正态总体的参数精
高二数学(理)正态分布人教实验版(A)知识精讲
高二数学(理)正态分布人教实验版(A )【本讲教育信息】一. 教学内容:正态分布二. 重点、难点:1. 正态分布密度曲线,简称,正态曲线222)(21)(σμμσσπϕ--⋅=x ex (x ∈R )2. 正态分布⎰=≤<dx x b x a P b a )()(μσϕ3. 特值(1)P (σμσμ+≤<-x )=68.26% (2)P (σμσμ22+≤<-x )=95.44% (3)P (σμσμ33+≤<-x )=99.74%【典型例题】[例1] 一台自动包装机向袋中装糖果,标准是每袋64克,但因随机性误差,每袋具体重量有波动、据以往资料认为:每袋糖果的重量q 服从正态分布)5.1,64(2N 试问随机抽一袋糖果其重量超过65克的概率是多少?不到62克的概率是多少?解:设5.164-=q t )65(>q P )67.0()5.16465(>=->=t P t P )67.0(1)67.0(1φ-=<-=t P 2514.07486.01=-=)33.1()5.16462()62(-<=-<=<t P t P q P)33.1(1<-=t P )33.1(1φ-=9082.01-=0918.0=∴ 超过65克概率为25.14%,不足62克……9.18%。
[例2] q ~N ),(2σμ045.0)5(=-≤q P 618.0)3(=≤q P ,求μ、σ?解:)5()5()5(σμφσμ--=--≤=-≤t P q P045.0)5(1=+-=σμφ∴955.0)5(=+σμφ∴7.15=+σμ①618.0)3()3()3(=-=-≤=≤σμφσμt P q P∴3.03=-σμ②由①②⎩⎨⎧==⇒48.1σμ[例3] q ~)2,1(2N(1)求)75(≤≤q P (2)若)(2)(b q P b q P <=≥ 解:(1))217215()75(-<<-=≤≤t P q P )2()3()32(φφ-=≤≤=P t P 0214.09772.09987.0=-=(2))(b q P >)(2b q P ≤=∴)21(2)21(-≤=->b t P b t P ∴31)21(=-<b t P ∵1<b ∴01<-b ∴667.032)21(≈=-<b t P∴667.0)43.0(=φ43.021=-b14.0=b[例4] 假设数学会考成绩q 近似服从正态分布)10,70(2N 现知第100名学生的成绩为60分,试问第20名的学生成绩为多少分。
多元正态总体的统计推断.
0z
0z
条件 检验条件量 H0、H1
n1p1≥5 n1q1≥5n2
u
p2≥5
n2q2≥5
p1 p2
pq pq n1 n2
(1) H0:P1=P2 H1:P1 ≠P2 (2) H0: P1 ≤P2
H1:P1 > P2
p
n1
p1
n2
p2
n1 n2
(3) H0:P1 ≥P2 H1:P1 <P2
总体参数
的值是多大?
推断估计
抽样分布
参数估计
统计量
随机原则
假设检验
检验未知参数
的值是 0 吗
一、参数估计
参数估计分为点估计和区间估计两种。
点估计:用某一具体的值去估计某一未知参数
区间估计:给出未知参数在一定把握程度 (概率或置信度下的取值区间,也称为置信 区间。
对总体的未知参数 作区间估计,就是要给出
确定α,就确定了临界点c。 1、随机抽样:样本均值
2、 X 标准化:
3、确定α值
4、查概率表,知临界值 | Z |
2
5、计算Z值,作出判断
检验步骤
1
建立总体假设 H0,H1
2
抽样得到样
3
选择统计量
4
根据具体决策
本观察值
确定H0为真 时的抽样分布
要求确定α
6
计算检验统
5
确定分布上的临
计量的数值
7
第四章 多元正态总体的统计推断
第一节 一元正态总体的统计推断
推断统计: 利用样本统计量对总体某些性质或数 量特征进行推断。
第四节正态总体的置信区间
第四节 正态总体的置信区间与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。
在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色.本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间;4. 双正态总体均值差(方差已知)的置信区间;5. 双正态总体均值差(方差未知但相等)的置信区间;6. 双正态总体方差比的置信区间.注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的.分布图示★ 引言★ 单正态总体均值(方差已知)的置信区间★ 例1 ★ 例2★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间★ 例7 ★ 例8★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4内容要点一、单正态总体均值的置信区间(1)设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间,,2/2/⎪⎪⎭⎫⎝⎛⋅+⋅-n u X n u X σσαα二、单正态总体均值的置信区间(2)设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量n S X T /μ-=,从第五章第三节的定理知).1(~/--=n t nS X T μ对给定的置信水平α-1, 由αμαα-=⎭⎬⎫⎩⎨⎧-<-<--1)1(/)1(2/2/n t n S X n t P ,即 ,1)1()1(2/2/αμαα-=⎭⎬⎫⎩⎨⎧⋅-+<<⋅--n S n t X n S n t X P因此, 均值μ的α-1置信区间为.)1(,)1(2/2/⎪⎪⎭⎫ ⎝⎛⋅-+⋅--n S n t X n S n t X αα三、单正态总体方差的置信区间上面给出了总体均值μ的区间估计,在实际问题中要考虑精度或稳定性时,需要对正态总体的方差2σ进行区间估计.设总体),,(~2σμN X 其中μ,2σ未知,n X X X ,,,21 是取自总体X 的一个样本. 求方差2σ的置信度为α-1的置信区间. 2σ的无偏估计为2S , 从第五章第三节的定理知,)1(~1222--n S n χσ, 对给定的置信水平α-1, 由,1)1()1()1()1(,1)1(1)1(22/12222/222/2222/1αχσχαχσχαααα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---=⎭⎬⎫⎩⎨⎧-<-<---n S n n Sn P n S n n P 于是方差2σ的α-1置信区间为⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(22/1222/2n S n n S n ααχχ而方差σ的α-1置信区间.)1()1(,)1()1(22/1222/2⎪⎪⎭⎫ ⎝⎛-----n S n n S n ααχχ四、双正态总体均值差的置信区间(1)在实际问题中,往往要知道两个正态总体均值之间或方差之间是否有差异,从而要研究两个正态总体的均值差或者方差比的置信区间。
8.2正态总体的参数检验
正态总体参数假设检验
由于σ2 未知,故采用 t 检验法. H0 成立时,检验统计量
T X0 ~t(n1)
Sn
x1 6i 61xi13,1s 4 n1 1i 61 xix23.5,2
t x 131143 12.0 78 , 3 s n1 3.521 6
2
铁水温度的测量
电子科技大学
正态总体参数假设检验
采用不同的显著性水平α,常得到不同的结论. 即检验的结果取决于显著性水平α的选择.
2) 双样本 t 检验法
X1,X2, ,Xn1来 自 正N 态 (1,总 12) 体
Y1,Y2,,Yn2来自正态 N(2总 ,22)体
未1 2 , 知 2 2 ,但 1 22 2 有 2
例8.2.1 炼钢厂为测定混铁炉铁水温度,用测 温枪(主要装置为一种热电偶)测温6次,记录 如下(单位:oC):
1318 1315 1308 1316 1315 1312
若用更精确的方法测的铁水温度为1310oC (可视为铁水真正温度),问这种测温枪有无系 统误差? 解 根据题意要求,需检验
H0: μ=1310,H1: μ≠1310
未知方差时,如何检验关于正态总体均值的 有关假设?
2. t 检验法 1) 单样本 t 检验法
电子科技大学
正态总体参数假设检验
X1,…,Xn是来自正态总体N(μ,σ2)的样本, μ,σ2 未知,检验
H0: μ= μ0,H1: μ≠μ0
原假设成立时, T X0 ~t(n1)
Sn
拒绝域为: t t(n1)
试检验该地正常成年人的红细胞平均数是否 与性别有关(α=0.01).
电子科技大学
正态总体参数假设检验
数理统计17:正态总体参数假设检验
数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。
假定原假设为真,考虑这个条件下统计量的分布。
根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。
设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。
⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。
以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。
对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。
《总体分布估计》课件
03
总体分布的参数估计
点估计
01
02
03
点估计的定义
点估计是依据样本数据对 总体参数进行估计的方法 ,通过一个具体的数值来 估计总体参数。
点估计的优点
简单明了,能够为决策者 提供具体的数值参考。
点估计的缺点
由于是基于样本数据的估 计,因此存在一定的误差 和不确定性。
区间估计
区间估计的定义
区间估计是依据样本数据 给出总体参数可能存在的 区间范围,而非具体的点 值。
感谢观看
THANKS
详细描述
最大似然估计是一种常用的参数估计方法,它通过最大化样本数据的似然函数 来估计参数。在正态分布的情境下,最大似然估计与无偏估计一致,因此也可 以用来估计总体参数。
案例一:正态分布的总体参数估计
总结词
样本量和精度
详细描述
样本量的大小直接影响到估计的精度,样本量越大,估计的精度越高。在正态分布的情境下,可以通 过增加样本量来提高总体参数估计的精度。
假设检验的优点
假设检验的缺点
能够为决策者提供关于总体参数是否符合 某种假设的信息,有助于做出科学决策。
需要明确提出假设,且对样本数据的要求 较高,如果样本数据不满足假设条件,则 检验结果可能不准确。
04
非参数核密度估计
核函数的选择
总结词
核函数的选择对于非参数核密度估计至关重要,不同的核函数会对估计结果产生 不同的影响。
贝叶斯估计的步骤
01
02
03
04
步骤1
确定先验分布,根据先验知识 对未知参数进行初步的概率分
布估计。
步骤2
根据观察到的样本数据,计算 似然函数,即样本数据出现的
参数估计精讲及经典案例
第21讲 参数估计习题课教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。
教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。
教学难点:矩估计,最大似然估计,正态总体参数的区间估计。
教学时数:2学时。
教学过程:一、知识要点回顾1. 矩估计用各阶样本原点矩n ki i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k = 。
若有参数2g(,(),,)k E X E X E X θ= ()(),则参数θ的矩估计为n n n 2i=1i=1i=1111ˆ(,,,)ki i i X X X n n n θ=∑∑∑ 。
2. 最大似然估计似然函数1()(;)ni i L f x θθ==∏,取对数ln[()]L θ,从ln()d d θθ=0中解得θ的最大似然估计θˆ。
3. 无偏性,有效性当θθ=ˆE 时,称θˆ为θ的无偏估计。
当21ˆD ˆD θθ<时,称估计量1ˆθ比2ˆθ有效。
5. 两个正态总体均差值的区间估计当21σ和22σ已知时,12μμ-的置信水平为1α-的置信区间为当21σ和22σ未知时,12μμ-的置信水平为1α-的置信区间为二 、典型例题解析1.设,0()0, 0x e x f x x θθ-⎧>=⎨≤⎩,求θ的矩估计。
解 ,0dx xe EX x ⎰+∞-=θθ设du dx u x x u θθθ1,1,===则000111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞⎡⎤⎡⎤==-+=+-⎣⎦⎢⎥⎣⎦⎰⎰=θ1故1EXθ=,所以x 1ˆ=θ。
2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。
解 由均匀分布的数学期望和方差知1()()2E X a b =+ (1)21()()12D X b a =- (2) 由(1)解得a EX b -=2,代入(2)得2)22(121a EX DX -=,整理得2)(31a EX DX -=,解得()()a E X b E X ⎧=⎪⎨=⎪⎩ 故得b a ,的矩估计为ˆˆa x b x ⎧=-⎪⎨=+⎪⎩其中∑=-=ni i x x n 122)(1ˆσ。
7正态分布与参考值
Normal P-P Plot of BLOOD
1.00
.75
.50
.25
0.00
0.00
.25
.50
Observed Cum Prob
.75
1.00
正态分布的应用
1. 估计医学参考值范围:利用正态曲线面积分布 规律; 2. 质量控制:如控制实验中的随机误差;
3. 正态分布是许多统计方法的理论基础:如t分
曲线下面积分布规律
N(0,1)
68.27%
-2.58 -1.96 -1
95.00%
99.00% 0
1 1.96 2.58
N ( , )
68.27%
95.00% 99.00%
.58 1.96 1.96 .58
标准正态分布
-1~1 -1.96~1.96 -2.58~2.58
四. 正态性检验(normality test)
正态分布的两个特征:1. 正态对称性 2. 正态峰:偏度、峰度
方法: 1. 图示法 Q-Q图,P-P图 2. 计算法
f (x)
x
Normal Q-Q Plot of BLOOD
90
80
70
60
60
70
80
90
Observed Value
图 108个原始数据的Q-Q图
1
u2
f (u)
2
exp
2
,
X
一般正态分布
N ( , )
u X
x
标准正态分布
N(0,1)
1
0
u
正态曲线下的面积分布有一定的规律。 求其一区间的面积,可通过下面积分公式得到。
7-2正态总体参数的检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为
正态总体参数的区间估计
总体均值μ的区间估计是一种基于抽样 调查的方法,通过样本均值和标准差 来估计总体均值的范围,常用t分布或z 分布计算置信区间。
详细描述
在进行总体均值μ的区间估计时,首先 需要收集样本数据,计算样本均值和 标准差。然后,根据样本数据的大小 和置信水平,选择适当的分布(如t分 布或z分布)来计算置信区间。最后, 根据置信区间的大小和分布特性,可 以得出总体均值μ的可能取值范围。
正态分布的性质
集中性
正态分布的曲线关于均值μ对称。
均匀变动性
随着x的增大,f(x)逐渐减小,但速 度逐渐减慢。
随机变动性
在μ两侧对称的位置上,离μ越远, f(x)越小。
正态分布在生活中的应用
金融
正态分布在金融领域的应用十分 广泛,如股票价格、收益率等金 融变量的分布通常被假定为正态 分布。
生物医学
THANKS
感谢观看
实例二:总体方差的区间估计
总结词
在正态分布下,总体方差的区间估计可以通过样本方 差和样本大小来计算。
详细描述
当总体服从正态分布时,根据中心极限定理,样本方差 近似服从卡方分布。因此,总体方差σ²的置信区间可以 通过以下公式计算:$[s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2}), s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2})]$,其中$s^2$是样本 方差,$n$是样本容量,$F^{-1}$是自由度为1的卡方 分布的逆函数,$alpha$是显著性水平。
详细描述
当总体服从正态分布时,根据中心极限定理,样本均值 近似服从正态分布。因此,总体均值μ的置信区间可以通 过以下公式计算:$[bar{x} - frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2}), bar{x} + frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2})]$,其中$bar{x}$是样 本均值,$s$是样本标准差,$n$是样本容量,$Phi^{1}$是标准正态分布的逆函数,$alpha$是显著性水平。
判定系数_精品文档
判定系数随机事件和概率考查的主要内容有:(1)事件之间的关系与运算,以及利用它们进行概率计算;(2)概率的定义及性质,利用概率的性质计算一些事件的概率;(3)古典概型与几何概型;(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(5)事件独立性的概念,利用独立性计算事件的概率;(6)独立重复试验,伯努利概型及有关事件概率的计算。
要求:考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。
随机变量及概率分布考查的主要内容有:(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;(3)会求随机变量的函数的分布。
(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。
要求:考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。
随机变量的数字特征考查的主要内容有:(1)数学期望、方差的定义、性质和计算;(2)常用随机变量的数学期望和方差;(3)计算一些随机变量函数的数学期望和方差;(4)协方差、相关系数和矩的定义、性质和计算;要求:考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。
大数定律和中心限定理考查的主要内容有:(1)切比雪夫不等式;(2)大数定律;(3)中心极限定理。
要求:考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。
数理统计的基本概念考查的主要内容有:(1)样本均值、样本方差和样本矩的概念、性质及计算;(2)χ2分布、t分布和F分布的定义、性质及分位数;(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。
概率论与数理统计假设检验正态总体参数的假设检验(2)
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。
总体标准差σ的五种估计及估计精密度
总体标准差!的五种估计及估计精密度周富臣孙玉莲(中国一拖集团公司计量检测中心,洛阳471004)摘要介绍了对总体标准差O 进行估计的五种方法,分析了估计精密度,给出了应用实例。
关键词标准差;估计值;相对标准差引言正态总体标准差O 是正态分布的两个参数之一,它在误差理论、计量检测、质量管理、统计检验等领域均有广泛应用。
因此,正确估计O 并给出估计精密度是十分重要的。
1总体标准差O 的理论计算式总体标准差O 的理论计算式为O =li m一17Z 7=1( _I )。
2(1)式中,I 为某量真值,为测得值,7为测量次数,由于真值I 往往是未知的,测量次数7又不可能是无限的,故式(1)在实践中无法使用。
2总体标准差O 的常用估计———贝塞尔公式通常仅做有限次测量并用其算术平均值 来代替真值I 。
理论和实践均证明,算术平均值 最接近I 。
是I 的无偏估计值。
用 代替式(1)中的!,就得到"的常用估计式^O b =17_1Z 7=1( _ )。
2(2)式中^O b 为O 的常用估计值。
式(2)为常用于求总体标准差O 的估计值的贝塞尔公式。
式(2)求得的^O b 本身也是一个随机量,因此也有一个估计精密度问题,用(^O O )b 来表示估计值^O b 的标准差,概率统计给出[1](^O O )b =12。
7O (3)称(O O )bO =12。
7为相对标准差。
表1给出12。
7值。
表!!/"。
!值7234567891011121314151/2。
70.50.410.350.320.290.270.250.240.220.210.200.200.190.187161718192021222324253040501/2。
70.180.170.170.160.160.150.150.150.140.140.130.110.1可以看出,估计值^O b 的精度是不高的,7=5时,(O O )b 。
13O ,7=50时,(O O )b =0.1O 。
质量中级工程师《质量专业理论与实务》讲义第一章06
第五节 假设检验
一、基本思想不基本步骤
考试大纲要求掌握原假设、备择假设、检
验统计量、拒绝域、两类错误、检验水平及显
著性的基本概念;掌握假设检验的基本步骤。 1.假设检验的基本思想 根据所获样本,运用统计分析方法,对总体 X的某种假设H0作出接受或拒绝的判断。
第五节 假设检验
2.基本步骤 (1)建立假设 如H0:μ=μ 0(μ 0为给定已知常数),这是原假设,不 H0相反的假设是H1:μ ≠μ 0,这是备择假设。 (2)选择检验统计量,给出拒绝域的形式。
条件
σ已知 σ未知 μ未知
1-a置信区间
σ
μ未知
第四节 参数估计
【例题·多选】正态标准差σ的1-α置信区间
依赖于( B.样本量 C.样本标准差 D.t分布的分位数 E.X2分布的分位数 )。
A.总体均值
第四节 参数估计
答案及分析:正态标准差σ的1-α置信区
间为:
因此不S(S2)和X2分布的分位数有关。
(3)给出显著性水平α。
(4)确定临界性C,给出拒绝域W。 (5)判断。
第五节 假设检验
【例题·单选】在假设检验中,接受原假设H0时,
可能( )错误。 A.犯第一类 B.犯第二类 C.既犯第一类,又犯第二类 D.丌犯任一类
第五节 假设检验
答案及分析:接受原假设H0,但实际原假设 H0丌真,由于抽样的随机性,样本落在接受 域内,从而导致接受H0,犯第二类错误,其 发生的概率为β。 所以选择B。
中级质量专业理论与实务
精讲班
主讲老师:张斌
第三节 统计基础知识
三、统计量 (一)统计量的概念 考试大纲要求掌握统计量的概念
丌含未知参数的样本函数称为统计量。
[精选]第八章第节正态总体的参数检验名师编辑PPT课件--资料
3. 为未知, 关于 2的检验( 2 检验)
设总体 X ~ N (, 2 ), , 2均为未知, X1, X2 ,, Xn 为来自总体 X 的样本, 要检验假设: 其中 0 为已知常数. 设显著水平为 , 分析 : S 2 是 2 的无偏估计, 当H0为真时,
根据
(n 1)S 2 ~ 2 (n 1),
B : 27 28 23 31 26
据经验 知,两种烟 草的尼古 丁含量均服从 正态分布,且相
互独立, A种的方 差为5, B种的方 差为8,取 0.05,问两种
烟草的 尼古丁含 量是否有显著 差异?
解 以X和Y分别表示A, B两种烟草的尼古丁含量,
则X
~
N
(
1
,
2 1
),
Y
~
N
(
2
,
2 2
)
,
且X
0 0 0 < 0 0 > 0
T X 0
S n ~ t(n 1)
拒绝域
t t
2
t t
t t
例3 某厂生产小型马达,说明书上写着:在正常负载
下平均消耗电流不超过0.8 安培.随机测试16台马达,
平均消耗电流为0.92安培,标准差为0.32安培. 设马达所消耗的电流服从正态分布,取显著性水
方差, 1, 2, 2均为未知,
取显著性水平为 .
检验假设H0:1 2,H1:1 2
引入 t统计量
T (X Y) ,
Sw
1 1 nm
其中
Sw2
的原因,即样本容量不够大.
若样本容量足够大,则不论把哪个假设作 为原假设所得检验结果基本上应该是一样的.否 则假设检验便无意义了!
第4节正态总体参数的区间估计
3
, 给定 ,0 1 , 定义 设是总体的一个未知参数
确定两个统计量
ˆ , ˆ 分别称为置信下限和置信上限. 区间. 1 2
ˆ , ˆ ]为 的 置信水平为 1 的 置信 则称区间 [ 1 2
1.75 1.96 1.96 0.49, n 50
所以 的置信区间为
(4.10 0.49, 4.10 0.49 ) (3.61, 4.59 ) .
10
例3 在上例中 , 为使 的置信水平是 0.95 的置信区间
的长度 L 1.5, 求样本容量 .
, u0.025 1.96, 1.75, 解 0.05
u / 2
x
X | | u / 2 X u / 2 X u / 2 / n n n
于是所求 的置信区间为 ( X u 有时简记为 ( X u / 2
2
n
, X u 2 ), n n
7
).
2 某厂生产滚珠,直径 X 服从正态分布 N ( , ). 例1 为了估计 , 抽检 6 个滚珠, 测得直径为 ( mm) : 14.70, 15.21,14.90,14.91,15.32,15.32,
对给定的置信水平 1 ,
按标准正态分布的 水平双侧分位数的定义,
查正态分布表得 u 2 ,
6
1.
已知时 的置信区间
2
/2
( x)
X U ~ N (0,1) , / n
1
O
/2
X P{ | | u 2 } 1 , n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设测量值 X ~ N( , 2 ) , 2 0.00040
需考察改革后活塞直径的方差是否步大于改革前 的方差?故待检验假设可设为:
ch8-12
H0 : 2 0.00040 ; H1 : 2 > 0.00040.
(1) 关于均值差 1 – 2 的检验
ch8-14
原假设 H0
备择假设 检验统计量及其在
H1
H0为真时的分布
拒绝域
1 – 2 = 1 – 2 1 – 2 1 – 2 < 1 – 2 1 – 2 >
X Y
U
2 1
2 2
nm
~ N (0,1)
( 12,22 已知)
U z
2
U z
U z
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
ch8-15
拒绝域
1 – 2 = 1 – 2 1 – 2 1 – 2 <
T X Y
1 n
1S m
w
~ T (n m 2)
T t
2
T t
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
T t
其中
Sw
两个正态总体
ch8-13
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 ),
两样本 X , Y 相互独立,
样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym ),
显著性水平
ch8-1
§9.3-- §9.4 正态总体的参数
一个正态总体
(1)关于 的检验
拒绝域的推导
给定显著性水平与样本值(x1,x2,…,xn )
设 X ~N ( 2),2 已知,需检验:
H0 : 0 ; H1 : 0
构造统计量
U
X
0
~
N (0,1)
ch8-2
P(拒绝HH0|0H0H为0真)
P ( X 0 k 0 ) PH0 ( X 0 k )
(2)关于 2 的检验 2检验法
ch8-9
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
2=
2 0
2
2 0
2
2 0
2<
2 0
n
(Xi )2
2 i1
2 0Leabharlann ~ 2(n)拒绝域2
2
1
2
(n)
或
2
2
(n)
2
2
2 1
(n)
2
2 0
2>
2 0
( 已知)
2 2 (n)
ch8-10
此时可采用效果相同的单边假设检验
H0 : 2 = 0.00040 ; H1 : 2 > 0.00040.
取统计量
2
(n
1)S
2 0
2
~
2 (n
1)
拒绝域
0:
2
2 (n 1)
2 0.05
(24)
36.415
0
2
24 0.00066 0.00040
39.6
36.415
落在0内, 故拒绝H0. 即改革后的方差显著大于 改革前的方差, 因此下一步的改革应朝相反方向 进行.
原假设 备择假设
H0
H1
2=
2 0
2
2 0
2
2 0
2<
2 0
检验统计量及其在 H0为真时的分布
2
(n
1)S
2 0
2
~ 2(n 1)
拒绝域
2
2
1
2
(n
1)
或
2
2
(n
1)
2
2
2 1
(n
1)
2
2 0
2>
2 0
( 未知)
2 2 (n 1)
ch8-11
例2 某汽车配件厂在新工艺下对加工好的 25个活塞的直径进行测量,得样本方差S2=0.00066. 已知老工艺生产的活塞直径的方差为0.00040. 问 进一步改革的方向应如何? ( P.244 例6 )
T X ~ T (15)
S / 16
查表得 t0.05(15) = 1.753, 故拒绝域为
x 0.8 1.753 x 0.8 1.753 0.32 0.94
s/ n
4
现 x 0.92 0.94
故接受原假设, 即不能否定厂方断言.
解二 H0 : 0.8 ; H1 : < 0.8
ch8-7
选用统计量: T X ~ T (15)
S / 16
查表得 t0.05(15) = 1.753, 故拒绝域
x 0.8 1.753 x 0.8 1.753 0.32 0.66
s/ n
4
现 x 0.92 0.66
故接受原假设, 即否定厂方断言.
由例1可见: 对问题的提法不同(把哪个 ch8-8 假设作为原假设),统计检验的结果也会不同.
由于假设检验是控制犯第一类错误的概率, 使得拒绝原假设 H0 的决策变得比较慎重, 也就 是 H0 得到特别的保护. 因而, 通常把有把握的, 经验的结论作为原假设, 或者尽量使后果严重 的错误成为第一类错误.
上述两种解法的立场不同,因此得到不同 的结论.第一种假设是不轻易否定厂方的结论; 第二种假设是不轻易相信厂方的结论.
U z
0 > 0
U z
T 检验法 (2 未知)
原假设 备择假设
H0
H1
检验统计量及其 H0为真时的分布
0 0 0 < 0 0 > 0
T X 0
S n ~ t(n 1)
ch8-4
拒绝域
T t
2
T t
T t
ch8-5
例1 某厂生产小型马达, 其说明书上写着: 这 种小型马达在正常负载下平均消耗电流不会 超过0.8 安培.
现随机抽取16台马达试验, 求得平均消耗 电流为0.92安培, 消耗电流的标准差为0.32安 培.
假设马达所消耗的电流服从正态分布,
取显著性水平为 = 0.05, 问根据这个样本,
能否否定厂方的断言?
解 根据题意待检假设可设为
ch8-6
H0 : 0.8 ; H1 : > 0.8 未知, 故选检验统计量:
PH0 (
X 0
k
)
PH0 (
X 0
Z )
2
n
n
n
取k Z
2n 所以本检验的拒绝域为
0: U z
2
U 检验法
U 检验法 (2 已知)
原假设 备择假设
H0
H1
检验统计量及其 H0为真时的分布
0 0 0 < 0
~ N (0,1) n
U
X 0
ch8-3
拒绝域
U z
2
(n 1)S12 (m 1)S22 nm2
(2)
关于方差比
2 1
/
2 2
的检验
ch8-16
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
拒绝域
2 1
=
2 2
2 1
2 2
2 1
2 2
2 1
<
2 2
F
S12 S22
~
F(n 1, m 1)
F F12 (n 1, m 1)