2019-2020学年江苏省徐州市高一上期末数学试卷((有答案))

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏省徐州市高一(上)期末数学试卷

一、填空题(共14小题,每小题5分,满分70分)

1.(5分)已知集合A={﹣1,0,1},B={0,1,2},则A∩B= .

2.(5分)函数y=3tan(2x+)的最小正周期为.

3.(5分)已知点A(﹣1,2),B(1,3),则向量的坐标为.

4.(5分)若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f(﹣1)的值为.

5.(5分)cos240°的值等于.

6.(5分)函数f(x)=的定义域是.

7.(5分)已知向量,满足||=2,||=,与的夹角为,则||= .8.(5分)若偶函数f(x)满足f(x+π)=f(x),且f(﹣)=,则f()的值为.

9.(5分)设函数f(x)=则f(log

2

14)+f(﹣4)的值为.

10.(5分)已知a>0且a≠1,函数f(x)=4+log

a

(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为.

11.(5分)将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图

象,若对于满足|f(x

1)﹣g(x

2

)|=2的x

1

,x

2

,有|x

1

﹣x

2

|

min

=,则f()的值为.

12.(5分)平行四边形ABCD中,||=6,||=4,若点M,N满足:=3,=2,则= .

13.(5分)设函数f(x)=,若函数f(x)恰有2个零点,则实数a的

取值范围是.

14.(5分)已知不等式(mx+5)(x2﹣n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为.

二、解答题(共6小题,满分90分)

15.(14分)已知集合A=[0,3),B=[a,a+2).

(1)若a=﹣1,求A∪B;

(2)若A∩B=B,求实数a的取值范围.

16.(14分)已知向量=(cosα,sinα),=(﹣2,2).

(1)若=,求(sinα+cosα)2的值;

(2)若,求sin(π﹣α)•sin()的值.

17.(14分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ0π2πx

f(x)0 30 ﹣30

(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;

(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣,]时,函数g(x)的值域;

(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(),求θ的最小值.

18.(16分)已知向量=(m,﹣1),=()

(1)若m=﹣,求与的夹角θ;

(2)设.

①求实数m的值;

②若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),求的最小值.

19.(16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.

(1)求y关于x的函数;

(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.20.(16分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.

(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;

(2)当a=0时,若对任意的x

1∈[1,2],总存在x

2

∈[1,2],使f(x

1

)=g(x

2

)成立,求实

数m的取值范围;

(3)若y=f(x)(x∈[t,2])的值域为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.

(注:区间[p,q]的长度q﹣p)

2019-2020学年江苏省徐州市高一(上)期末数学试卷

参考答案与试题解析

一、填空题(共14小题,每小题5分,满分70分)

1.(5分)已知集合A={﹣1,0,1},B={0,1,2},则A∩B= {0,1} .

【解答】解:∵集合A={﹣1,0,1},B={0,1,2},

∴A∩B={0,1}.

故答案为:{0,1}.

2.(5分)函数y=3tan(2x+)的最小正周期为.

【解答】解:由正切函数的周期公式得T=,

故答案为:

3.(5分)已知点A(﹣1,2),B(1,3),则向量的坐标为(2,1).

【解答】解:点A(﹣1,2),B(1,3),

则向量=(1﹣(﹣1),3﹣2)=(2,1).

故答案为:(2,1).

4.(5分)若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f(﹣1)的值为.

【解答】解:指数函数f(x)=a x(a>0且a≠1)的图象经过点(3,8),

∴8=a3,

解得a=2,

∴f(x)=2x,

∴f(﹣1)=2﹣1=,

故答案为:.

5.(5分)cos240°的值等于﹣.

相关文档
最新文档