蚁群优化算法69893

合集下载

智能控制课件蚁群优化算法

智能控制课件蚁群优化算法

实验数据(算法复杂度)
摘自Ant Colony Optimization
4 实例:JSP
Job-shop Scheduling Problem
M:机器数量 J :任务数 ojm:工序 djm:工时
O ,o jm, :工序集合
JSP(Muth & Thompson 6x6)
m.t Job1 3.1 Job2 2.8 Job3 3.5 Job4 2.5 Job5 3.9 Job6 2.3
Update the shortest tour found
TSP蚁群算法(ant-cycle)
Step 4.2
For every edge (i,j) For k:=1 to m do
m
ij
k ij
k 1
k ij
Q Lk
0
if (i, j) tour described by tabuk otherwise
TSP蚁群算法(ant-cycle)
Step 6
If (NC < NCMAX) and (not stagnation behavior) then Empty all tabu lists Goto step 2 else Print shortest tour Stop
3 蚁群算法调整与参数设置
符合TSP规则; 完成一次旅行后,在经过的路径上释放信息
素; 无需按原路返回。
实例:TSP(参数与机制)
路径上的信息素浓度 ij (t) 信息素更新
ij (t n) ij (t) ij
信息素释放(ant-cycle)
m
ij
k ij
k 1
k ij
Q Lk
if k - th ant uses edge (i, j) in its tour (between time t and t n)

【优秀作业】蚁群优化算法

【优秀作业】蚁群优化算法

【优秀作业】蚁群优化算法蚁群优化算法一.概述生物学家发现,自然界中的蚁群觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。

蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。

信息素浓度的大小表征到食物源路径的远近,信息素浓度越高,表示对应的路径距离越短。

通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。

最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即最短距离。

值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。

20世纪90年代初,意大利学者M.Dorigo等人提出了模拟自然界蚂蚁群体觅食行为的蚁群算法。

其基本思想是:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径上的蚂蚁个数也越来越多。

最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

二.蚁群算法解决TSP问题1. 算法原理M.Dorigo等人最早将蚁群算法用于解决旅行商问题(Traveling Salesman Problem,TSP),并取得了较好的实验结果。

设整个蚂蚁群体中蚂蚁的数量为,城市的数量为,城市与城市之间的距离为,时刻城市与城市连接路径上的信息素浓度为。

初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设。

蚂蚁根据各个城市间连接路径上的信息素浓度决定下一个访问城市,设表示时刻蚂蚁从城市转移到城市的转移概率,其公式为:其中:为启发函数,表示蚂蚁从城市转移到城市的期望程度;为蚂蚁待访问城市的集合,开始时,中有个元素,即包括除了蚂蚁出发城市的所有其它城市,随着时间的推进,中的元素不断减少,直至为空,即表示所有的城市均访问完毕;为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。

蚁群算法路径优化算法

蚁群算法路径优化算法

其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。

allowedk = C − tabuk表示蚂蚁k下一步允许选择的城市。

α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。

β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。

式中,dij表示相邻两个城市之间的距离。

(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。

(7)若集合C中元素(城市)未遍历完,即k<m,则跳转到第(4)步,否则执行第(8)步。

(8)根据公式更新每条路径上的信息量:τij(t + n) = (1 − ρ) * τij(t) + Δτij(t),(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。

蚁群算法的matlab源程序1.蚁群算法主程序:main.m%function [bestroute,routelength]=AntClccleartic% 读入城市间距离矩阵数据文件CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出NC=length(CooCity); % 城市个数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2);endendMAXIT=10;%最大循环次数Citystart=[]; % 起点城市编号tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1rho=0.5; % 挥发系数alpha=1; % 残留信息相对重要度beta=5; % 预见值的相对重要度Q=10; % 蚁环常数NumAnt=20; % 蚂蚁数量routelength=inf; % 用来记录当前找到的最优路径长度for n=1:MAXITfor k=1:NumAnt %考查第K只蚂蚁deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零%[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk<routelength %找到一条更好的路径:::routelength=lengthk;:::bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatau(routek(i),routek(i+1))=deltatau(routek(i),routek(i+1))+Q/lengthk; % 信息素更新end%deltatau(routek(NC),1)=deltatau(routek(NC),1)+Q/lengthk; %endlength_n(n)=routelength; % 记录路径收敛tau=(1-rho).*tau; % 信息素挥发end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%costtime=toc;subplot(1,2,1),plot([CooCity(bestroute,2)],[CooCity(bestroute,3)],'-*')subplot(1,2,2),plot([1:MAXIT],length_n,'-*')[routelength,costtime]2.蚁群算法寻找路径程序:path.m% 某只蚂蚁找到的某条路径routek,lengthkfunction [routek,lengthk]=path(distance,tau,alpha,beta,Citystart)[m,n]=size(distance);if isempty(Citystart) % 如果不确定起点p=fix(m*rand)+1; % 随机方式初始化起点,均匀概率elsep=Citystart; % 外部给定确定起点 endlengthk=0; % 初始路径长度设为 0routek=[p]; % 蚂蚁路径点序列,即该蚂蚁已经过的城市集合,路径初始起点for i=1:m-1np=routek(end); % 蚂蚁路径城市序号,依次经过的城市编号np_sum=0; % 路由长度初始为 0for j=1:mif inroute(j,routek) % 判断城市节点j是否属于tabuk,即是否已经过continue;else % j为还未经过的点ada=1/distance(np,j); % 预见度np_sum=np_sum+tau(np,j)^alpha*ada^beta; % 路由表:信息痕迹、预见度 endendcp=zeros(1,m); % 转移概率,基于路径长度及路由表for j=1:mifinroute(j,routek)continue;elseada=1/distance(np,j); % 预见度cp(j)=tau(np,j)^alpha*ada^beta/np_sum; % np到j的转移概率endendNextCity=nextcitychoose2(cp); % 根据转移概率确定下一个城市,% 直观地,取转移概率最大值方向方法,决策结果稳定且收敛快routek=[routek,NextCity]; % 更新路径lengthk=lengthk+distance(np,NextCity); % 更新路径长度end蚁群算法仿真结果:其中左边是蚂蚁行走的最短路径,右边是最短路径的值的收敛情况。

蚁群优化算法

蚁群优化算法

段旭良@四川农业大学 5025968@
蚁群算法特点
路径BHD 的长度是路径 的长度是路径BCD的2倍 路径 的 倍 当B点的蚂蚁到达 点后,路径BCD上的外激素是 点的蚂蚁到达D点后,路径 上的外激素是 点的蚂蚁到达 点后 BHD上的 倍。 上的2倍 上的 时刻t 有 只蚂蚁从 到达D。 只蚂蚁从E到达 时刻 =1有30只蚂蚁从 到达 。 因为路径DC上的外激素量是 上的 上的2倍 因为路径 上的外激素量是DH上的 倍,根据蚂 上的外激素量是 蚁选路特点,将会有20只蚂蚁选择 只蚂蚁选择DC,而只有10 蚁选路特点,将会有 只蚂蚁选择 ,而只有 只蚂蚁选择DH。 只蚂蚁选择 。 以此类推, 以此类推,当t = 2 ,3 ,4. . . 时,将会有更多的蚂蚁选 择路径BCD。 择路径 。 经过较长时间运动后, 经过较长时间运动后,蚁群最终会沿着最优路径 ABCDE运动。 运动。 运动
其中 allowed k = {0,1, L n − 1} − tabu k 表示蚂蚁k当前能选择的城市集合 当前能选择的城市集合, 为禁忌表, 表示蚂蚁 当前能选择的城市集合,tabu k 为禁忌表, 它记录蚂蚁k已路过的城市 已路过的城市。 它记录蚂蚁 已路过的城市。
ηij是启发信息。在TSP 问题中 是启发信息。
段旭良@四川农业大学 5025968@
蚁群算法特点
在真实蚁群中, 在真实蚁群中,外激素的数量会随时间的流逝而蒸 发掉一部分,为说明方便,此处假设: 发掉一部分,为说明方便,此处假设:
①所有蚂蚁运动的速度相等; 所有蚂蚁运动的速度相等; ②外激素蒸发量与时间成正比例,即路径上外激素的 外激素蒸发量与时间成正比例, 剩余量与路径的长度成反比; 剩余量与路径的长度成反比; ③蚂蚁选路的概率与所选路上外激素的浓度成正比。 蚂蚁选路的概率与所选路上外激素的浓度成正比。

蚁群优化算法课件

蚁群优化算法课件

05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强

蚁群优化算法

蚁群优化算法
➢蚂蚁系统中的精英策略
– 每次循环之后给予最优解以额外的信息素量 – 这样的解被称为全局最优解(global-best solution) – 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
16 16
带精英策略的蚂蚁系统
➢信息素根据下式进行更新
其中
ij (t 1) ij (t) ij i*j
实现过程
33 33
实现过程
34 34
实现过程
35 35
中国旅行商问题
ACATSP(C,100,10,1,5,0.1,100) 1.5602e+04
36 36
遗传算法和蚁群算法在 求解TSP问题上的对比分析
37 37
开始
细菌觅食机理
i=i+1
趋向性操作
设细菌种群大小为S,一个细菌所处的位 置表示一个问题的候选解,细菌i的信息 用D维向量表示为
➢较强的鲁棒性 ·➢分布式计算
➢易于与其他方法结合
需要较长的搜索时间 容易出现停滞现
15 15
带精英策略的蚂蚁系统
➢带精英策略的蚂蚁系统(Ant System with elitist strategy,
ASelite)是最早的改进蚂蚁系统。
➢遗传算法中的精英策略
– 传统的遗传算法可能会导致最适应个体的遗传信息丢失 – 精英策略的思想是保留住一代中的最适应个体
ij (t n) ij (t) ij
m
ij
k ij
(2)
k 1
其中,ρ为小于1的常数,表示信息的持久性。
Q
k ij
Lk
ij lk
(3)
0 otherwise
其中,Q为常数;Lk 表示第k只蚂蚁在本次迭代中走过 的路径长度。

蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。

蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。

1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。

蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。

通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。

2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。

2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。

较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。

2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。

通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。

2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。

信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。

蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。

2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。

信息素更新还包括信息素的挥发,以模拟现实中信息的流失。

3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。

3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。

在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。

例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。

3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。

蚁群优化算法

蚁群优化算法
2.当原来最优路径上出现了障碍物或者食物 位置改变了;蚁群仍能够重新探索出新的一 条最优路径?
2020/8/16Biblioteka copyright:hhq
蚁群行为描述
仿生学家经过长期研究发现:蚂蚁虽然没有视觉,但是存 在一种化学物质—信息素(pheromone)用于蚂蚁之间以 及蚂蚁与环境的交互。
在没有信息素的情况下,蚂蚁是随机挑选路径的,同时释 放出与路径有关的信息素。路径越长,信息素量越小。如 果当前路径上存在信息素,蚂蚁倾向于信息素浓度高的路 径。由于较短路径上,蚂蚁往返的时间短,单位时间内经 过的蚂蚁数多,信息素累计的也多,因此会吸引更多的蚂 蚁。信息素还会随着时间蒸发,其他路径上的信息素浓度 下降,最终绝大多数的蚂蚁将沿着最优路径前行。
启发式算法(Heuristic Algorithm)
在可接受的花费(指时间和空间)下给出待解决组合优化问题 每一个实例的一个可行解,该可行解与最优解的偏离程度不一 定能事先预计,也不能保证每次能用相同的时间求出结果。
2020/8/16
copyright:hhq
有趣的问题
1.为何大多数蚂蚁在觅食时,会选择相同的 路径,而且这条路径往往是一条食物和巢穴 之间的最短路径,它们是如何做到的?
蚂蚁系统(Ant System)
作为第一个ACO算法,是以NP-hard的TSP问题作为应 用实例而提出的。虽然它的算法性能不及其他各种扩 展算法,但是最基本的ACO算法,易于学习和掌握。
旅行商问题
一位商人从自家出发,希望能找到一条最短路径,途 径给定集合的所有城市最后返回家乡,并且每个城市 都被访问且仅访问一次。形式上,TSP问题可以用一个 带权完全图G=(N,A)来描述,目标就是寻找一条具有 最小成本值的哈密尔顿回路。

第三讲 蚁群优化算法

第三讲 蚁群优化算法
(1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的 蚂蚁),或者至今最优蚂蚁释放信息素。
(2)信息素量大小的取值范围被限制在一个区间内。 (3)信息素初始值为信息素取值区间的上限,并伴随一个
较小的信息素蒸发速率。 (4)每当系统进入停滞状态,问题空间内所有边上的信息
素量都会被重新初始化。
3.3 最大最小蚂蚁系统
(3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。
(4)迭代(2),直至算法终止。
2 算法流程
信息素更新
m
(i, j) (1 r) (i, j) k (i, j),
食物
6:我自己走,说不定能探索 出一条更短的路径呢,
到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是
两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权
重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径,
算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。

蚁群优化算法技术介绍

蚁群优化算法技术介绍
蚁群优化算法技术介绍
目录
• 蚁群优化算法概述 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现过程 • 蚁群优化算法的改进与优化 • 蚁群优化算法的案例分析
01 蚁群优化算法概述
定义与原理
定义
蚁群优化算法是一种模拟自然界 中蚂蚁觅食行为的仿生优化算法 。
原理
通过模拟蚂蚁的信息素传递过程 ,利用正反馈机制寻找最优解。
算法特点
分布式计算
蚁群算法中的蚂蚁可以并行地搜索解空间,提高了算法的搜索效 率。
鲁棒性
对初始解和参数选择不敏感,能在多变的搜索空间中寻找到最优 解。
易于实现
算法实现简单,可扩展性强,适用于解决复杂优化问题。
应用领域
路径规划
任务调度
用于解决车辆路径规划、 物流配送等问题。
应用于多核处理器任务 调度、云计算资源分配
蚂蚁的移动规则
随机选择
蚂蚁在移动时,会根据当前位置和目标位置之间的路径上信息素浓度随机选择 下一个移动的节点。
避免重复
为了避免重复访问同一个节点,蚂蚁会根据一定的概率选择新的节点,这个概 率与路径上的信息素浓度成正比。
蚂蚁之间的协作机制
共享信息
蚂蚁通过释放和感知信息素来共享彼此的路径信息和状态,从而在群体中形成一 种协作效应。
网络路由问题求解
总结词
蚁群优化算法在网络路由问题求解中具有较好的应用 效果,能够优化网络路由和提高网络性能。
详细描述
网络路由问题是一个重要的网络通信问题,旨在根据 网络拓扑结构和通信需求,选择最优的路由路径和转 发策略,以实现数据包的可靠传输和网络性能的提升 。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传 递机制来指导搜索过程,能够有效地解决网络路由问 题,优化网络路由和提高网络性能。

智能优化算法(蚁群算法和粒子群算法)

智能优化算法(蚁群算法和粒子群算法)

7.1 蚁群优化算法概述•7.1.1 起源•7.1.2 应用领域•7.1.3 研究背景•7.1.4 研究现状•7.1.5 应用现状7.1.1 蚁群优化算法起源20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。

提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。

20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。

背景:人工生命•“人工生命”是来研究具有某些生命基本特征的人工系统。

人工生命包括两方面的内容。

•研究如何利用计算技术研究生物现象。

•研究如何利用生物技术研究计算问题。

•现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。

例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。

•现在我们讨论另一种生物系统-社会系统。

更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。

这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。

•在计算智能(computational intelligence)领域有两种基于群智能的算法。

蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。

前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。

•作为一种新兴演化计算技术,群智能已成为新的研究热点,它与人工生命,特别是进化策略和遗传算法有着极为特殊的联系,已完成的理论和应用研究证明群智能方法是一种能够有效解决大多数全局优化问题的新方法.••更为重要的是,群智能的潜在并行性和分布式特点为处理大量的以数据库形式存在的数据提供了技术保证.•因此无论是从理论研究还是应用研究的角度分析,群智能理论及其应用研究都是具有重要学术意义和现实价值的。

蚁群优化算法课件

蚁群优化算法课件
改进算法。
在基于聚类分析的蚁群优化算法中,算 法首先利用聚类分析技术将问题空间划 分为多个子空间,然后将蚂蚁分配到不
同的子空间中进行搜索。
这种算法通过聚类分析技术将问题空间 划分为多个子空间,可以减少蚂蚁搜索
范围,提高算法的寻优效率。
基于粒子群的蚁群优化算法
基于粒子群的蚁群优化算法是 一种将粒子群优化算法与蚁群 优化算法相结合的改进算法。
THANKS
感谢观看
蚁群优化算法课件
目录
• 蚁群优化算法简介 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现细节 • 蚁群优化算法的改进版本 • 蚁群优化算法的实验与分析 • 么是蚁群优化算法
蚁群优化算法是一种启发式优化算法,通过模拟 01 自然界中蚂蚁寻找食物的行为来求解优化问题。
在基于粒子群的蚁群优化算法 中,每只蚂蚁被视为一个粒子 ,每个粒子都有一个位置和一 个速度。
该算法通过粒子的位置和速度 来描述蚂蚁的状态,并利用粒 子群优化算法的优点来指导蚂 蚁的搜索行为。
05
蚁群优化算法的实验与分析
在TSP问题上的应用
总结词
高效、稳定
详细描述
蚁群优化算法在TSP问题上具有高效、稳定的性能表现。通过模拟蚂蚁觅食行为 ,该算法能够在较短的时间内寻找到一条最短路径,并且具有较好的鲁棒性。
果的质量。
02
蚁群优化算法的基本原理
蚂蚁的行为特征
01 蚂蚁具有记忆能力
蚂蚁能够记住之前走过的路径和相关的信息,如 食物的来源、路径的长度等。
02 蚂蚁具有协作能力
在寻找食物的过程中,蚂蚁之间会相互协作,通 过信息素的传递来共享信息。
03 蚂蚁具有适应性
蚂蚁能够根据环境的变化来调整自己的行为和策 略,以适应不同的环境条件。

群体智能优化算法-蚁群优化算法

群体智能优化算法-蚁群优化算法

第五章蚁群优化算法5.1介绍蚁群优化(ACO)是群体智能的一部分,它模仿蚂蚁的合作行为来解决复杂的组合优化问题。

它的概念是由Marco Dorigo[1]和他的同事提出的,当他们观察到这些生物在寻找食物时所采用的相互交流和自我组织的合作方式时,他们感到很惊讶。

他们提出了执行这些策略的想法,为不同领域的复杂优化问题提供了解决方案,并获得了广泛的欢迎[1, 2]。

蚁群算法是一组被称为人工蚂蚁的软件代理,它们为特定的优化问题寻找好的解决方案。

蚁群算法是通过将问题映射成一个加权图来实现的,在加权图中,蚂蚁沿着边缘移动,寻找最佳路径。

蚁群研究(实际上是真正的蚂蚁)始于1959年,当时皮埃尔•保罗•格拉斯(Pierre Paul Grasse)发明了“协同”理论,解释了白蚁的筑巢行为。

之后于1983年Deneubourg和他的同事们[3]对蚂蚁的集体行为进行了研究。

1988年,Mayson和Manderick发表了一篇关于蚂蚁的自组织行为的文章。

最终在1989年,Goss, Aron, Deneubour, and Pasteelson在其研究工作(阿根廷蚂蚁的集体行为)中提出了蚁群算法的基本思想[4],同年,Ebling 及其同事提出了一食物定位模型。

1992年,Marco Dorigo(Dorigo, 1992)在其博士论文中提出了蚂蚁系统(Ant System)[1]。

一些研究人员将这些算法扩展到各个研究领域的应用中,Appleby和英国电信主管发表了第一个在电信网络中的应用,后来Schoonderwoerd 和他的同事在1997年对其进行了改进。

在2002年,它被应用于贝叶斯网络中的调度问题。

蚁群算法的设计是基于蚂蚁搜索巢穴和食物位置之间短路径的能力,这可能会因蚂蚁的种类而有所不同。

近年来,研究人员对蚁群算法的应用结果进行了研究,结果表明,所使用的大多数人工蚂蚁并不能提供最好的解决方案,而精英蚁群通过重复的交换技术提供了最好的解决方案。

第5章 蚁群优化算法

第5章 蚁群优化算法

2.1.3
蚁群优化算法研究背景
13
1/3
群智能理论研究领域有两种主要的算法:蚁 群算法(Ant Colony Optimization, ACO) 和微粒群算法(Particle Swarm Optimization, PSO)。 前者是对蚂蚁群落食物采集过程的模拟,已成功 应用于许多离散优化问题。 微粒群算法也是起源于对简单社会系统的模拟, 最初是模拟鸟群觅食的过程,但后来发现它是 一种很好的优化工具。
5
LC=2LB
蚂蚁从A点出发,速度相同,食物在D点,可能随机选择路 线ABD或ACD。假设初始时每条分配路线一只蚂蚁,每个 时间单位行走一步,本图为经过9个时间单位时的情形:走 ABD的蚂蚁到达终点,而走ACD的蚂蚁刚好走到C点,为一 半路程。
6
LC=2LB
本图为从开始算起,经过18个时间单位时的情形:走 ABD的蚂蚁到达终点后得到食物又返回了起点A,而走 ACD的蚂蚁刚好走到D点。
10
1.1.1 蚁群优化算法起源
11
20世纪50年代中期创立了仿生学,人们从生物进化的机理中 受到启发。提出了许多用以解决复杂优化问题的新方法,如进 化规划、进化策略、遗传算法等,这些算法成功地解决了一些 实际问题。 20世纪90年代意大利学者M.Dorigo,V.Maniezzo, A.Colorni等从生物进化的机制中受到启发,通过模拟自然界 蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法—— 蚁 群算法,是群智能理论研究领域的一种主要算法。 用该方法求解TSP问题、分配问题、job-shop调度问题,取得了 较好的试验结果.虽然研究时间不长,但是现在的研究显示出, 蚁群算法在求解复杂优化问题(特别是离散优化问题)方面有 一定优势,表明它是一种有发展前景的算法.

蚁群优化算法

蚁群优化算法

一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。

蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。

二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。

蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。

(2)信息素浓度的限制。

为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。

通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。

蚁群优化算法

蚁群优化算法
2015-5-19 copyright:hhq
精英蚂蚁系统
精英蚂蚁系统(EAS)是最早的改进蚂蚁系统。
遗传算法中的精英策略
传统的遗传算法可能会导致最适应个体的遗传信息丢失 精英策略的思想是保留住一代中的最适应个体
蚂蚁系统中的精英策略
每次循环之后给予最优解以额外的信息素量 这样的解被称为全局最优解(global-best solution) 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
2015-5-19
copyright:hhq
最大最小蚂蚁系统
MMAS和AS主要有四个方面不同:
在每次循环之后,只有一只蚂蚁进行信息素更新。 这只蚂蚁可能是找出当前循环中最优解的蚂蚁,也 可能是找出从实验开始以来最优解的蚂蚁 在每个解的元素上的的信息素量被限制在[ min , max ] 范围区间内 信息素初始值为信息素取值范围的上限 max ,信息维 持率保持一个较大值。 当系统陷入停滞,将问题空间所有边的信息素重新 初始化。
启发式算法(Heuristic Algorithm)
在可接受的花费(指时间和空间)下给出待解决组合优化问题 每一个实例的一个可行解,该可行解与最优解的偏离程度不一 定能事先预计,也不能保证每次能用相同的时间求出结果。
2015-5-19 copyright:hhq
有趣的问题
1.为何大多数蚂蚁在觅食时,会选择相同的 路径,而且这条路径往往是一条食物和巢穴 之间的最短路径,它们是如何做到的? 2.当原来最优路径上出现了障碍物或者食物 位置改变了;蚁群仍能够重新探索出新的一 条最优路径?
k ij ij k 1 m
1. 原有信息素的挥发 通常的做法是设置信息持久率 (0 1) 让所有 ij (t )乘以 。在算法中用于避免信息素的无限增长 淹没启发式信息,也有助于丢弃那些构建过的较差的路径。

现代优化算法-蚁群算法

现代优化算法-蚁群算法
3)易出现停滞现象,即算法搜索进行到一定程度后,所有个 体发现的解都完全一致,不能对解空间进一步进行搜索。
蚁群优化算法—改进
蚁群算法的各种改进: 1)MAX-MIN ANT SYSTEM (MMAS)算法
2)自适应蚁群优化算法
3)自适应调整信息素的蚁群算法
4)自适应调整 (残留信息的保留部分)的蚁群算法 5)带杂交算子的蚁群算法 6)在解决TSP问题——分段算法Section_MMMAS 7)在解决TSP问题——相遇算法MMMAS
— ij t 。
2)由城市 i 转移到城市 j 的启发信息,该启发信息是由要
解决的问题给出的——
ij ,在TSP问题中一般取
ij
1,
d ij
其中, d ij 表示城市 i,j 间的距离, ij 在这里可以称为先
验知识。
蚁群优化算法—算法流程
选择机制, 那么,t 时刻位于城市 i 的蚂蚁 k 选择城市 j 为目标城市的概率是:
这个解满足以上四个约束 条件。
蚁群优化算法—算法提出
NP问题:至今为止,还没有一个有能求得最优解的多项式时间算法 的组合优化问题称为NP问题。
TSP问题就是一个著名的NP问题。在如何解决这个问题方面已 经有了大量的研究。这其中包括遗传算法,退火算法,动态规 划等等。
蚁群优化算法—算法提出
TSP问题与蚁群寻径行为比较:
个城市推销商品,每个两个城市 i 和 j 之间的距离为 dij ,如何选择 一条道路使得商人每个城市走一遍后回到起点且所走路径最短。
蚁群优化算法—算法提出
一般旅行商问题TSP,数学模型描述:
min dij xij i j
n
s.t. xij 1, i 1, 2 ,, n j1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pijk(i,
j)
(i,u)(i,u)
uJki
,
jJk i
0,
其他
其中,J i 表示从城市i可以直接到达的且又不在蚂蚁访问过的城市序列
R
k
k
中的城市集合。
i,
j 是一个启发式信息,通常由i, j=1/d 直接计算。 ij
i , j 表示边 i , j 上的信息量
-
2.3 蚂蚁系统理论

蚁群优化算法相关应用
-
问题简述:
2.1 TSP问题
已知有 n
个城市的集合
Cc,c,L,c
n
12
n
,任意两个城市之间均有路
径连接,dij i,j1,2,L,n表示城市与之间的距离。旅行商问题就是需要 寻找这样的一中周游方案:周游路线从某个城市出发,经过每个城市
一次且仅一次,最终回到出发城市,使得周游的路线总长度最短。
-
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。
2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。
3.实验最终结果:所有的蚂蚁 都会选择同一分支。
自身催化(正反馈)过程
-
双桥实验
1.1 基本原理
1.起初两条分支上不存在信息 素,蚂蚁随机选择一条路径。
2.将ACO纳入了基于模型的搜索框架中。
趋势
1.利用ACO算法去解决更为复杂的优化问题,例如:
动态问题、随机问题、多目标问题。 2、ACO算法的高效并行执行。 3.更理论化的理解和刻画ACO算法在求解问题时的行为。 4.与其他算法结合(粒子群算法)。
-
蚁群优化算法

蚁群优化算法简介

蚂蚁系统

蚁群优化算法的改进版本
-
1.1 基本原理
信息素
(1)蚂蚁没有发育完全的视觉 A
感知系统,其在寻找食物的过 程中是如何选择路径的呢? (2)蚂蚁往往像军队般有纪律、 有秩序地搬运食物,它们通过 什么方式进行群体间的交流协 作呢?
信息素是一种化学物质,由蚂蚁自身释放,是实现蚁群内 间接通信的物质。蚂蚁随机选择路径,但是能感知当前地 面上的信息素浓度,并倾向于往信息素浓度高的方向前进。
最大最小蚂蚁系统(EAS) 1996年
连续蚁群(CACO)2000年 超立方体AS(HC-ACO)2001年 连续正交蚁群(COAC)2008年
蚁群系统(ACS) 1997年
基于排列蚂蚁系统 A S ra n k 1997年
-
1.2 研究进展
理论进展
总结
1.收敛性证明。一些性能优越的ACO算法(MMAS和ACS) 不管有没有使用局部搜素,都是值收敛的。
1.路径构建
(i,j)(i,j)
Pijk(i,
j) (i,u)(i,u)
uJki
,
jJk i
0,
其他
由公式知,长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。
和 是两个预先设置的参数,用来控制启发式信息与信息素浓度作用的 权重。 = 0 时算法演变成了传统的随机贪婪算法;当 = 0 蚂蚁完全只根据
蚁群优化算法
Ant Colony Optimization
蚁群优化算法

蚁群优化算法简介

蚂蚁系统

蚁群优化算法的改进版本

蚁群优化算法相关应用
-
1.1 基本原理
提出
蚁群优化算法(ACO)由Dorigo(多里格) 等人于1991年提出,是模拟自然界真实蚂蚁 觅食过程的一种随机搜素算法。
性质
ACO是一种全局最优化搜索方法,解决典型组 合优化问题具有明显的优越性,具有鲁棒性 强、全局搜索、并行分布式计算、易于其他 算法结合的优点。
-
2.3 蚂蚁系统理论
AS算法(蚂蚁圈版本)对TSP的求解流程主要有两大步骤:路径构建和信息素更新
1.路径构建
定义5.1 AS中的随机比例规则:对每只蚂蚁k,路径记忆向量R K 按照访问
顺序记录了所有k已经经过的城市序号。设蚂蚁k当前所在的城市为i,则其选择
城市j作为下一个访问对象的概率为:
(i,j)(i,j)
2.短分支上的信息素积累速度 比长分支的快。
3.实验最终结果:所有的蚂蚁 都会选择较短的分支。
4.有很小比例的蚂蚁会选择较 长的分支。
(b)两条分支具有不同长度
路径探索
-
1.1 基本理论
双桥实验
30分钟后
蚁穴
食物源
(c)30分钟后添加短分支
1.实验最终结果:除了极少的 蚂蚁选择较短的分支以外, 整个群体几乎都困在较长的 分支上。
P87页,四个城市间的距离矩阵如下:
3 1 2
W
d ij
3 1
5 5
4 2
2 4 2
用贪婪算法求解: 例如从城市A出发得
AC D BA 路径长度为:1+2+4+3=10
-
2.3 蚂蚁系统理论
AS系统三个版本:
方信 式息
素 更 新
1.蚂蚁圈
ik i Q 0,其 /L 他 k, 第 k只 蚂 蚁 从 城 市 i访 问 城 市 j
2.长分支上的信息素浓度高, 而信息素的蒸发速度过于缓 慢。
-
总双 结桥
实 验
1.1基本理论
选择路径是一个概率随机过程,启发式信
1
息多以及信息浓度大的路径被选中概率更
大。
信息素会不断的蒸发。
2
路径探索也是必需的,否则容易陷入
3
局部最优。
-
1.1基本理论
蚁群觅食现象和蚁群优化算法的基本定义对照表
-
历史进展
1.2 研究进展
2001年至今
各种改进算法的提出,应用领域更广
1996年-2001年
意大利学者 Dorigo1991年
引起学者关注,在应用领域得到拓宽
ACO首次被系统的提出
启发
自然界中真实蚁群集体行为
-
k0k0
算法进展
蚂蚁系统(AS) 1991年
1.2 研究进展
精华蚂蚁系统(EAS) 1991年
2.蚂蚁数量
ik i Q 0,其 /d他 ij, 第 k只 蚂 蚁 从 城 市 i访 问 城 市 j
3.蚂蚁密度
ik i Q 0,, 其 第 他 k只 蚂 蚁 从 城 市 i访 问 城 市 j
其中,Q为常数,表示蚂蚁循环一次所释放的信息素总量; L为第k只蚂蚁经过路径的长度。d为城市间的距离。
第一个ACO——蚂蚁系统,就是以NP难的TSP问题 作为应用实例提出的。
-
2.2 贪婪算法
基本理论
贪婪算法在对问题求解时,总是做出在当前看来是最好的选择。也 就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局 部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相 当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。
相关文档
最新文档