学生的参与,提高学生的动手操作能力和思维能力。

3. 注重分式知识与实际生活的联系,提高学生的应用能力。

七、教学评价1. 学生对分式的概念、基本性质和运算方法的掌握程度。

2. 学生解决实际问题的能力。

3. 学生对分式知识的兴趣和积极性。

初中数学分式 教案

初中数学分式 教案

初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。

2. 培养学生运用分式解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。

2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。

3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。

(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。

4. 分式在实际问题中的应用。

三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。

2. 难点:分式的运算法则的应用,分式在实际问题中的解决。

四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。

2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。

(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。

(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。

3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。

4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。

5. 总结:对本节课的内容进行总结,强调重点和难点。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。

2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。

3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。

六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。

同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。

分式的概念教案 (教案)

分式的概念教案 (教案)

分式的概念教案 (教案)教案:分式的概念一、教学内容本节课的教学内容选自人教版小学数学六年级上册第五单元《分数的应用》中的第117页至119页。

这部分内容主要包括分式的概念、分式的基本性质和分式的化简。

通过本节课的学习,使学生掌握分式的概念,理解分式的基本性质,学会分式的化简方法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的化简方法,提高学生的数学运算能力。

3. 培养学生运用分式解决实际问题的能力,提高学生的数学思维能力。

三、教学难点与重点1. 教学难点:分式的概念,分式的基本性质。

2. 教学重点:分式的化简方法,运用分式解决实际问题。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:练习本、铅笔、橡皮、尺子。

五、教学过程1. 实践情景引入:教师出示一个实际问题:妈妈买了一些苹果和橙子,其中苹果有8个,橙子有6个,妈妈一共买了多少个水果?学生通过观察发现,这个问题可以通过分数来解决。

教师引导学生用分数表示苹果和橙子的数量,进而引出分式的概念。

2. 概念讲解:教师通过讲解,使学生理解分式的概念:分式是用来表示两个数之间比例关系的数学表达式,一般形式为 a/b,其中 a 和 b 都是整数,b 不为0。

3. 基本性质讲解:教师讲解分式的基本性质,引导学生通过观察、分析、归纳,掌握分式的基本性质。

4. 例题讲解:教师出示例题,讲解分式的化简方法,引导学生学会运用分式的基本性质进行化简。

例题1:化简分式3/4 ÷ 2/3。

教师讲解:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8。

5. 随堂练习:教师出示随堂练习题,学生独立完成,检验自己是否掌握了分式的化简方法。

练习1:化简分式5/6 ÷ 4/5。

6. 板书设计:教师根据讲解的内容,设计板书,突出分式的概念和基本性质,便于学生复习巩固。

板书内容:分式:a/b基本性质:(1)分式的分子和分母都是整数;(2)分式的分母不为0;(3)分式的值是一个实数。

分式的教案(精选4篇)

分式的教案(精选4篇)

分式的教案(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!分式的教案(精选4篇)分式方程是方程中的一种,是指分母里含有未知数或含有未知数整式的有理方程。

初中分式认识教案

初中分式认识教案

初中分式认识教案1. 让学生理解分式的定义,掌握分式的基本性质,了解分式与整式的区别和联系。

2. 培养学生运用分式解决实际问题的能力,提高学生的数学素养。

3. 培养学生合作交流、积极思考的良好学习习惯。

二、教学内容1. 分式的定义:分式是两个整式的比,分母不能为零。

2. 分式的基本性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。

3. 分式与整式的区别和联系:整式是分式的特殊形式,分式是整式的推广。

三、教学重点与难点1. 重点:分式的定义,分式的基本性质。

2. 难点:分式与整式的区别和联系。

四、教学方法1. 采用自主探究、合作交流的学习方式,让学生在实践中掌握分式的定义和性质。

2. 利用多媒体课件,直观展示分式的生成过程,提高学生的学习兴趣。

3. 结合生活实例,引导学生运用分式解决实际问题。

五、教学过程1. 导入:复习整式的知识,引导学生思考整式在实际生活中的应用。

2. 新课导入:介绍分式的定义,让学生理解分式是两个整式的比,分母不能为零。

3. 讲解分式的基本性质,让学生通过实例感受分式的性质。

4. 分析分式与整式的区别和联系,引导学生理解分式是整式的推广。

5. 练习巩固:布置一些分式的基本运算题目,让学生独立完成,检验学习效果。

6. 拓展应用:给出一些实际问题,引导学生运用分式解决。

7. 课堂小结:回顾本节课所学内容,让学生总结分式的定义、性质及应用。

8. 布置作业:布置一些有关分式的练习题,巩固所学知识。

六、教学反思1. 课后认真反思本节课的教学效果,了解学生的掌握情况。

2. 对教学方法进行调整,以提高学生的学习兴趣和效果。

3. 关注学生在实际问题中的运用能力,提高学生的数学素养。

4. 针对学生的差异,给予个别辅导,帮助学生克服学习困难。

通过以上教学设计,希望能帮助学生更好地理解分式,提高学生的数学素养。

在实际教学中,教师应根据学生的实际情况灵活调整教学方法,关注学生的个体差异,使每位学生都能在数学学习中取得良好的成绩。

数学教案-分式

数学教案-分式

数学教案-分式引言分式是数学中一个重要的概念,也是初中数学教学中的一项重要内容。

掌握分式的概念和运算法则,对于学生的数学学习和应用能力的提高具有重要意义。

本教案将围绕分式的概念、分式的化简与运算以及分式方程的解法展开教学,旨在帮助学生全面理解和掌握分式的相关知识和技巧。

一、分式的概念1. 分式的含义分式是由分子和分母组成的表达式,通常用一条水平线将分子和分母分开,如$\\frac{a}{b}$。

其中,分子表示被分成若干份的部分,分母表示整体被分的份数。

分式表示的是分子与分母之间的关系。

2. 分式的分类按照分母的类型,分式可以分为以下几种:•真分式:分子的绝对值小于分母的绝对值,如 $\\frac{1}{2}$。

•假分式:分子的绝对值大于或等于分母的绝对值,如 $\\frac{3}{2}$。

•既约分式:分子和分母的公约数只有1。

•偏分式:分子的次数大于或等于分母的次数。

3. 分式的化简化简分式是将分子和分母不含有公因式的分式,也是简化分式的过程。

化简分式的基本思想是找到分子和分母的公约数,并将其约掉,使得分子和分母的公因式尽量少。

二、分式的运算1. 分式的加减运算分式的加减运算是指将两个分式相加或相减的过程。

加减分式的基本步骤如下:•确定两个分式的分母是否相同,如果不同则需要进行分母的通分。

•对于分子,根据加减的不同,进行相应的运算。

•化简分式,将得到的结果化简为最简形式。

2. 分式的乘除运算分式的乘除运算是指将两个分式相乘或相除的过程。

乘除分式的基本步骤如下:•将两个分式的分子相乘(或分子相除),分母相乘(或分母相除)。

•化简分式,将得到的结果化简为最简形式。

3. 分式的混合运算分式的混合运算是指在一个算式中同时进行加减乘除运算的过程。

混合运算的基本思想是根据运算顺序将分式的乘除运算在加减运算之前进行。

三、分式方程的解法1. 分式方程的定义分式方程是含有自变量x的方程,其中方程的某一部分或全部为分式。

北师大版八下《分式》word教案4篇

北师大版八下《分式》word教案4篇

北师大版八下《分式》word教案4篇第三章分式1.分式(一)[教学目标]1.认知目标:了解分式的概念,理解分式有意义与无意义及其判断。

2.技能目标:会判断何时分式有意义,何时分式的值为零;会用分式表示实际问题的数量关系,会求分式的值。

[教学重点]分式的有关概念。

[教学难点]理解分数在任何情况下都没有意义;如何确定分数何时有意义。

【教具】【教学过程】第一环节自制课件、投影仪等知识准备前面我们学习了整式,请同学们举几个例子,(学生举例)(或教师准备,下列式子中那些是整式?a,-3x2y3,5x-1,x2+xy+y2,,x?y,,m2x?3y)34.我们之前学过积分形式,并且知道一些数量关系可以用积分形式来表示。

问题:所有的数量关系都能用整数表示吗?第二环节情景引入问题情景(1):面对当前严重的土地荒漠化问题,某县决定分期分批进行治沙造林。

项目一期计划在一定时间内固沙造林2400公顷。

每月实际固沙造林面积比原计划增加30公顷。

因此,原计划任务提前四个月完成。

最初计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月。

根据题意,可得方程.问题场景(2):正n形多边形的每个内角为度。

问题场景(3):新华书店有一批库存图书,其中一本原价为每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?活动目的:让学生进一步体验在实际问题中探索数量关系的过程;通过问题场景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感。

第三个环节是独立探索活动内容:在以小组的形式讨论分数之后,得到分数的概念,并认识到分数的意义。

讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?活动目的:24002400(n?2)?180b,,,xx?3na?x通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念。

分式的概念教案

分式的概念教案

分式的概念教案一、教学目标1、知识与技能目标理解分式的概念,明确分式和整式的区别。

能够判断一个式子是否为分式。

2、过程与方法目标通过对分式与整式的比较,培养学生的分析、归纳和概括能力。

经历分式概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生的合作交流意识和探索精神。

让学生体会数学知识来源于生活,又服务于生活。

二、教学重难点1、教学重点分式的概念。

分式有意义、无意义和值为零的条件。

2、教学难点理解分式的概念,特别是分母不能为零的条件。

三、教学方法讲授法、讨论法、练习法四、教学过程(一)导入新课1、回顾整式的概念:单项式和多项式统称为整式。

例如:3x,5,x² 2x + 1 等都是整式。

2、创设情境,引入新课问题 1:一个长方形的面积为 10 平方厘米,长为 7 厘米,宽是多少厘米?列式:10÷7 = 10/7(厘米)问题 2:小明用 a 元钱买了 b 个笔记本,每个笔记本多少钱?列式:a÷b = a/b(元)观察上面两个式子,它们与整式有什么不同?引出本节课的课题——分式。

(二)讲授新课1、分式的概念一般地,如果 A、B 表示两个整式,并且 B 中含有字母,那么式子A/B 叫做分式。

其中 A 叫做分子,B 叫做分母。

强调:分式的分母 B 必须含有字母,这是分式与整式的根本区别。

例如:5/x,(x + 1)/(x 1),(x²+ 2x + 1)/(x + 3) 等都是分式。

而 3x,5,x² 2x + 1 等都是整式。

2、分式有意义、无意义和值为零的条件(1)分式有意义的条件:分母不等于零。

即:当B ≠ 0 时,分式 A/B 有意义。

例如:对于分式 5/(x 1),当x 1 ≠ 0,即x ≠ 1 时,分式有意义。

(2)分式无意义的条件:分母等于零。

即:当 B = 0 时,分式 A/B 无意义。

分式的概念教案教案完整版

分式的概念教案教案完整版

分式的概念教案教案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】分式的概念课题:17.1.1 分式的概念共 1 课时第 1 课时教材分析:(1)①.地位、作用和前后联系。

本节课的主要内容是分式的概念以及掌握分式有意义、无意义、分式值为0的条件.它是在学生掌握了整式的四则运算、多项式的因式分解,并以六年级第一学期的分数知识为基础,对比引出分式的概念,把学生对“式”的认识由整式扩充到有理式.学好本节知识是为进一步学习分式知识打下扎实的基础,是以后学习函数、方程等问题的关键。

②.学情分析初二年级学生基础比较差,学习能力较弱.但通过预初年级分数的学习,头脑中已形成了分数的相关知识,知道分数的分子、分母都是具体的数,因此学生可能会用学习分数的思维定势去认知、理解分式.但是在分式中,它的分母不是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化.为了学生能切实掌握所学知识,在教学中特别设计了几组练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理.(2)重点:1.分式的概念 2.分式有意义的条件3.分式值为零的条件(3)难点:分式的概念,分式的值为零教学目标:知识技能目标:①理解分式的概念;②能求出分式有意义的条件过程性目标:①通过对分式与分数的类比,学生亲身经历探究整式扩充到分式的过程,初步学会运用类比转化的思想方法研究数学问题;②学生通过类比方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识.情感与态度目标:①通过联系实际探究分式的概念,能够体会到数学的应用价值;②在合作学习过程中增强与他人的合作意识.教学方法:1.师生互动探究式教学以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初二学生的求知心理和已有的认知水平开展教学.学生通过熟悉的现实生活情景,发现有些数量关系仅用整式来表示是不够的,引发认知冲突,提出需要学习新的知识.引导学生类比分数探究分式的概念,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.2.自主探索、研讨发现.知识是通过学生自己动口、动脑,积极思考、主动探索获得.学生在讨论、交流、合作、探究活动中形成分式概念、掌握分式有意义、分式值为0的条件.在活动中注重引导学生体会用类比的方法(如类比分数的概念形成分式的概念)扩展知识的过程,培养学生学习的主动性和积极性.本节课的教学,是在学生已有的分数知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比思想、特殊与一般的辩证唯物主义观点.突破点:由于部分学生容易忽略分式分母的值不能为0,所以在教学中,采取类比分数的意义,加强对分式的分母不能为0的教学.教学过程:(1)创意情境引入新课(预计5分钟)传说,一次鲁班手被小草割破后,他通过仔细观察发现小草叶子边沿布满了草结果发明了锯。

分式的概念市公开课获奖教案省名师优质课赛课一等奖教案

分式的概念市公开课获奖教案省名师优质课赛课一等奖教案

教案:分式的概念一、教学目标:1. 了解分式的概念和基本特征;2. 掌握分式的表示方法和基本运算规则;3. 能够应用分式解决实际问题。

二、教学重点:1. 理解分式的定义和基本特征;2. 掌握分式的表示方法和基本运算规则。

三、教学难点:1. 理解分式背后的数学概念;2. 灵活运用分式解决实际问题。

四、教学准备:1. 教师准备:白板、黑板、彩色粉笔;2. 学生准备:教材、练习册。

五、教学过程:Step 1:导入新知教师通过提问和实例引入分式的概念,例如:“小明在班级的人数是全校总人数的三分之一,那么我们可以用什么方法来表示小明所占的比例呢?”引导学生思考,从而引出分式的概念。

Step 2:分式的定义和表示方法1. 教师向学生解释分式的定义:“分式是两个数的比值,它由分子和分母组成。

”2. 引导学生认识分子和分母的含义:“分子是被除数,表示被分成的若干份;分母是除数,表示分成的份数。

”3. 教师给出几个分式的例子,如2/3、5/8等,让学生观察并总结分式的表示方法。

Step 3:分式的基本特征1. 教师指导学生观察分式的特征:“分式是一个有理数,并且它的值可以是正数、负数、零或无穷大。

”2. 通过实例的演示,让学生体会分式在数轴上的位置和大小关系。

Step 4:分式的基本运算规则1. 教师引导学生复习分数的加减法规则,然后将其扩展到分式的加减法。

2. 教师给出分式的加减法的计算步骤,并通过多个例题进行讲解和练习。

Step 5:应用分式解决实际问题1. 教师通过实例引导学生应用分式解决实际问题,如“某物品原价为120元,商场打8折出售,现价是多少?”2. 学生在教师指导下,逐步分析问题,列方程,完成计算,并得出最终结果。

Step 6:综合练习教师提供一些综合性的练习题,让学生独立完成,并进行互相讨论和分享答案。

六、教学延伸:1. 学生根据教材和练习册上的习题进行巩固和拓展练习;2. 利用游戏或竞赛形式,增加学生对分式的兴趣和思维拓展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的概念教案
一、教育目标
(一)知识目标
理解并掌握分式、有理式的概念,准确识别分式是否有意义,能掌握分式的值是否等于零的方法.
(二)水平目标
通过度数类比,概括出分式的概念,培养学生观察、猜想、类比的水平,通过有理式概念的归纳,培养学生归纳、分析问题的水平,通过整式与分式的区别,培养学生分类问题的水平.
(三)情感目标
分式、有理式的概念,渗透数学概念的简洁美与对称美,学生在学习过程中自主探索,在类比中得出新的知识,让学生在自主探索中得到成功的喜悦,形成良好的学习氛围,得到数学水平的最大满足.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辩证观点的再理解.
二、教学重难点
1.重点:使学生理解并掌握分式、有理式的概念.
2.难点:准确识别分式是否有意义,通过类比分数的意义,•增强对分式意义的理解.3.疑点:分式的值在什么情况下等于零.
三、课型与基本教学思路:新授课.本节课通过具体例题,•由分数的表示类比分式的表示法,得出分式的概念,归纳出有理数的概念,并能识别分式是否有意义及分式的值是否等于零.
四、媒体平台
多媒体投影
五、课时安排
1课时
六、教学过程
(一)教学流程
1.情境导入
(投影显示)问题:
(1)面积为2m2的长方形,一边长3m,则它的另一边长为多少?
(2)面积为Sm2的长方形,一边长am,则它的另一边长为多少?
(3)一箱苹果售价为P元,总量m千克,箱重n千克,则每千克苹果的售价是多少?
2.课前热身
(复习提问)
(1)把下列两个数相除的形式表示成分数的形式:3÷4;4÷3;8÷7;-8÷3;3÷(-8)
(2)分数中的分子、分母与除式中的被除数、除数是什么关系?
(3)为什么分数的分母不能为零?
3.合作探究
(1)整体感知:A .让学生通过问题讨论并回答:①面积为2m 2的长方形,一边长3m ,则它的另一边长为23m ;②面积为Sm 2的长方形,一边长am ,则它的另一边长为s a
m ;③一箱苹果售价为P 元,总重m 千克,箱重n 千克,则每千克苹果的售价是
()P m n -元.学生发现两个整式相除,不能整除时结果可用分数表示.B .教师总结:形如A B
(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.其中A 叫做分式的分子,B•叫做分式的分母.整式和分式统称有理数,即
有理式⎧⎨⎩整式
分式
(2)师生互动
互动1
师:教师在讲述分式的概念之后,就小学时零不能做除数,提示学生注意分式中应注意哪一个问题,学生互相讨论,回答.
生甲:在分式中,分母的值不能是零,因为零不能做分母.
生乙:如果分母的值是零,则分式就没有意义了. 生丙:在分式S a
中a ≠0,在分式()P m n -中m ≠n . 明确 让学生在互动中,得出分式中分母不能为零,如果分式中分母为零,则分式没有意义.
互动2
师:下列各式中哪些是整式?哪些是分式? ①1x ; ②2x ; ③2()xy x y +; ④(2)3
x y -. 生:属于整式的有②④;属于分式的有①③.
明确 有理式包括整式和分式。

关于分式强调两点:在
A B 中,第一,B 中含有字母;第二,B 不能为零.
互动3
当x 取什么值时,下列分式有意义? ①(2)x x -; ②(1)(41)x x -+; ③(1)(23)
x x -- 明确 首先要指明这是一个分式,从形式上,分母含有字母可知是分式,其次,说明当分式的分母等于零时,分式没有意义.所以,如果使上述分式有意义,•x 的取值应使分
母不等于零.
互动4
师:教材中强调分母为零,分式没有意义,那么在什么时候分式的值才能为零呢?结论:分子为零且分母不等于零时,分式的值等于零.
明确 教材中并未出现分式的值为零的求法,但强调了分母不能为零.所以,我们对于分式A B 中,A=0与A B =0之间的要求给予强调.A=0时只有满足B ≠0时才会有A B
=0. 4.达标反馈
(1)选择题: ①要使分式1(1)(2)
x x x ++-有意义,则x 应满足 (D ) A .x ≠-1 B .x ≠2 C .x ≠±1 D .x ≠-1且x ≠2 ②要使分式212
x x x -+-的值为零,则x 的取值为 (D ) A .x=1 B .x=-1 C .x ≠1且x ≠-2 D .无任何实数 ③要使分式
||2x x -无意义,则x 的取值为 (C ) A .x=0 B .x=2 C .x=±2 D .x=-2
④x 为任意实数时,分式一定有意义的是 (C )
A .
21x x - B .211x x +- C .211x x -+ D .11
x x -+ ⑤已知a=1-1b ,b=1-1c
,则用a 表示c 的代数式为 (B ) A .a=11c - B .c=1-1a C .c=11b - D .c=1a a - (2)填空题:
①当x= 2 时,分式22444
x x x -++的值为零; ②当x= -1 时,分式2
2
2x x x x +-+的值为零; ③当a= ±1 时,分式2(1)(1)5a a a a
-++的值为零; ④当a ≠ 2 时,分式322a a +-有意义;。

相关文档
最新文档