数学建模案例分析
数学建模-第四篇-典型案例分析课件
问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响
数学建模竞赛案例分析
数学建模竞赛案例分析数学建模竞赛是一项旨在培养学生创新思维、动手能力和团队合作精神的活动。
参与竞赛的学生需要运用数学理论和方法解决实际问题,并通过建立模型、分析数据和验证结果等步骤,最终得出科学可行的结论。
本文将从一个具体的数学建模竞赛案例出发,进行深入分析。
案例介绍该案例是关于城市交通流量优化的问题。
某城市的交通拥堵问题日益严重,市政府决定通过优化交通信号灯的配时方案来减轻拥堵程度。
但是,在使用传统方式设置配时方案时,往往难以真实反映实际交通状况,造成传统方式不够准确和高效的问题。
因此,这个案例要求参赛队伍通过建模分析,给出一种更科学、更精确的交通信号灯优化方案。
建模分析团队成员首先分析了交通拥堵问题的原因,确定了车流量和信号灯配时之间的关系。
然后,他们在分析的基础上建立了一个数学模型,将交通信号灯的配时问题转化为优化问题。
针对所建模型,他们设计了相应的算法,并利用计算机进行模拟实验。
结果验证为了验证模型的准确性和有效性,他们选择了某主干道进行实地测试。
对于测试数据的采集,他们设计了专门的采样方案并进行了多次采样。
通过对数据的统计分析,他们得出了不同交通流量下的最优配时方案,并与之前的传统方案进行了对比。
结果表明,他们提出的优化方案在减轻拥堵程度、提高道路通行效率方面效果明显,证明了所建模型的准确性和可行性。
问题讨论在结果验证过程中,团队成员对模型的局限性和可扩展性进行了深入讨论。
他们提出了一些可能改进的方案,如增加交通流量的动态性、考虑多种车辆类型等。
同时,他们还针对模型的实用性进行了讨论,提出了一些具体的应用建议。
同时,他们也意识到建模过程中的一些假设和限制条件,比如忽略行人的影响等,需要在实际应用中进行进一步研究。
结论通过这个案例的分析,团队成员不仅提高了数学建模的能力,还学会了如何团队合作和实际应用建模成果。
同时,他们也发现了数学建模在实际问题解决中的潜力和局限性。
这个案例为他们提供了一个宝贵的学习机会,使他们的数学建模水平得到全面提升。
数学建模竞赛成功经验分享与案例分析
数学建模竞赛成功经验分享与案例分析在数学建模竞赛中,取得成功并非易事。
除了扎实的数学基础和分析能力外,团队合作与沟通、解题思维的总结与拓展、时间管理等方面的因素同样重要。
本文将分享一些数学建模竞赛的成功经验,并分析一些经典的案例。
一、团队合作与沟通在数学建模竞赛中,团队合作和沟通是关键。
合理分工,高效协作可以提高团队整体的工作效率。
团队成员之间需要及时沟通与交流,将个人的想法和观点分享出来,以便找到最佳的解决方案。
同时,团队需要制定明确的计划与目标,并进行有效的组织与调度。
案例分析:在某数学建模竞赛中,一支团队面对一个复杂的实际问题,团队成员通过深入讨论,在共同努力下确定了问题的解决思路,并把该思路转化为数学模型。
通过团队成员之间的合作与沟通,大大提高了解题的效率,并且最终获得了竞赛的好成绩。
二、解题思维的总结与拓展数学建模竞赛中的问题往往是实际问题,需要将问题进行数学化建模,设定适当的假设和变量,确定合适的求解方法。
有效的解题思维总结与拓展是成功的关键。
案例分析:在一场数学建模竞赛中,一支团队面对一个涉及交通拥堵的问题。
他们通过总结以往的经验,提出了一种创新的解题思路:将交通拥堵问题看作流体力学问题,并借鉴计算机模拟技术进行仿真实验。
这种新颖的思路帮助他们从一个全新的角度解决问题,并在竞赛中获得好成绩。
三、时间管理数学建模竞赛的时间限制通常较为紧张,在有限的时间内完成解题过程是一项挑战。
因此,良好的时间管理能力对于竞赛中的成功非常重要。
合理规划时间,掌握解题进度,合理分配时间用于建模、求解和分析是必备的能力。
案例分析:在一场数学建模竞赛中,一支团队遇到了一个非常复杂的优化问题。
经过初步分析后,他们立刻制定了详细的时间安排,明确每个环节所需的时间,并进行了合理分配。
这使得他们能够在有限时间内完成建模和求解,最终取得较好的成绩。
综上所述,数学建模竞赛的成功需要团队合作与沟通、解题思维的总结与拓展、以及良好的时间管理能力。
数学建模案例分析
数学建模案例分析数学建模是将现实问题转化为数学模型,并利用数学方法对模型进行求解的过程。
它是数学与实际问题结合的重要手段,能够帮助人们深入理解问题的本质,提供科学的决策依据。
以下是一个数学建模案例分析。
市有4个城区,现准备改造城市供水系统,以满足未来的供水需求。
根据过往的数据分析,每个城区的用水量与其人口数量、平均收入以及大型工厂的数量有关。
现在的问题是如何设计供水系统,使得满足各城区的用水需求,并且降低总成本。
为了解决这个问题,我们需要进行数学建模。
首先,我们需要确定影响用水量的因素。
1.人口数量:根据过往数据,我们可以得到人口数量与用水量之间的关系。
假设每增加1个人口,用水量增加A升,其中A为一个常数。
2.平均收入:平均收入的提高可能会促使人们增加用水量。
假设平均收入每提高1个单位,用水量增加B升,其中B为一个常数。
3.大型工厂数量:大型工厂对水的需求较大,可能对城区的用水量产生较大的影响。
假设每增加1个大型工厂,用水量增加C升,其中C为一个常数。
通过对过往数据的分析和回归分析,我们可以得到A、B和C的具体数值。
然后,我们可以建立供水系统的数学模型:设城区1、城区2、城区3和城区4的人口分别为x1、x2、x3和x4,平均收入分别为y1、y2、y3和y4,大型工厂数量分别为z1、z2、z3和z4设城区1、城区2、城区3和城区4的用水量分别为w1、w2、w3和w4根据前述的假设,我们可以得到数学模型:w1=A*x1+B*y1+C*z1w2=A*x2+B*y2+C*z2w3=A*x3+B*y3+C*z3w4=A*x4+B*y4+C*z4此外,由于我们希望降低总成本,我们还需要引入成本模型。
假设供水系统的建设成本与每个城区的用水量成正比,并且平均每增加1升用水量,建设成本增加D元,其中D为一个常数。
设城区1、城区2、城区3和城区4的建设成本分别为cost1、cost2、cost3和cost4根据成本因素,我们可以得到成本模型:cost1 = D * w1cost2 = D * w2cost3 = D * w3cost4 = D * w4接下来,我们需要优化这个数学模型。
数学建模经典案例分析以葡萄酒质量评价为例
数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。
我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。
文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。
我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。
通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。
本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。
二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。
在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。
这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。
在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。
然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。
接下来,我们可以选择适合的模型进行训练。
在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。
我们需要根据数据的特性和问题的需求,选择最合适的模型。
同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。
我们需要对模型进行评估和优化。
这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。
如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。
数学建模案例分析【精选文档】
案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。
它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。
但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。
扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。
为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。
这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。
产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。
我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。
寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。
本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。
如换成自行车的路程寿命来比较,就好得多。
产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。
弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。
自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。
数学建模案例范文
数学建模案例范文数学建模是一种将现实世界问题用数学语言描述并通过数学方法进行分析、预测和优化的过程。
它是将具体问题转化为数学模型的过程,通过建立数学模型,可以更好地理解和解决实际问题。
我将以一个实际案例来介绍数学建模的过程。
本案例是关于城市交通流量的建模与分析。
1.问题描述假设现有一座城市,城市内存在多个交叉口和道路。
我们希望通过数学建模来分析城市交通流量的变化规律,包括交通峰值出现的时间、道路拥堵程度以及交通信号灯的优化设置等问题。
2.建立数学模型为了描述城市交通流量的变化规律,我们需要建立数学模型来表示车辆的流动。
首先,我们将城市的道路网络抽象为有向图,交叉口作为节点,道路作为边。
每个道路有一个容量上限,表示道路的通行能力。
车辆在道路上的行驶速度和车辆流量可以根据实际的交通数据进行估算。
3.分析交通流量变化规律通过数学模型,我们可以分析城市交通流量的变化规律。
可以通过分析交通数据来获得车辆流量、车辆速度等信息,进而得到道路的通行能力和交通峰值出现的时间。
通过分析交通数据,可以发现交通流量的高峰往往出现在早上和下午的上下班高峰期,从而可以为城市交通管理提供科学的依据。
4.优化交通信号灯设置交通信号灯是影响交通流量的重要因素之一,通过优化交通信号灯的设置,可以有效地缓解交通拥堵问题。
为了优化交通信号灯设置,我们可以将交通信号灯的优化问题转化为一个路口信号灯配时的优化问题。
通过数学优化方法,可以求解最优的配时方案,使得交通流量得到最大化。
5.模型验证与实施建立数学模型后,我们需要对模型进行验证。
可以使用历史交通数据来验证模型的准确性,例如将模型应用于现有的交通数据,通过与实际情况的比对来验证模型的可靠性。
如果模型的预测结果与实际情况相符,那么我们可以对模型进行进一步的应用和实施。
通过以上的数学建模过程,我们可以更好地理解和解决城市交通流量相关问题。
数学建模的应用可以帮助城市管理者更好地规划交通系统、提高道路通行能力,并优化交通信号灯的设置,从而提高城市交通的效率,减少交通拥堵问题的发生。
数学案例分析报告范文6篇
数学案例分析报告范文6篇篇一:利用数学建模分析消费者行为在本篇案例中,我们将利用数学建模的方法分析消费者在特定市场环境下的购买行为。
通过收集大量的数据,并运用数学模型对这些数据进行分析,我们可以找出消费者的偏好、购买意向以及其他相关因素,从而帮助企业更好地制定营销策略。
篇二:基于数学模型的财务风险评估本文将以一个实际的财务风险案例为例,探讨如何通过建立数学模型对公司的财务状况进行评估,并提出相应的预警措施。
借助数学的工具和方法,我们可以更准确地分析公司的财务数据,并给出科学的建议,以降低财务风险。
篇三:数学模型在供应链管理中的应用本文将介绍数学模型在供应链管理中的应用。
通过对供应链各环节的数据分析,建立数学模型,我们可以优化供应链的运作效率,降低运营成本,并实现更好的供应链规划和管理。
篇四:利用数学建模分析社会网络结构在这篇案例中,我们将利用数学建模方法分析社会网络的结构,探讨不同个体之间的关系、影响力和传播效应。
通过建立数学模型,我们可以更好地理解社会网络的特点,为社会研究提供新的视角。
篇五:基于数据分析的股市预测模型本文将介绍一个基于数据分析的股市预测模型案例。
通过对历史股市数据的分析和建模,我们可以预测股市未来的走势,帮助投资者做出更明智的投资决策。
数学模型的应用将使股市预测更加科学和可靠。
篇六:数学模型在医学诊断中的应用最后一篇案例将介绍数学模型在医学诊断中的应用。
通过分析患者的医疗数据和病情,建立数学模型可以辅助医生做出更准确的诊断和治疗方案,提高医疗效率,帮助患者早日康复。
以上就是六个数学案例分析报告范文,通过这些案例的介绍,我们可以看到数学在各个领域的应用,为问题的解决提供了新的思路和方法。
愿本文对您有所启发和帮助。
中学数学建模教育案例(3篇)
第1篇一、背景随着我国经济的快速发展和社会的进步,数学教育在中学教育中的地位越来越重要。
数学建模作为一种培养学生解决实际问题的能力、提高数学素养的重要手段,越来越受到教育部门的重视。
本文以“疫情数据分析”为背景,探讨中学数学建模教育的实践案例。
二、案例概述本次数学建模教学活动以“疫情数据分析”为主题,旨在让学生通过数学建模的方法,分析疫情数据,预测疫情发展趋势,为疫情防控提供科学依据。
活动分为以下几个阶段:1. 数据收集与整理2. 模型建立与求解3. 模型验证与优化4. 案例分析与应用三、案例实施过程1. 数据收集与整理教师首先向学生介绍疫情数据的相关信息,包括确诊病例、疑似病例、治愈病例、死亡病例等。
然后,引导学生通过互联网、政府官方网站等渠道收集疫情数据,并进行整理和归纳。
2. 模型建立与求解在数据整理完成后,教师引导学生运用数学建模的方法,建立疫情传播模型。
本次案例中,我们选择了SIR模型(易感者-感染者-移除者模型)作为分析工具。
SIR模型将人群分为三个状态:易感者(S)、感染者(I)和移除者(R)。
通过分析疫情数据,确定模型中的参数,如基本再生数、潜伏期、康复率等。
接下来,学生利用计算机软件(如MATLAB、Python等)对模型进行求解,得到疫情发展趋势的预测结果。
3. 模型验证与优化在模型求解完成后,教师引导学生对模型进行验证。
通过对比实际疫情数据与模型预测结果,分析模型的准确性。
若模型预测结果与实际数据存在较大偏差,则需对模型进行优化,调整模型参数或选择更合适的模型。
4. 案例分析与应用在模型验证与优化完成后,教师引导学生对案例进行深入分析,探讨疫情发展趋势的影响因素,如政策、经济、人口等。
同时,引导学生将数学建模方法应用于实际生活,如疫情防控策略的制定、疫情防控物资的调配等。
四、案例总结本次数学建模教学活动取得了良好的效果,主要体现在以下几个方面:1. 培养学生的数学思维:通过数学建模,学生学会了运用数学方法解决实际问题,提高了数学思维能力。
数学建模案例分析--线性代数建模案例20例
线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
正负数的实际应用数学建模实践与分析案例解析
正负数的实际应用数学建模实践与分析案例解析数学建模是一种将实际问题抽象为数学模型并运用数学方法进行分析与解决的方法。
在实际应用中,正负数的概念经常被用于数学建模中。
本文将通过分析实际案例,探讨正负数在数学建模中的实际应用,以及建模过程的分析和解决方案。
案例一:地铁购票系统设计地铁购票系统是当代城市中重要的交通工具之一,如何设计一个高效的购票系统对于提升出行体验至关重要。
我们考虑以下情景:假设一张地铁车票的价格为10元,用户购票时可以选择单程票或者月票。
若用户选择购买月票,需要支付300元,且月票的有效期为30天。
如果用户购买单程票,则需要在每次乘车时支付10元,但月票可以在30天内无限次地乘坐地铁。
我们将这个问题抽象为一个数学模型。
首先,我们定义正数表示实际花费,负数表示实际收入。
根据用户购票的选择,我们可以得到以下数学模型:令x表示购买单程票的次数,y表示购买月票的次数,则总花费为10x+300y。
同时,我们要考虑用户是否能够通过购买月票来节省费用。
如果用户的地铁需求超过了7次(即超过了70元),那么购买月票将比购买单程票更划算;否则,购买单程票更合适。
通过对不同情况下的花费进行比较,我们可以得到最优解。
案例二:气温变化的数学模拟气温变化是一个经常被研究的话题,在防灾减灾、农业生产等方面都需要对气温进行准确预测和模拟。
我们考虑以下情景:假设某地区的一年中气温最低为-10℃,最高为30℃,温度的变化满足一定的函数关系。
我们可以使用数学模型来模拟气温变化。
令t表示某一天的气温,x 表示所处的日期(1表示一年中的第一天,365表示一年中的最后一天),则我们可以假设气温与日期的关系为t = a * sin(b * x + c) + d,其中a为振幅,b为周期,c为相位差,d为平均值。
通过对历史气温数据的分析,我们可以得到最佳的模型参数,并通过该模型进行气温的预测和模拟。
通过以上案例的分析可见,正负数在数学建模中有着广泛的应用。
数学建模的创新案例与思考
数学建模的创新案例与思考在现代社会中,数学建模已经成为解决复杂问题和开展科学研究的重要方法之一。
通过数学建模,我们可以将现实问题抽象化、分析化,找到问题的本质,并通过数学方法进行求解和优化。
本文将介绍一些数学建模的创新案例,并对其进行思考和总结。
案例一:交通路径规划随着城市交通问题的日益凸显,优化交通路径规划成为一项重要任务。
基于数学建模的方法,我们可以借助图论、最短路径算法等工具,对城市路网和交通流量进行建模和分析,从而为交通管理者提供最佳路径规划方案。
以某城市为例,我们可以通过收集该城市的交通数据,包括道路长度、道路拓扑结构、交通流量等信息。
然后,我们可以建立数学模型,将城市道路网络抽象为图,并根据交通流量分布情况确定边的权重。
接下来,可以使用最短路径算法,如迪杰斯特拉算法或A*算法,从而求解出最优路径。
通过该数学建模方法,我们能够准确评估交通路线的效率,并提出改进建议。
在实践中,这种方法已经被应用于公交车路径优化、快递员配送路线规划等方面,取得了显著的效果。
案例二:股票价格预测股票价格的预测一直是金融领域的热门研究课题之一。
传统的技术分析和基本面分析方法存在局限性,而数学建模方法则可以更准确地预测股票价格的走势。
在这种情况下,我们可以使用时间序列分析和回归分析等方法来构建数学模型。
首先,我们需要收集大量的历史股票数据,包括价格、交易量、市场指标等信息。
然后,利用统计学方法对数据进行分析,并建立相应的模型。
最后,通过模型的拟合和预测,我们可以得到对股票价格走势的预测结果。
值得注意的是,股票市场的复杂性使得股票价格的预测存在一定的不确定性。
因此,在实际应用中,我们需要结合多种建模方法和技术指标,综合考虑各种因素,提高预测的准确性和可靠性。
总结与思考数学建模作为一种创新的思维方式和工具,已经在各个领域展现出了巨大的潜力和广泛的应用前景。
通过数学建模,我们可以更好地理解和解决现实问题,并推动科学研究的发展。
实际问题的数学建模和解决方法
实际问题的数学建模和解决方法数学建模是将实际问题转化为数学模型,并利用数学方法对问题进行分析和求解的过程。
在实际生活中,我们面临各种各样的问题,例如交通拥堵、疾病传播、环境污染等,这些问题的解决离不开数学建模的应用。
本文将通过几个具体案例,介绍实际问题的数学建模和解决方法。
案例一:交通拥堵问题交通拥堵是城市中常见的难题。
为了缓解交通拥堵,我们可以使用数学建模的方法来分析和优化交通流。
首先,我们可以将城市的交通网络抽象成一个图,节点表示交叉口,边表示道路。
然后,根据实际情况,给每条边赋予一个权重,表示该道路的通行能力。
接下来,我们可以使用最短路径算法来求解最短路径,并将结果应用于交通规划和调度。
案例二:疾病传播问题疾病传播是公共卫生领域的重要问题。
为了有效地控制疾病的传播,我们可以使用数学建模的方法来分析和预测疾病的传播路径和速度。
首先,我们可以将人群划分为不同的类别,如易感者、感染者和康复者。
然后,我们可以建立传染病传播的动力学模型,例如SIR模型,来描述不同类别之间的转化关系。
接下来,我们可以使用微分方程组来求解该模型,并根据模型的结果进行疾病控制和预防策略的制定。
案例三:环境污染问题环境污染是全球面临的重要挑战之一。
为了减少环境污染的影响,我们可以使用数学建模的方法来分析和评估不同的治理措施。
首先,我们可以建立环境污染的传输模型,考虑污染物在大气、地表和地下水中的运移规律。
然后,我们可以使用数学方法,如有限元法或数值模拟方法,来求解该模型,并评估不同治理方案的效果。
最后,根据模型的结果,制定相应的环境保护政策和措施。
总结起来,数学建模是解决实际问题的一种重要方法。
通过将实际问题抽象为数学模型,并运用数学方法对模型进行求解和分析,我们能够更好地理解问题的本质和规律,并提出有效的解决方案。
在今后的发展中,数学建模将在各个领域发挥重要作用,为我们解决更多实际问题提供帮助。
以上是对题目“实际问题的数学建模和解决方法”的论述,通过介绍交通拥堵、疾病传播和环境污染等不同领域的案例,说明了数学建模在解决实际问题中的应用。
小学生数学建模的案例分析
小学生数学建模的案例分析在现如今的教育体系中,数学建模已经逐渐成为培养学生创新能力和解决实际问题能力的重要手段之一。
尤其是对小学生来说,通过数学建模的学习,可以培养孩子们的观察力、分析能力和问题解决能力。
本文将通过分析一个小学生数学建模的案例,探讨数学建模对于小学生学习的意义和作用。
案例:小明的帽子小明是一个小学三年级的学生,他喜欢戴帽子。
有一天,他在帽子店捡到了一个袋子,里面有一些帽子。
小明好奇地打开袋子,发现里面没有标签,也没有告诉他帽子的数量。
于是小明决定通过数学建模的方法来解决这个问题。
第一步,观察和收集信息。
小明先将帽子逐个取出,并用一张纸记录下每个帽子的特征,如颜色、形状、大小等。
同时,他还用一个小本子记录下袋子里帽子的数量。
第二步,分析问题。
小明在观察后发现,每个帽子的特征都不同,但是某些特征可能会重复出现,如颜色和形状。
他决定以颜色和形状为主要特征进行分类,并将每个帽子分到相应的类别中。
第三步,构建模型。
小明将问题简化为将帽子分成不同的类别,即颜色和形状。
他用彩色的纸条代表不同的颜色,用不同形状的图案代表帽子的形状。
然后,他用这些纸条和图案在桌上进行组合排列,找到合适的分类方法。
第四步,解决问题。
通过观察彩色纸条和图案在桌上的排列,小明发现可以将帽子分为四类:红色、蓝色、绿色和黄色;三种形状:圆形、方形和三角形。
于是他得出结论,袋子里有四顶红色的帽子、三顶蓝色的帽子、五顶绿色的帽子和两顶黄色的帽子。
同时,他还计算出袋子里共有14顶帽子。
通过这个案例,我们可以看出数学建模对于小学生的学习是有着积极意义和作用的。
首先,数学建模可以培养小学生的观察力和分析能力。
在这个案例中,小明通过观察和分析帽子的特征,运用数学的方法进行分类,并最终找到解决问题的方法。
这个过程培养了小明的观察和分析能力,提高了他的逻辑思维能力。
其次,数学建模可以培养小学生的问题解决能力。
通过这个案例,小明面临的问题是如何确定帽子的数量,他通过构建模型和合理的排列组合方法,最终解决了问题。
数学建模案例分析
4 n 数值方法可得 f ( x ) 的最小值点 x 16.92 。由此可得 C 6 5(0.997) n 的最小值点为 17, C 的最小值为 1.48(分/二极管)。
*
5、结果分析
对于检验次品二极管的质量控制步骤可以使用分组检验的方法做得非常 经济.逐个检验的花费是5分/个。次品的二极管出现得很少,每一千中只有 三个。使用每一组17个二极管串联起来分组化验,在不影响质量的前提下可 以将检验的费用降低到三分之一(1.5分/二极管)。质量控制步骤的实行将依 赖于若干模型范围之外的因素。也许由于我们操作的特殊性对于10个或20个 一批的二极管或者n是4或5的倍数时检验起来更容易。好在对于我们的问题来 说,在n=10和n=35之间时检验的平均花费A没有明显的变化。在操作过程中的 次品率q=o.003同样也是必须考虑的。例如,这个数值可能会随着工厂内的 环境条件而发生变化。
x p
i i
i
。这一组概率值{ p i }表明了随机变量 X 的分布。
•对于我们的问题,任何的n>1,随机变量C 取两个可能数值中的一个:如果所有 的二极管都是好的,则 C=4+n 否则 C=(4+n)+5n
因为我们必须重新检验每一个二极管。用 p表示所有的二极管都是 正品的概率,剩下的可能性(有一个或更多的次品二极管 )一定有概 率1-p。则C的平均或期望值是
3、建模
考虑随机一个变量X,它可以取一个离散数值集合中的任何一个数值
X {x1 , x2 ,}
同时假设 X xi 的概率是 p i ,我们记为 P{X= x i }=p i ,显然这时有∑p i =1。因为 X 以 概率 p i 取数值 x i ,所以 X 的平均或期望值一定是所有可能的 x i 的加权平均,权值就是相应 的概率值 pi .可以写为 E ( X )
数学建模与竞赛案例选讲
数学建模与竞赛案例选讲数学建模和竞赛是现代数学教育中不可或缺的一部分。
数学建模是指利用数学方法,对实际问题进行分析、建模、求解和评价的过程。
竞赛则是通过比赛形式,来提高学生的数学能力和创造力。
本文将选取一些有代表性的数学建模和竞赛案例进行讲解。
一、数学建模案例1. 旅游路径规划旅游路径规划是一个非常有趣的建模问题。
假设一个人要参加某个国家的旅游,他想尽可能地游览这个国家的所有城市。
但是由于时间和费用有限,他不可能去到所有城市。
问题是,如何规划他的路线,使他在游览尽可能多的城市的同时,不会浪费太多时间和费用?这个问题可以建立一个旅游路径规划模型。
我们可以按照以下步骤进行:第一步,将这个国家的所有城市标注在地图上,并确定城市之间的距离。
第二步,制定一个有效的算法来求解最优路径。
一种常用的算法是旅行商问题(TSP)算法。
第三步,考虑一些现实因素的影响,如交通拥堵、天气等因素,将这些因素纳入到模型中。
通过这个建模过程,我们可以得到一个规划出的旅游路径,从而帮助人们更加有效地规划旅游行程。
2. 环境污染模拟现代化城市发展中,环境污染问题越来越受到关注。
环境污染模拟可以有效地评估城市中各种环境因素的影响。
我们可以按照以下步骤来建立环境污染模拟模型:第一步,建立一个三维城市地图。
这个城市地图可以包括建筑物、道路、污染源等信息。
第二步,将城市地图中的各种环境因素纳入到模型中,如空气污染、噪音污染等。
第三步,利用数学方法对各种环境因素进行模拟,发现环境污染的趋势和程度。
第四步,根据模拟结果,提出环境污染防治的措施。
通过这个建模过程,我们可以帮助城市规划师有效地评估和控制城市环境污染。
二、竞赛案例1. 国际数学奥林匹克竞赛(IMO)国际数学奥林匹克竞赛是世界上最具盛名的数学竞赛之一,每年分为两个阶段:初赛和决赛。
初赛是在各国内举行,本着公平、公正、公开的原则选拔出一定数量的佼佼者。
而决赛是在国际上举行,只有各国初赛的获胜者才能参加。
【精选】数学建模案例分析
数学建模案例分析模型1 蠓虫分类问题背景 两种蠓虫和已由生物学家W.L.Grogon 和W.W.Wirth (1981)根据Af Apf 它们的触角长度、翅膀长度加以区分. 现测得只和只的触长、翅膀长的数据6Apf 9Af 如下:Apf()1.14,1.78()1.18,1.96()1.20,1.86()1.26,2.00()1.28,2.00()1.30,1.96Af()1.24,1.72()1.36,1.74()1.38,1.64()1.38,1.82()1.38,1.90()1.40,1.70()1.49,1.82()1.54,1.82()1.56,2.08问题 ⑴如何根据以上数据,制定一种方法正确区分两种蠓虫?⑵将你的方法用于触长、翅长分别为的个样本()()()1.24,1.80,1.28,1.84,1.40,2.043进行识别.如何考虑?该问题属于统计模型范畴!(属于黑洞问题)1.首先对已有数据进行分析.(测试)画出相应的散点图什么启发?从图中可以看出,两类蠓虫有明显的差别.问题是该如何识别.法1 用最小二乘法得到回归线:结果不理想.法2 用斜率的平均值构造直线结果?图中不同类别的蠓虫的区别还是比较明显的.如何做进一步的识别?用此方法对给定的三个蠓虫进行识别,若点在直线的上方,则判定为Apf,否则定为Af.由此建立识别函数dist.m. 对给定的样本进行识别,如果样本点在直线上方,则将该蠓虫识别为Apf(标示为1),否则识别为Af(标示为0).clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];n=length(x);k=sum(y./x)/n;A=[1.24,1.80;1.28,1.84;1.40,2.04];n=size(A,1);p=[];for i=1:nd=A(i,2)-k*A(i,1);if d>0p=[p,1];elsep=[p,0];endenddisp(p)结果为1 1 1即:三个新样本的判定结果均为Apf!这样的判定是否有效?(模型解释)为解释判别法的有效性,引入交叉误判率.交叉误判率是每次剔除一个样品,利用其余的训练样本建立判别准则,根据建立的判别准则对删除的样品进行判定,以其误判的比例作为误判率. 具体过程如下:①从总体为的训练样本开始,剔除其中每一个样品,剩余的个样品与中的1G 1m -2G 全部样品建立判别函数;②用建立的判别函数对剔除的样品进行判别;③重复上述步骤,直到中的全部样品依次被剔除、判别,其误判的总数记为;1G 12m ④对的样品重复步骤①②③,直到中的样品全部被剔除、判别,其误判的个数2G 2G 记为21,m 交叉误判率的估计值为1221ˆ.m m pm n+=+程序为clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];m1=length(Apf1);m2=length(Af1);n=length(x);k=sum(y./x)/n;A=[x',y'];p1=[];p2=[];for i=1:m1b=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p1=[p1,1];elsep1=[p1,0];endendfor i=m1+1:nb=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p2=[p2,1];elsep2=[p2,0];endenddisp(p1),disp(p2)结果为1 1 1 1 1 10 0 0 0 0 0 0 0 0结论:在这样的判定法则下,交叉误判率为零,说明方法还是有效的.模型2 饮酒驾车问题一、问题背景据报道,2003年全国道路交通死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例.针对这种严重的道路交通情况,国际质量监督检查检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准,新标准规定:车辆驾驶人员血液中的酒精含量大于或等于毫克/百毫升、小于毫克/百毫升为饮酒驾车;2080血液中的酒精含量大于或等于毫克/百毫升为醉酒驾车.大李在中午点喝了一瓶啤酒,8012下午点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为保险起见他6呆到凌晨点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,2为什么喝同样多的酒,两次检查结果却会不一样?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李的情况做出解释;2.在喝了瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情3况下回答:⑴酒是自很短时间内喝的;⑵酒是在较长一段时间(比如小时)内喝的.23.怎样估计血液中的酒精含量在什么时间内最高?4.根据你的模型论证;如果天天喝酒,是否还能开车?5.根据你的论证并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车的忠告.参考数据⑴人的体液占人的体重左右,其中血液只占体重的7%左右.而药物(包括65%70%:酒精)在血液中的含量与在体液中的含量大致相同.⑵体重在的某人在短时间内喝下瓶啤酒后,隔一定时间测量他的血液中酒精含70kg 2量(毫克/百毫升),得到数据如下:时间/小时0.250.50.751 1.252 2.53 3.544.55酒精含量306875828277686858515041时间/小时678910111213141516酒精含量3835282518151210774(酒精含量单位:毫克/百毫升)二、问题分析显然,该问题是微分方程模型.饮酒后,酒精先从肠胃吸收进入血液与体液中,然后从血液与体液向外排泄.由此建立二室模型:大李在喝酒以后,酒精先从吸收室(肠胃)进入中心室(血液也体液),然后从中心室向体外排除.设在时刻时,吸收室的酒精含量为,中心室的酒精含量为,酒精t ()1x t ()2x t 从吸收室进入中心室的速率系数为,分别表示在时刻时两室的酒精含量1k ()()12,y t y t t (毫克/百毫升),为中心室的酒精向外排泄的速率系数.在适度饮酒没有酒精中毒的条2k 件下,都是常量,与饮酒量无关.12,k k假定中心室的容积(百毫升)是常量,在时刻时中心室的酒精含量为,而吸V 0t =0收室的酒精含量为,酒精从吸收室进入中心室的速率与吸收室的酒精含量成正比;大02g 李第二次喝一瓶啤酒是在第一次检查后的两小时后.三、建模与解模1.模型建立由已知条件得到吸收室酒精含量应满足的微分方程为,()111d d x k x t t=-做学相应的初始条件是;而中心室酒精含量应满足的微分方程为()1002x g =()()21122d d x k x t k x t t=-相应的初始条件为.()20x t =由此建立问题的数学模型:()()()()()11121122102,,02,00.x k x t x k x t k x t x g x ⎧=-⎪=-⎨⎪==⎩2.解模调用MatLab 下的求解函数,输入下面语句syms x1 x2 k1 k2 g0[x1,x2]=dsolve('Dx1=-k1*x1','Dx2=k1*x1-k2*x2','x1(0)=2*g0','x2(0)=0');x=simple([x1,x2]);该微分方程组的解为()()()12110012122e ,2e e .k t k t k t x t g g k x t k k ---⎧=⎪⎨=-⎪-⎩中心室的酒精含量(百毫升)()()()()21210122e e e e V k t k t k t k t g k y t k k k ----=---:其中,上式即为短时间内喝完两瓶啤酒后中心室酒精含量率所对应()()0112122V g k k k k k k =≠-的数学模型.为得到模型中的未知参数,采用非线性拟合方法.编写求解程序:k0=[2,1,80];fun=inline('k(3)*(exp(-k(2)*t)-exp(-k(1)*t))','k','t');[k,r]=nlinfit(t,x,fun,k0);disp(k)hold onx1=k(3)*(exp(-k(2)*t)-exp(-k(1)*t));plot(t,x1)此时相应的值为k 2.00790.1855 114.4325图形为图形表明,拟合效果不错.再画出相应的残差图:残差分析表明模型比较理想.将计算结果代入表达式,得到在时刻时中心室酒精含量(百毫升)的函数表达式t .()()0.1855 2.00792114.4325e e t t y t --=- 模型应用若大李仅喝一瓶酒,此时,因此相应的模型为12k k '=()()0.1855 2.0079257.2163e e t t y t --=-再将代入得6t =()()0.18556 2.0079626114.4325e e 18.799320y -⨯-⨯=-≈<即大李此时符合驾车标准.假设大李在晚上点迅速喝完一瓶啤酒,以和分别代表在时刻时吸收室及8()1z t ()2z t t 中心室的含酒量(代表晚上点),则,由此得到微分方程:0t =8()()10108z g x =+一)题()()()()()()()()()1112112210122d ,d d ,d 08,08.z t k z t t z t k z t k z t tz g x z x ⎧=-⎪⎪⎪⎪=-⎨⎪=+⎪⎪=⎪⎩而由前面计算结果知:.将其代入到前面微分方()()()12188801102128e ,8e e k k k g k x g x k k ---==--程的初值问题中,则有()()()()()()()()1211112112281008801212d ,d d ,d 0e ,0e e .k k k z t k z t t z t k z t k z t t z g g g k z k k ---⎧=-⎪⎪⎪=-⎪⎨⎪=+⎪⎪=-⎪-⎩在MatLab 下,编写相应的求解程序:clear,clcsyms z1 z2 k1 k2 g0[z1,z2]=dsolve('Dz1=-k1*z1','Dz2=k1*z1-k2*z2', ...,'z1(0)=g0*(1+exp(-8*k1))','z2(0)=(k1*g0/(k1-k2))*(exp(-8*k2)-exp(-8*k1))');z=simple([z1,z2]);此时问题的解为()()()1122118108802121e e ,1e e 1e e .k k t k k t k k tz g g z k k ------⎧=+⎪⎨⎡⎤=+-+⎪⎣⎦-⎩记,()()()()()2211221188880121e e 1e e 1e e 1e e V k k t k k t k k t k k tg z k k k --------⎡⎤⎡⎤'=+-++-+⎣⎦⎣⎦-:最后代入得到在时刻时大李中心室的酒精含量函数122.0079,0.1855,57.2163k k k '===t .()()1.48400.185516.0632 2.007957.21631e e 1e e t tz ----⎡⎤=+-+⎣⎦取,即有6t = z=57.2163*((1+exp(-1.4840))*exp(-0.1855*6)-(1+exp(-16.0632))*exp(-2.0079*6))返回值23.0618即此时中心室的酒精含量率大于规定标准,属于饮酒驾车.用同样的方法可以讨论其它问题,在此不一一叙述.。
matlab数学建模30个案例分析
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
数学建模与实例分析的案例展示
数学建模与实例分析的案例展示数学建模是一种将实际问题通过数学方法进行描述、分析、求解的过程。
通过建立数学模型,可以对问题进行系统、科学的研究和分析。
本文将通过实例展示数学建模的应用,以及如何进行实例分析。
【引言】数学建模的目的在于用数学的语言和方法来解释和解决实际问题,可以应用于各个领域,如经济、金融、环境、物流等。
下面将分别从不同领域的实例进行展示。
【实例一:经济领域】在经济领域中,数学建模可以帮助我们理解经济运行机制、预测市场走势等。
以股票市场为例,我们可以通过建立数学模型来分析股市变动的规律和预测未来的趋势。
通过对历史数据的分析和统计,我们可以选取合适的模型,并通过参数估计和预测方法来得出结果。
这种方法可以为投资者提供决策依据,帮助其降低风险、提高收益。
【实例二:环境领域】在环境领域中,数学建模可以帮助我们分析和解决一些环境问题,如空气质量监测、水资源管理等。
以空气质量监测为例,我们可以利用数学建模来预测和评估空气质量的变化趋势。
通过对大量的监测数据进行分析,我们可以建立空气质量模型,并通过模型的模拟和验证来预测和评估不同因素对空气质量的影响。
这种方法可以帮助环保部门及时采取措施,改善和保护环境质量。
【实例三:物流领域】在物流领域中,数学建模可以帮助我们提高物流效率、降低成本。
以物流路径规划为例,我们可以利用数学建模来确定最优的物流路径和调度方案。
通过建立数学模型,我们可以考虑到不同的约束条件,如时间、成本、距离等,以及考虑不同的变量和参数,如车辆数量、货物数量等。
通过模型求解的过程,我们可以得到最优的物流路径和调度方案,从而提高物流效率、降低成本。
【结论】数学建模是一种将实际问题转化为数学问题的过程,通过建立数学模型来分析和解决问题。
本文通过经济、环境和物流领域的实例展示,说明了数学建模的应用和意义。
通过数学建模,我们可以更加科学地理解和解决实际问题,为决策提供参考和支持。
因此,数学建模在现代社会中具有重要的推广和应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007 2675 0.1151 0.3636 0.5213 0.129 0.476 0.395
(0.11510.129)2 (0.3636 0.476)2 (0.5213 0.395)2 / 2 0.119955
15:21
匹配度的计算步骤:
GDP与居民收入、财政收入匹配度建模思想:设匹配度量化取值为(0,
人均 200 300
GDP (美元)
第一产业 36 30ቤተ መጻሕፍቲ ባይዱ4
比重
第二产业 19. 23.1
比重
6
第三产业 44. 46.5
15:21比重
4
400
26.7 25.5 47.8
600
21.8 29 49.2
1000 2000
18.6 16.3 31.4 33.2 50 50.5
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤:
> 探讨影响居民收入的各种因素 > 论证所建模型的适用条件、合理性、和可靠
性 > 根据所建模型,对2010年我国经济增长、经
济结构、居民收入、财政收入进行区间预测
在建模过程中,讨论近两年金融危机和宏观 > 调控对经济增长、经济结构、财政收入、居
民收入之间关系变动的影响.
> 提出相应结论和观点
案例研究思路
人均 200 300
GDP (美元)
第一产业 36 30.4
比重
第二产业 19. 23.1
比重
6
第三产业 44. 46.5
15:21比重
4
400
26.7 25.5 47.8
600
21.8 29 49.2
1000 2000
18.6 16.3 31.4 33.2 50 50.5
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤: 参阅国际匹配标准,拟合与我国GDP水平相匹配的产业结构标准值:
1995
2000
2008
东部 中部 西部 东部 中部 西部 东部 中部 西部
GDP比重
49.0 37.6 52.8 52.8 33.6 13.6 58.2 27.4 14.4
财政收入占比
城镇居民收入 占比 农村居民收入 占比
第三产业比重
15:21
5.3 4.9 5.5 7.1 5.6 6.6 9.8 6.9 9.2 1.8 1.6 1.0 1.4 1.2 1.0 1.6 1.3 1.0 2.6 2.0 1.0 2.3 1.8 1.0 2.2 1.7 1.0 35.4 31.7 33.3 41.7 37.3 40.0 41.7 34.6 36.7
Party1: 问题提出和
研究现状
Part 2:
定性分析及匹 配度分析
15:21
Part3:
经济增长模 型的建立和
检验
Part 4:
经济增长 预测模型
Part 5:结论
Part One 引言
15:21
问题的提出和研究现状
…….如何对敏感数据的匹配性进行定量分析,科学解释数据之间的匹配关 系,如何正确预测重要指标的发展趋势……
15:21
Part Two 基本统计分析
15:21
一、定性分析
定性分析思路——对命题中四个经济指标的发展现状做描述性分析。 统计方法——统计图、统计表。
15:21
总体经济发展——经济增长和经济结构变动分析
350,000.00 300,000.00 250,000.00 200,000.00 150,000.00 100,000.00
35.0%
GDP名义增长率 城镇人均可支配收入增长率
财政收入增长率 农村居民纯收入增长率
30.0%
25.0%
20.0%
15.0%
10.0%
5.0%
0.0% 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
区域经济发展分析——东、中、西部
三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:
该距离的值域范围为0到 2
15:21
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤:
计算标准值和实际值之间的欧式距离,并归一化为(0,1)
标准值
实际值
年度
人均 GDP( 一产业 二产业 三产业 一产业 二产业 美元)
三产 业
标准值
实际值
年度
人均 GDP( 一产业 二产业 三产业 一产业 二产业 美元)
三产 业
2007 2675 0.1151 0.3636 0.5213 0.129 0.476 0.395
15:21
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤: 计算标准值和实际值之间的欧式距离,并归一化为(0,1)
二、匹配度分析
匹配度分析——研究GDP与其他经济指标发展的匹配关系。 统计方法——匹配度的定量计算
方法和相关标准参考:
15:21
匹配度的计算步骤:
GDP与产业结构匹配度建模思想:利用距离测算我国实际数据与匹配条件 下标准数据之间的差异性。
15:21
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤: 参阅国际匹配标准,拟合与我国GDP水平相匹配的产业结构标准值:
参阅国际匹配标准,拟合与我国GDP水平相匹配的产业结构标准值:
60
50
y3 2.6ln x 31.6
40
30
y2 6.0ln x 11.0
20
10
y1 8.6ln x 79.37
0
0
500
1000
1500
2000
2500
第一产业比重
第二产业比重
第三产业比重
15:21
匹配度的计算步骤:
GDP与产业结构匹配度建模步骤: 参阅国际匹配标准,拟合与我国GDP水平相匹配的产业结构标准值:
Statistics
建模大赛案例分析
Topic
我国经济增长与经济结构、财政收入、居民收入关系之研究
15:21
我国经济增长与经济结构、财政收入 居民收入关系之研究
15:21
赛题要求
> 论证经济增长、经济结构、与财政收入、居 民收入的匹配度.
> 分析经济增长、财政收入、经济结构、与居 民收入之间关系变动的数量特征和趋势.
1),当相关指标占GDP的比例达到理想标准时,匹配度为0;但相关指标
占GDP比例为0时,匹配度为1;并设匹配度随指标比例在(0,1)上非
50,000.00 0.00
第一产业
第二产业
第三产业
GDP名义增长率
0.50000 0.40000 0.30000 0.20000 0.10000 0.00000 -0.10000 -0.20000 -0.30000 -0.40000
15:21
主要影响指标变动分析——财政收入 、居民收入
15:21