传热学---导热基本定律
传热学知识点 (2)
φ=
4πλ (t1 − t 2 ) 1 / r1 − 1 / r2 1 1 1 ( − ) 4πλ r1 r2
R=
物体的温度随时间而变化的导热过程称为非稳态导热。 温度分布主要受初始温度分布的控制, 称为非正规状况阶段; 当过程进行到一定深度时, 物体初始温度分布的影响逐渐消失,此后不同时刻的温度分布主要受热边界条件的影响, 这 个阶段的非稳态导热称为正规状况阶段。 当固体内部的导热热阻远小于其表面的换热热阻时, 任何时刻固体内部的温度都趋于一 致,以致可以认为整个固体在同一瞬间均处于同一温度下。这时所要求解的温度仅是时间 τ 的一元函数而与空间坐标无关,好像该固体原来连续分布的质量与热容量汇总到一点上, 而 只有一个温度值那样。这种忽略物体内部导热热阻的简化分析方法称为集中参数法。
( i +1) (i) (i ) (i ) tn = Fo∆ (t n +1 + t n −1 ) + (1 − 2 Fo∆ )t n
λ
(i ) (i ) ( i +1) (i ) tN − tn ∆x t n (i ) −1 − t N + h (t f − t N ) = ρc ∆x 2 ∆τ
( i +1) (i) tN = tN (1 −
0.8
0.4
特征长度:管内流动时取管内经,外掠单管或管束时取管子外径。 特征速度:一般取截面平均流速,流体外掠平板传热取对流速度,管内对流传热取截面 平均流速。 定性温度:通道内部流动取进、出口截面的平均值;外部流动取边界层外的流体温度或 取这一温度与壁面温度的平均值。 流体在管道内的流动可以分为层流与湍流两大类, 其分界点为一管道直径为特征尺度的
∆x = ∆y
*
传热学-第二章 导热基本定律及稳态导热第一讲-动力工程
液体的热导率随压力p的升高而增大 p
2-3 导热微分方程式及单值性条件
理论解析的基本思路
简化
物理问题
数学模型
求解
热流量
温度场
导热定律
控制方程 定解条件
q -grad T [W m2 ]
建立导热体内的温度分布计算模型是导热理论 的首要任务
理论基础:傅里叶定律 + 热力学第一定律
导入与导出微元体净热量:
qx dxdydz d
x
[J]
d 时间内、沿 y 轴方向
导入与导出微元体净热量:
qy dxdydz d
y
[J]
d 时间内、沿 z 轴方向导
入与导出微元体净热量:
qz dxdydz d
z
[J]
D. 导入与导出净热量:
[] ( qx qy qz )dxdydzd
[J]
dQx qx dydz d [J]
B. d 时间内、沿 x 轴方向、
经 x+dx 表面处dydz导出的热量:
dQxdx qxdx dydz d [J]
qxdx
qx
qx x
dx
C. d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
[J]
d 时间内、沿 x 轴方向
2、推导过程 在导热体中取一微元体,能量平衡分析 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中:
[导入与导出净热量] + [内热源发热量] = [热力学能的增加]
数学模型建立基本思路 能量平衡分析
(1)导入与导出微元体的净热量
传热学
华北电力大学
传热学 Heat Transfer
2、温度梯度
• 定义:沿等温面法线方向上的温度增量与法向 距离比值的极限。温度梯度表示为:
t t grad t n lim n n 0 n n
式中,n
是等温面法线方向上的单位矢量。
华北电力大学
传热学 Heat Transfer
华北电力大学
传热学 Heat Transfer
沿x 轴方向导入与导出微元体净热量
Φx Φx dx
同理可得:
t dxdydz x x
沿 y 轴方向导入与导出微元体净热量
Φy Φy dy
t dxdydz y y
t ( ) Φ 0 x x
华北电力大学
传热学 Heat Transfer
三、其它坐标系中的导热微分方程式
1. 圆柱坐标系(r, , z)
x r cos ; y r sin ; z z
t 1 t 1 t t c (r ) 2 ( ) ( ) r r r r z z
(3)微元体内热源生成的热量
ΦV Φdxdydz
5. 导热微分方程的基本形式
t t t t c ( ) ( ) ( ) Φ x x y y z z
非稳态项
华北电力大学
三个坐标方向净导入的热量
内热源项
传热学 Heat Transfer
传热学 Heat Transfer
利用两个边界条件
t
x 0, t t1 x , t t2
c2 t1 t 2 t1 c1
t1 t 2
传热学2.1 导热基本定律—傅立叶定律
2.1 导热基本定律—傅立叶定律研究方法:从连续介质的假设出发、从宏观的角度来讨论导热热流 量与物体温度分布及其他影响因素之间的关系。
一般情况下,绝大多数固体、液体及气体都可以看作连 续介质。
但是当分子的平均自由行程与物体的宏观尺寸相比 不能忽略时,如压力降低到一定程度的稀薄气体,就不能认 为是连续介质。
主要内容:(1)导热的基本概念、导热基本定律 ;(2)导热现象的数学描述方法; (3)几种稳态导热的计算方法。
2.1 导热基本定律—傅立叶定律气体——导热是气体分子不规则热运动 导 电 固 体——自由电子的运动 非导电固体——过晶格结构的振动(弹性声波)液体——类似气体 or 类似非导电固体1. 温度场(温度分布):指在各个时刻物体内各点温度分布的总称。
物体的温度分布是坐标和时间的函数 t = f (x, y, z,τ ) 稳态温度场(定常温度场) t = f (x, y, z) 非稳态温度场(非定常温度场) t = f (x, y, z,τ )2.1 导热基本定律—傅立叶定律2. 等温面与等温线 等温面:同一时刻、温度场中所有温度 相同的点连接起来所构成的面 等温线:用一个平面与各等温面相交, 在这个平面上得到一个等温线簇等温面与等温线的特点: 彼此不能相交 不会中断,它们或者是物体中完全封闭的曲面(曲线),或者就终止与物体的边界上t+Δt t t-Δt2.1 导热基本定律—傅立叶定律2. 等温面与等温线 等温线图的物理意义: 若每条等温线间 的温度间隔相等 时,等温线的疏 密可反映出不同 区域导热热流密 度的大小。
如图 所示是用等温线 图表示温度场的 实例。
2.1 导热基本定律—傅立叶定律3. 温度梯度在温度场中,温度沿x方向的 变化率(即偏导数)∂t = ∂xlimΔt ΔxΔx → 0明显, 等温面法线方向的温度变化率最大,温度变化最剧烈。
∂t < ∂t ∂x ∂n温度梯度:等温面法线方向的温度变化率矢量:gradt = ∂t n ∂n温度梯度是矢量,指向温 度增加的方向。
传热学-第2章-导热的理论基础
4
2.1 基本概念和导热基本定律
2.1.1 温度场
从不同的角度对温度场进行分类: 按温度场是否随时间变化,可分为:
稳定(Steady-state)温度场:物体内各点温度不随时间 变化——稳态导热
t f (x, y, z)
稳态温度场、定常温度场
5
2.1 基本概念和导热基本定律
提出的, 傅里叶是导热理论的奠基人,他通过实验, 分析和总结了物体内的导热规律,建立了傅立叶导热 定律。
19
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
Fourier定律的表述: 在任意时刻,各向同性连续介质内任意位置处的热
流密度在数值上与该点的温度梯度成正比,但方向相反
q gradt t n
❖ 实验表明,除了甘油和0~120℃范围内的水以外,其他 液体的导热系数值随温度升高而减小
❖ 压力变化对液体导热系数的影响很小,通常可以忽略
43
2.2 物质的导热特性
液体中液态金属和电解液是一类特殊的液体 ——依靠原子的运动和自由电子的迁移来传递热量,导热
系数要比一般非金属液体大10~1000倍
44
q gradt t n
n
❖ 热流密度是一个矢量 与温度梯度位于等温线同一的法线上 方向相反,永远指向温度降低的方向
❖ 在直角坐标系下,热流密度矢量可表示为
q qxi qyj qzk 22
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
温度梯度和热流密度矢量、等温线和热流线间的关系
湿量等 ❖ 有些材料,如木材、结构体、胶合板等还与方向有关
(各向异性材料)有关
30
2.2 物质的导热特性
传热学-第二章 导热基本定律及稳态导热第三讲-动力工程
对于一维导热问题,也可以不 通过求解微分方程而直接应用傅里 叶定律得出导热热流量的计算式, 而且对于变导热系数和变截面的情 形更为有效。
二、示例
x2
x1
x
耐温塞子的直径随 x 变化,D ax
求解三维、二维问题较复杂;将问题进行简化:
(1) 大、 <<H,认为温度沿厚度变化很小; (2)宽度 l >>,认为肋片温度只沿高度方向变化
简化为一维温度场
方法1:根据导热微分方程
三维、非稳态、变物性、有内热源的导热微 分方程:
c T
( T ) (
x x y
T ) (
y z
T z
)
qv
T0
T
c、更换套管材料16W/(mK);
l
d、若气流与套管之间的对流
换热系数10W/(m2K) ;
Tf
Tj
e、若在安装套管的壁面处包以热绝缘层以减小热量的导出,
此时套管根部温度=600℃。
一维稳态有内热源的导热微分方程:
d dx
(
dT dx
) qv
0
d 2T dx 2
qv
0
是否可以构造一个内热源?
微元体:截面积A, 周长P,换热面积
Pdx
qv
C dV
h(T Tf )Pdx Adx
h(T Tf )P A
d 2T dx2
hP (T
A
T ) 0
方法2:根据能量守恒
Tf1 Tf 2
1 1
h1 h2
整个肋表面的温度与基础面温度相等,即肋 片效率等于1。
传热学(第二章)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
边界条件:r=r1时,t=t1;r=r2时,t=t2 对(2-25)式积分两次,得其通解: t = c1 ln r + c2 将边界条件代入通解,确定积分常数
t2 − t1 t −t c2 = t1 − ln r 2 1 ln( r2 / r ) ln( r2 / r ) 1 1 t −t t = t1 + 2 1 ln( r / r ) (2-26) 1 ln( r2 / r ) 1 dt λ t1 − t2 q = −λ = (2-27) dr r ln( r2 / r ) 1 c1 =
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁、圆筒壁、球壳和其他变截面物体的导热 通过平壁、圆筒壁、
• 1∂ ∂T 1 ∂ ∂T ∂ ∂T ∂T (λr + 2 (λ ) + (λ ) + Φ = ρcp ∂τ r ∂r ∂r) r ∂ϕ ∂ϕ ∂z ∂z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 − t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁。内、外半径为r1、r2,其内外表面均匀 恒定温度为t1、t2,球壁内的温度仅沿半径变化,等温面是同心球面。 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等。 Φ = −4πr2λ dr dr ⇒Φ 2 = −4πλdt r
第四版传热学重要名词解释和简答题
1.导热基本定律 : 当导热体中进行纯导热时 , 通过导热面的热流密度 , 其值与该处温度梯度的绝对值成正比 , 而方向与温度梯度相反。
2.2. 非稳态导热: 发生在非稳态温度场内的导热过程称为非稳态导热。
或:物体中的温度分布随时间而变化的导热称为非稳态导热。
3.3. 凝结换热 : 蒸汽同低于其饱和温度的冷壁面接触时 , 蒸汽就会在壁面上发生凝结过程成为流液体。
4.4. 黑度 : 物体的辐射力与同温度下黑体辐射力之比。
5.5. 有效辐射: 单位时间内离开单位表面积的总辐射能。
6.6 .稳态导热 : 发生在稳态温度场内的导热过程称为稳态导热。
7.7.稳态温度场 : 温度场内各点的温度不随时间变化。
(或温度场不随时间变化。
)8.8 .热对流:依靠流体各部分之间的宏观运行,把热量由一处带到另一处的热传递现象。
对流换热:流体与固体壁直接接触时所发生的热传递过程.对流换热与热对流不同,既有热对流,也有导热;不是基本传热方式9.9 .传热过程 : 热量由固体壁面一侧的热流体通过固体壁面传递给另一侧冷流体的过程。
10.10.肋壁总效率 : 肋侧表面总的实际散热量与肋壁测温度均为肋基温度的理想散热量之比。
11.11. 换热器的效能(有效度) : 换热器的实际传热量与最大可能传热量之比。
或12.12. 大容器沸腾 : 高于液体饱和温度的热壁面沉浸在具有自由表面的液体中所发生的沸腾。
13.13. 准稳态导热 : 物体内各点温升速度不变的导热过程。
14.14. 黑体 : 吸收率等于 1 的物体15.15. 复合换热: 对流换热与辐射换热同时存在的综合热传递过程。
16.16. 温度场 : 温度场是指某一瞬间物体中各点温度分布的总称。
17.17. 吸收率: 外界投射到某物体表面上的辐射能,被该物体吸收的百分数。
18.18.温度边界层:对流换热时,在传热壁面附近形成的一层温度有很大变化(或温度变化率很大)的薄层。
19.19.灰体:吸收率与波长无关的物体称为灰体。
东南大学传热学 第二章 导热基本定律及稳态导热
本章重点讨论稳态导热问题。为此首先介绍 一些相关的基本知识,如温度场、温度剃度、 导热基本定律等;然后应用这些基本知识推 导出求解导热问题的微分方程;最后应用这 些微分方程求解常见的导热问题。
第一节 导热基本定律
温度场
• 定义:某一瞬间物体内的温度分布,称为温度场。 • 分类 1.按温度是否随时间而变化可分为 稳态温度场:物体内温度不随时间的变化而变化的温度场 非稳态温度场:物体内的温度随时间变化而变化的温度场 2.按温度随空间的变化可分为 一维温度场:温度只在一个方向有变化的温度场 二维温度场:温度在两个方向有变化的温度场 三维温度场:温度在三个方向有变化的温度场 • 表示:三种表示方法
n x y z
导热基本定律
• 傅立叶定律:单位时间内通过单位截面积所传 递的热量,正比例于当地垂直于截面方向上的 温度变化率,即温度剃度,其比例系数为导热 系数。
• 表示型式: A t n
n
导热系数
•
定义:
q
t n
n
• 物理意义:单位时间单位面积当温度变化率为1时,由导
热所传递的热量
• 影响因素:主要是物质的种类和物质所处的状态
第三节 通过平壁、圆筒壁、球壳和 其他变截面物体的导热
通过 平壁导热
通过 圆筒壁导热
通过 球壳导热
通过变导热 系数物体 的导热
单层平壁 多层平壁 单层圆筒壁 多层圆筒壁 单层球壳 多层球壳
通过单层平壁的导热
通过单层 平壁的导热
物理模型
数学描写
温度分布
热流量计算
数学描写
d 2t dx2 x
数学描写
温度分布
热流量计算
物理模型
《传热学》第2章-导热基本定律及稳态导热
λ金属 > λ非金属; λ固相 > λ液相 > λ气相
不同物质的导热机理
1、气体的热导率 λ气体 ≈ 0.006 ~ 0.6 W (mo C)
0o C : λ空气 = 0.0244 W (moC) ; 20o C : λ空气 = 0.026 W (moC)
dΦv = Φ& dxdydz
v 单位时间内,微元体热力学能的增加 dU = ρc ∂t dxdydz ∂τ
导热微分方程式
dΦλ + dΦV = dU
dΦ λ
=
∂ ∂x
λ
∂t ∂x
+
∂ ∂y
λ
∂t ∂y
+
∂ ∂z
λ
∂t ∂z
dxdydz
dΦv = Φ& dxdydz
q = − dΦ n dA
直角坐标系中: q = qxi + qy j + qz k
导热基本定律
v 1822法国数学家傅里叶(Fourier)在大量实验研究的基础 上, 提出了导热基本定律—傅里叶定律。
v 对于物性参数不随方向变化的各向同性物体, 傅里叶定律度
热流密 度矢量
导热微分方程式的求解方法
积分法、分离变量法、积分变换法、数值计算法等
导热微分方程+单值性条件+求解方法 è温度场
圆柱坐标系(r, Φ, z)
dz
v 感兴趣的同学
课下自己推导
练习.
v 球坐标系方程 见教材P26.
=
−λ ∂t ∂n w
=0
⇒
传热学
• 通过平壁的导热 • 通过圆筒壁的导热 • 通过肋片的导热
• 肋效率 • 1、 定义:实际散热量/假设整个肋表面 处于肋基温度下的散热量。 • 2、 物理意义:表征肋片散热有效程度 的指标。
• 非稳态导热 • 定义:物体的温度随时间而变化的导热 过程称非稳态导热 • 非稳态导热过程中,在与热流量方向相 垂直的不同截面上热流量不相等,这是 非稳态导热区别于稳态导热的一个特点。
传热过程分析和换热器计算
传热过程分析
• 通过平壁的传热 • 通过圆筒壁的传热 • 临界热绝缘直径
• 在传热表面加上保温层能够起到减少传 热的作用。但是在圆筒壁面上增加保温 层却有可能导致传热量的增大。 • 传热过程的总热阻会存在一个极小值,这 就对应着一个传热量的最大值。那么, 在对应总热阻极小值的外直径被称为临 界热绝缘直径
• 、相似原理 物理量相似的性质 • (1)用相同形式且具有相同内容的微分 方程时所描述的现象为同类现象,只有 同类现象才能谈相似。 • (2)彼此相似的现象,其同名准则数必 定相等。 • (3)彼此相似的现象,其有关的物理量 场分别相似
• 努塞尔数,标志对流换热的相对强弱程 度; • 雷诺数,表征流体在强制对流时,惯 性力和粘性力的相对大小; • 普朗特数,反映流体动量扩散能力与 热扩散能力相对大小; • 格拉晓夫数,反映自然对流换热过程 中浮力与粘性力的大小。
• ⑴在一定温度下,黑体在不同波长范围 内辐射能量各不相同。 • ⑵维恩位移定律:随着温度T增高,最大 单 色 辐 射 力 Ebλ,max 所 对 应 的 峰 值 波 长 λmax 逐 渐 向 短 波 方 向 移 动 。 λmaxT=2897.6μK。 • ⑶常温下,实际物体的辐射主要是红外 辐射。
• 1、热扩散率的物理意义 • 由热扩散率的定义:ɑ=可知: • 1)是物体的导热系数,越大,在相同温度梯 度下,可以传导更多的热量。 • 2)是单位体积的物体温度升高1℃所需的热量。 越小,温度升高1℃所吸收的热量越少,可以 剩下更多的热量向物体内部传递,使物体内温 度更快的随界面温度升高而升高。由此可见ɑ 物理意义: • ① ɑ越大,表示物体受热时,其内部各点温度 扯平的能力越大。 • ② ɑ越大,表示物体中温度变化传播的越快。 所以,ɑ也是材料传播温度变化能力大小的指 标,亦称导温系数。
2.导热基本定律
第九章导热9-1 导热理论基础1. 导热的基本概念(1)温度场(temperature field)在τ时刻,物体内所有各点的温度分布称为该物体在该时刻的温度场。
一般温度场是空间坐标和时间的函数,在直角坐标系中,温度场可表示为t=fy),,,(τzx非稳态温度场:温度随时间变化的温度场,其中的导热称为非稳态导热。
稳态温度场:温度不随时间变化的温度场,其中的导热称为稳态导热。
(),,t f x y z=一维温度场二维温度场三维温度场(),t f xτ=()t f x=(),,t f x yτ=(),t f x y=(),,,t f x y zτ=(),,t f x y z=(2)等温面与等温线在同一时刻,温度场中温度相同的点连成的线或面称为等温线或等温面。
等温面与等温线的特征:同一时刻,物体中温度不同的等温面或等温线不能相交;在连续介质的假设条件下,等温面(或等温线)或者在物体中构成封闭的曲面(或曲线),或者终止于物体的边界,不可能在物体中中断。
(3)温度梯度(temperature gradient)在温度场中,温度沿x 方向的变化率(即偏导数)0lim x t t x x∂∂∆→∆=∆很明显,等温面法线方向的温度变化率最大,温度变化最剧烈。
温度梯度:等温面法线方向的温度变化率矢量:tt n∂=∂grad nn —等温面法线方向的单位矢量,指向温度增加的方向。
温度梯度是矢量,指向温度增加的方向。
6在直角坐标系中,温度梯度可表示为t t tt x y z∂∂∂=++∂∂∂grad i j kt t tx y z∂∂∂∂∂∂、、分别为x 、y 、z 方向的偏导数;i 、j 、k 分别为x 、y 、z 方向的单位矢量。
(4)热流密度(heat flux)d d q AΦ=热流密度的大小和方向可以用热流密度矢量q 表示d d AΦ=-q n热流密度矢量的方向指向温度降低的方向。
nt d Ad Φq在直角坐标系中,热流密度矢量可表示为x y z q q q =++q i j kq x 、q y 、q z 分别表示q 在三个坐标方向的分量的大小。
传热学-第二章导热基本定律及稳态传热
d 时间X方向流入与流出微元体的热流量
dQx
- dQxdx
- qx x
dxdydz d
( t ) dxdydz d
x x
d 时间Y方向流入与流出微元体的热流量
dQy
- dQydy
- q y y
dy dxdz d
y
( t ) dxdydz d
y
2.4 导热微分方程及定解条件
影响热导率的因素:物质的种类、材料成分、温度、压力及 密度等。
2.3 导热系数
2.3.1 气体导热系数
气体导热——由于分子的无规则热运动以及分子间 的相互碰撞
1 3
vlcv
v 3RT M
V 气体分子运动的均方根 m/s L 气体分子两次碰撞之间的平均自由程 m
Cv气体的定容比热 J/kg·℃
2.3 导热系数
2.4 导热微分方程及定解条件
建立数学模型的目的:
求解温度场 t f x, y, z,
步骤: 1)根据物体的形状选择坐标系, 选取物体中的 微元体作为研究对象; 2)根据能量守恒, 建立微元体的热平衡方程式; 3)根据傅里叶定律及已知条件, 对热平衡方程式 进行归纳、整理,最后得出导热微分方程式。
通过某一微元面积dA的热流:
dA q
d
q dA
t
n
dA
t
dydz
t
dxdz
t
பைடு நூலகம்
dxdy
n
x
y
z
2.2导热的基本定律
例:判断各边界面的热流方向
2.3 导热系数
由傅里叶定律可得,导热系数数学定义的具体形式为:
q t n
传热学 第二章 导热基本定律及稳态导热
d x d x d xdx
qxdydz qxdxdydz
qx dxdydz x
q xdx
qx
q x x
dx
2qx x 2
dx 2 2!
0
qx
qx x
dx
2-2 导热微分方程
d = dx + dy + dz
2. 导热问题的数学理模型
t
❖ x方向净导入微元体的热量为: qx x
d x d x d xdx qx dxdydz
x2 y 2 z 2
当导热系数为常数时:
拉普拉斯算子
t
c
ห้องสมุดไป่ตู้
2t x 2
2t y 2
2t z 2
c
t a 2t
c
a c
热扩散率表征物体被 加热或冷却,物体内 各部分温度趋向于均 匀一致的能力.
❖ 物体无内热源: t a 2t
❖ 稳态导热: a 2t 0 c
❖ 稳态导热、无内热源:
增加的方向。
gradt t n n
等温面法线方向 的单位矢量
在直角坐标系中的温度梯度:
gradt t i t j t k x y z
i、j、k 分别为x、y、z方向的单位矢量。
2.1 导热基本概念
四、热流密度矢量
热流密度:单位时间、单位面积上所传递的热量;
q—W/m2
不同方向上的热流密度的大小不同;
x
同理,
d x
x
t x
dx dydz
d y
y
t y
dxdydz
单位时间内净导入微元体的热流量:
d z
t dxdydz z z
d
传热学-2 导热基本定律和稳态导热
2-2 导热微分方程和定解条件
2 圆柱坐标系中的导热微分方程:
c t
1 r
(r
r
t ) r
1 r2
(
t ) ( z
t ) & z
3 球坐标系中的导热微分方程:
2-2 导热微分方程和定解条件
1 笛卡尔坐标系中微元平行六面体
热力学第一定律(能量守恒定律):
W 0
d V U W U z
单位时间内微元体中: [导入+导出净热量] + [内热源发热量] = [热力学能的增加]
y
zdz
x
dz
dx
y
z
ydy xdx
dy x
2-2 导热微分方程和定解条件
tw1
Φ
tw2
R 1 ln d2 2l d1
2-3 一维稳态导热
第一次积分
r
dt dr
c1
t c1㏑r c2
tw1 c1㏑r1 c2;
tw2 c1㏑r2 c2
第二次积分 应用边界条件
c1
tw2 tw1
㏑r2 / r1
;
c2
tw1
tw2
tw1
㏑r1
㏑r2 / r1
获得两 个系数
t
t1
注意:①上式对稳态和非稳n态均使用; ②导热现象依 gradt 的存在而存在, 若 gradt=0,则 q=0; ③“-”不能少,“-”表示 q与 gradt 方向相
反, 若无,则违反热二定律。
2-1 导热基本定律和热导率
传热学定律
传热学定律
传热学定律是指热量传递的基本规律,主要包括以下几个方面:1. 傅里叶定律:指出在导热过程中,单位时间内通过给定面积的热量,正比于该处的温度梯度,而方向与温度梯度相反。
傅里叶定律是传热学的基本定律之一,也是热力学第一定律在导热过程中的具体表现。
2. 牛顿冷却定律:指出当物体表面与周围环境温差为1℃时,每秒钟通过单位面积所传递的热量为一个常数,称为热流密度或热流量。
该定律适用于所有物体的冷却过程,包括气体、液体和固体。
3. 普朗特数:普朗特数是一个无量纲数,它表示流体的动量扩散能力与热量扩散能力的比值。
普朗特数是流体力学和传热学中的一个重要参数,对于研究流体流动和传热问题具有重要意义。
4. 斯蒂芬-玻尔兹曼定律:指出黑体的辐射能力与其表面温度的四次方成正比。
该定律是黑体辐射理论的重要基础之一,也被广泛应用于工程热力学和辐射测量学等领域。
5. 基尔霍夫定律:指出在任一给定温度下,从任一黑体中发射出的辐射能,与从同一黑体中吸收的辐射能之比,等于该温度下黑体的吸收率。
该定律是辐射换热学的基本定律之一,对于研究辐射换热问题具有重要意义。
这些传热学定律是传热学的基础理论,对于研究热量传递和热交换问题具有重要意义。
高等传热学
如果
0
常数
Dvi p 1 div(V ) fi 2vi D xi 3 xi
§1-2 基本守恒方程式
不可压缩流体,二维稳定流动,直角坐标系下
常数
u 2u 2u u p u v f x 2 2 y x y x x 2v 2v v v p u x v y f y y x 2 y 2
流体位移结果+控制体内流体动量的时间变化率=体积力+表面力
§1-2 基本守恒方程式
v n vi dA
A
v i d f i d jj n j dA A
根据散度定理,
div v v v i i d f i d jj n j dA A
§1-1导热基本定律
Fourier定律 内容:热流密度在任一方向上的分量与该方向上 的温度变化率成正比。 dt 表达式: q n grad (t ) ▽t
dn
An
即
dt n dn t t q y q x y x
§1-3 正交坐标系中的基本方程式
第三节 正交坐标系中的基本方程式 一、正交坐标系
概念:三个坐标曲面相互正交,两个坐标曲面交线为坐标曲线或坐标轴。 推导:正交坐标的弧微分与正交坐标之间的关系 正交坐标系(u1,u2,u3),直角坐标系空间一点M(x,y,z)
dsi dx dy dz
( H H1 H 2 H3 )
dV ds1 ds2 ds3 H1 H 2 H3 du1du2du3 H du1du2du3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传热学
(Heat Transfer )
材料成型教研室
第一节导热基本定律
导热基本定律及稳态导热
¾第一节导热基本定律¾第四节通过肋片的导热
¾第二节导热微分方程式
¾第三节通过平壁,圆筒壁,球壳
和其它变截面物体的导热第一节导热基本定律和空间的函数,即:稳态温度场
非稳态温度场t = f ( r, )τ0()
t f r =第一节导热基本定律
(,)t f r τ=1)按时间划分
2)按时间划分三维温度场
一维温度场
二维温度场
)
,(y x f t =第一节导热基本定律
(1) 温度不同的等温面或等温线彼此不能相交
同一时刻、温度场中所有温度相同的点连接起来所构成的面。
等温线:用一个平面与
各等温面相交,在这个平面上得到一个等温线簇。
等温面与等温线的特点:
(2) 在连续的温度场中,等温面或等温线不会中断,它
们或者是物体中完全封闭的曲面(曲线),或者就终止与物体的边界上。
第一节导热基本定律(3)物体的温度场通常用等温面或等温线表示第一节导热基本定律
3.温度梯度(Temperature gradient) t t
n s
ΔΔ≠ΔΔ温度的变化率沿不同的方向一般是不同的。
温度沿某一方向x变化率在数学
上可以以用该方向上温度对坐标的偏导数来表示,即
温度梯度是用以反映温度场在
空间的变化特征的物理量。
第一节导热基本定律直角坐标系:Cartesian coordinates )
温度梯度是向量;正向朝着温度增加的方向
t t t t i j k x y z
∂∂∂=+
+∂∂∂u r r r
第一节导热基本定律
二、导热基本定律(Fourier’s law)
垂直导过等温面的热流密度,正比于该处的温度梯度,
方向与温度梯度相反。
热导率(导热系数)W (m C)⎡⎤⋅⎣⎦
o
:λ负号——表示热流密度与温度梯度的方向的方向相反
n——是该点等温线上的法向单位矢量,指向温度升高的方向q——热流密度矢量
第一节导热基本定律直角坐标系中:
热流密度矢量:等温面上某点,以通过该点处最大热流
密度的方向为方向、数值上正好等于沿该方向的热流密度不同方向上的热流密度的大小不同
q
θ
q θ
x y z q i q j q k ++u r uu r uu r c o s q θ
=r
⎣⎦
第一节导热基本定律
注:傅里叶定律只适用于各向同性材料
各向同性材料:热导率在各个方向是相同的
t ∂u u r u u r
x y z x y z
∂∂∂第一节导热基本定律热导率的数值:就是物体中单位温度梯度、单位时
间、通过单位面积的导热量影响热导率的因素:物质的种类、材料成分、温度、湿
度、压力、密度等
热导率的数值表征物质导热能力大小。
实验测定-g r a d t
; λλλλλ>>>金属非金属固相液相气相
W (m C )⎡⎤⋅⎣⎦o
第一节导热基本定律
不同物质热导率的差异:构造差别、导热机理不同气体的导热:由于分子的热运动和相互碰撞时发生的能
0.0244W (m C) ;λ=空气20: 0.026W (m C)
C λ=空气
第一节导热基本定律(m C )
o 3、固体的热导率纯金属的导热:依靠自由电子的迁移和晶格的振动
主要依靠前者
(1) 金属的热导率:
12~418W (m C)
λ≈o 金属金属导热与导电机理一致;良导电体为良导热体:
λλλ>>>银铜铝
金T λ↑⇒↓
第一节导热基本定律
金属中掺入任何杂质将破坏晶格的完整性,干
金属的加工过程也会造成晶格的缺陷合金的导热:依靠自由电子的迁移和晶格的振动;
主要依靠后者
温度升高、晶格振动加强、导热增强
λ⇒↓
T λ↑⇒↑
如常温下:0
398w/m.c
λ=纯铜0109w/m.c
λ=黄铜黄铜:70%Cu, 30%Zn
第一节导热基本定律
建筑隔热保温材料:大多数建筑材料和绝热材料具有多孔或纤维结构多孔材料的热导率与密度和湿度有关
保温材料:国家标准规定,温度低于350度时热导率小
0.12W/(mK)的材料(绝热材料)
0.025~3W (m C)λ
≈o T λ↑⇒↑
ρλ↓↓⇒↓
、湿度。