数学思想方法和应用题教学
渗透数学思想 优化分数应用题解题思路
人 数 是 男 生 的 , 来 又 增 加 1名 女 生 , 时 女 生 人 数 是 男 生 1 后 这
的 4 %, 技 小 组 现 有 学 生 多 少 人 ? 0 科 抓住男生不变 , 从 图 中 一 下 可 以 看
40 %
中 , 指 利 用 旧知 识 去 学 习 新 的 知 识 。 分数 应 用 题 教学 中 , 以 是 可 根 据 教 材 的 知识 体 系 和 学 生 的认 知 规 律 ,精 心 创 设 教 学 情 境 和
型— — 解 释 、 用 、 应 拓展 ” 的学 习 过 程 。 教 学 时 , 通 过 建 构 题 目 要
条 件 中蕴 涵 的 数 量 关 系 模 型— — 数 量 关 系 式 来 思 考 解 题 方 法 。
二 、 透 数 形 结 合 思 想 , 用 图 示 直 观 显 示 数 量 渗 运 关 系 是 重 要 途 径
这 个 问题 的 数 学 框 架 , 求 出模 型 的解 ,并 对 它 进 行 验 证 的全 过 程 。 课 程 标 准 提 出 了课 堂 教 学 通 过“ 新 问题 情 境 —— 建立 数学 模
说 成 几 分 之 几 ( 百 分 之 几 ) 可 以 把 分 数 ( 百 分 数 ) 作 倍 数 或 , 或 当 来 思考 。 么 求 一 个 数 的几 倍 用 乘 法 计 算 , 一个 数 的几 分 之 几 那 求 也 用 乘 法 算 , 样 从 中 渗透 了类 比 思想 , 现 了举 一 反 三 。 这 实
分数应用题教学要渗透数学思想方法
分数应用题教学要渗透数学思想方法作者:万尚林来源:《山西教育·教学》 2017年第2期数学思想方法是对数学知识、技能、规律的本质认识,是数学思维的思想结晶,也是解决数学问题的灵魂。
在分数(或百分数)应用题教学中,数学思想与方法可以帮助学生更好地理清解题思路。
一、渗透数形结合思想数形结合是帮助学生建立数量关系的基本方法。
数形结合就是以“形”助“数”、以“数”解“形”,就是充分利用“形”的直观作用,把抽象的数量关系变得直观化,从而使数量关系变得更加清晰明了。
比如,教学分数应用题,可以根据题意先画出线段图,在线段图上用符号和数字标明已知条件和所求问题,然后引导学生对照线段图分析数量之间的关系。
与纯文字性应用题相比,线段图就显得直观、形象、简洁,能帮助学生尽快建立数量关系。
二、渗透数学模型思想数学模型,就是为了解决问题而构建的数学关系结构。
解应用题,通常的习惯是先读题审题,分析数量关系,再建立解题模型(即数量关系式),然后再根据已知条件和所求问题确定具体算法。
分数应用题的解题模型比较多,比如:标准量×已知分率=比较量、比较量÷对应分率=标准量、数量差÷分率差=单位“1”的量等。
在教学分数应用题的过程中,一定要分门别类地进行研究,归纳不同的解题模型,总结不同的解题方法,让学生积累更多的解题经验。
三、渗透对应思想对应,就是在两个事物之间建立一种关系(或某种规律)。
在分数应用题教学中,主要指数量和分率的对应关系。
一个数量总是对应着一个分率,一个分率总是对应着一个数量。
有时候题目中虽有已知数量,但没有直接给出对应分率;有时候题目中虽有已知分率,但没有直接给出对应数量。
因此,除构建解题模型之外,确定数量与分率的对应关系,是解答分数应用题的关键。
在梳理解题思路的过程中,要有机地渗透对应思想,帮助学生尽快找到解题方法。
四、渗透变换思想变换,就是将一种思维形式转换成另一种思维形式。
常用的数学思想方法
常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。
常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。
小学数学思想方法有哪些
小学数学思想方法有哪些数学作为一门重要的学科,对于小学生来说,既是一种学习工具,也是一种思维方式的培养。
在学习数学的过程中,培养学生的数学思想方法至关重要。
那么,小学数学思想方法有哪些呢?下面我们来一一探讨。
首先,小学数学思想方法之一是逻辑思维。
数学是一门严谨的学科,逻辑思维是数学思维的基础。
在学习数学的过程中,学生需要培养严密的逻辑思维能力,学会分析问题、归纳规律、推理论证。
例如,在解决数学题目时,学生需要按部就班地进行思考,找出问题的关键点,进行逻辑推理,找出解题的正确方法。
这种逻辑思维方法不仅能够帮助学生解决数学问题,也能够培养学生的严谨思维能力,对学习其他学科也大有裨益。
其次,小学数学思想方法之二是抽象思维。
数学是一门抽象的学科,学生需要具备一定的抽象思维能力。
在学习数学的过程中,学生需要将具体的问题进行抽象,找出其中的共性和规律。
例如,在学习几何图形的时候,学生需要将具体的图形进行抽象,找出它们的共同特点,从而得出一般性的结论。
这种抽象思维方法不仅能够帮助学生理解数学知识,也能够培养学生的抽象思维能力,提高学生的综合分析问题的能力。
再次,小学数学思想方法之三是直观思维。
数学是一门具有直观性的学科,学生需要具备一定的直观思维能力。
在学习数学的过程中,学生需要通过观察、感觉、想象等方式来理解数学概念和规律。
例如,在学习数学几何的时候,学生需要通过观察图形、感受形状、想象变化等方式来理解几何概念。
这种直观思维方法不仅能够帮助学生理解数学知识,也能够培养学生的直观思维能力,提高学生的空间想象能力。
最后,小学数学思想方法之四是创新思维。
数学是一门富有创造性的学科,学生需要具备一定的创新思维能力。
在学习数学的过程中,学生需要通过灵活的思维方式来解决问题,发现新的方法和规律。
例如,在解决数学问题的时候,学生可以通过不同的思路,找出不同的解题方法,培养自己的创新思维能力。
这种创新思维方法不仅能够帮助学生提高解决问题的能力,也能够培养学生的创新意识,激发学生对数学的兴趣和热情。
七年级数学上册常用数学思想方法(xiuding)
七年级数学上册常用数学思想方法一、数形结合的思想。
利用数形结合,可以使研究的问题化难为易,化繁为简。
1、利用数轴解答:有一座3层楼房着火,消防员搭梯子爬往3楼去抢救物品,当他爬到正中1级时,2楼窗口喷出火来,他就往下退了3级,等到火过去了,他又爬上了7级,这时候屋顶有两块砖掉下来,他又后退了2级,幸好没有打着他,他又爬上8级,这时候他距离梯子最高层还有1级,问这个梯子共有多少级?2、.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.问:(1)两车同时开出,相向而行,出发后多少小时相遇? (2)两车相向而行,慢车先开出28分钟,快车开出后多少小时两车相遇?(3)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?3、3个球队进行单循环比赛(参加比赛的每个队都与其他参赛队各赛一场),那么总的比赛场数是多少?若有4个球队呢?若有5个球队呢?写出m个球队进行单循环比赛时总的比赛场数的公式。
二、整体代入的思想。
1、若a、b互为倒数,x、y互为相反数,m的绝对值等于3求:(1)5ab-m+x-4+y的值;(2)5x-ab++5y的值;(3)x+y∕x³-ab+m²-8的值。
2、已知x²+x+3的值为7,求2x²+2x-3的值。
三、分类讨论的思想。
在数学问题中,当一个字母(或一个式子)有几种可能的取值;当一个图形有几种不同的位置或不同的形状时,往往需要分类讨论。
分类讨论应做到:分类标准必须统一,分类时不重复不遗漏。
1、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长。
四、割补的思想。
1﹙1﹚用含有a、b的式子表示阴影部分面积;﹙2﹚当a=3,b=2时,阴影部分的面积为多少?五、方程思想。
方程思想就是把未知数看成已知数,让代替未知数的字母和已知数一样参加运算,这是一种很重要的数学思想方法。
小学数学课堂中渗透的数学思想方法
小学数学课堂中渗透的数学思想方法一、抽象思维:抽象思维是指孩子从具体的事物中抽离出共同特征,形成概念的思维方式。
在数学课堂中,老师可以通过举例子、比喻等方式,引导学生从具体的问题中抽象出数学概念,培养学生的抽象思维能力。
在学习几何图形的时候,老师可以引导学生观察不同形状的图形,比如圆形、正方形、长方形等,然后引导学生总结出每个形状的共同特征,形成相应的几何概念。
二、逻辑思维:逻辑思维是指按照一定的推理规则进行思考和分析的思维方式。
在数学课堂中,学生需要学会运用逻辑思维解决问题,培养他们的推理能力。
在学习数学运算时,老师可以给学生出一些逻辑题,让他们通过推理和分析找到解题的规律。
老师还可以通过游戏的形式,培养孩子的逻辑思维能力,锻炼他们的反应速度和解决问题的能力。
三、探究思维:探究思维是指通过观察、实验、猜想等方式主动地积极学习和探索问题的思维方式。
在数学课堂中,老师可以鼓励学生提出问题、展开探究,培养他们的独立思考能力。
在学习分数的概念和运算规则时,老师可以设计一些实践活动,让学生亲自动手操作、观察、探索,从中发现规律和解决问题的方法。
通过这种方式,学生能够更加深入地理解数学概念和运算规则。
四、问题解决思维:问题解决思维是指通过分析问题、寻找解决方案、评估和调整解决方案的思维方式。
在数学课堂中,老师可以引导学生运用问题解决思维解决实际问题,培养他们的问题解决能力。
在学习应用题时,老师可以给学生一些实际问题,让他们自己分析问题、寻找解决方案,并进行实际操作和计算。
通过这种方式,学生能够将数学知识应用到实际生活中,提高他们解决实际问题的能力。
通过渗透这些数学思想方法,可以使学生在数学课堂中更加主动、积极地参与学习,培养他们的数学思维能力和解决问题的能力,提高他们的学习效果和综合素质。
这些数学思想方法也能够增强学生的学习兴趣,培养他们对数学的理解和热爱。
小学数学常用的16种解题思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
例谈分数乘除法应用题教学中数学思想方法的渗透
一
比 较 直 观 地 找 准 数 量 关 系 , 而 正 从 确 解 答 , 不 知 不 觉 中 发 展 了 对 应 在
思想 。 三 、 透 数 学 建 模 思 想 渗
、
渗 透 数 形 结 合 思 想
地 体会 数 形结 合 思想 的妙处 。
二 、 透 对 应 思 想 渗
用题的关键。
只? ) 养 场 有 白兔 2 0 (饲 2 40只 , 白兔 比
T
黑兔多÷ , 黑兔有多少只? 有的老师
J
如 :一 条路 长 40 “ 80米 , 经 修 已
1
如 : 淘 气 看 一 本 童 话 书 , 一 “ 第 天看 了2 5页 , 二 天 看 了 全 书 的 第
9
1
1
4, 用 长 一 即 。3 可 再 总 乘1 寺 可 (也 )
先 用 4 0 + 求 出 一份 是 多少 , 乘 剩 804 再 下 的 3 。显 然 , 助 线 段 图 分 析 抽 份 借 象 的分数应用 题 , 生易于理解 , 学 解
题 思 路 清 晰 , 解 题 过 程 中 也 可较 好 在
全书 的 就是求40 米的÷ 是多少米, 80 再用 ÷ 和第二 天看 的页数对应 ,
总 长减 已修 的 。( 从 图上 可 以 看 出 , 2 )
, )
(一 ) 1 ÷ 与第 一 天看 的和剩 下 未看
,
先求 出剩下 的是总长的÷ , 1 即 一
叶
页 数 之 和 ( + 5 相 对 应 , 式 为 2 3) 5 列
二  ̄ 了 - Байду номын сангаас 第 --' ' 2 " 天 -J
小学数学中常见的数学思想方法有哪些
小学数学中罕有的数学思惟办法有哪些?1.对应思惟办法对应是人们对两个聚集身分之间的接洽的一种思惟办法,小学数学一般是一一对应的直不雅图表,并以此孕伏函数思惟.如直线上的点(数轴)与暗示具体的数是一一对应.2.假设思惟办法假设是先对标题中的已知前提或问题作出某种假设,然后按照题中的已知前提进行推算,根据数目消失的抵触,加以恰当调剂,最后找到准确答案的一种思惟办法.假设思惟是一种有意义的想象思维,控制之后可以使要解决的问题更形象.具体,从而丰硕解题思绪.3.比较思惟办法比较思惟是数学中罕有的思惟办法之一,也是促进学生思维成长的手腕.在教授教养分数应用题中,教师擅长引诱学生比较题中已知和未知数目变更前后的情形,可以帮忙学生较快地找到解题门路.4.符号化思惟办法用符号化的说话(包含字母.数字.图形和各类特定的符号)来描写数学内容,这就是符号思惟.如数学中各类数目关系,量的变更及量与量之间进行推导和演算,都是用小小的字母暗示数,以符号的浓缩情势表达大量的信息.如定律.公式.等.5.类比思惟办法类比思惟是指根据两类数学对象的类似性,有可能将已知的一类数学对象的性质迁徙到另一类数学对象上去的思惟.如加法交换律和乘法交换律.长方形的面积公式.平行四边形面积公式和三角形面积公式.类比思惟不但使数学常识轻易懂得,并且使公式的记忆变得顺水推舟的天然和简练.6.转化思惟办法转化思惟是由一种情势变换成另一种情势的思惟办法,而其本身的大小是不变的.如几何的等积变换.解方程的同解变换.公式的变形等,在盘算中也经常应用到甲÷乙=甲×1/乙.7.分类思惟办法分类思惟办法不是数学独有的办法,数学的分类思惟办法表现对数学对象的分类及其分类的尺度.如天然数的分类,若按可否被2整除分奇数和偶数;按约数的个数分质数和合数.又如三角形可以按边分,也可以按角分.不合的分类尺度就会有不合的分类成果,从而产生新的概念.对数学对象的准确.合理分类取决于分类尺度的准确.合理性,数学常识的分类有助于学生对常识的梳理和建构.8.聚集思惟办法聚集思惟就是应用聚集的概念.逻辑说话.运算.图形等来解决数学问题或非纯数学问题的思惟办法.小学采取直不雅手腕,应用图形和什物渗入渗出聚集思惟.在讲述公约数和公倍数时采取了交集的思惟办法.9.数形联合思惟办法数和形是数学研讨的两个重要对象,数离不开形,形离不开数,一方面抽象的数学概念,庞杂的数目关系,借助图形使之直不雅化.形象化.简略化.另一方面庞杂的形体可以用简略的数目关系暗示.在解应用题中经常借助线段图的直不雅帮忙剖析数目关系.10.统计思惟办法:小学数学中的统计图表是一些根本的统计办法,求平均数应用题是表现出数据处理的思惟办法.11.极限思惟办法:事物是从量变到质变的,极限办法的本质恰是经由过程量变的无穷进程达到质变.在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限朋分思绪,在不雅察有限朋分的基本上想象它们的极限状况,如许不但使学生控制公式还能从曲与直的抵触转化中萌发了无穷逼近的极限思惟.12.代换思惟办法:他是方程解法的重要道理,解题时可将某个前提用此外前提进行代换.如黉舍买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价格正好相等,桌子和椅子的单价各是若干?13.可逆思惟办法:它是逻辑思维中的根本思惟,当顺向思维难于解答时,可以从前提或问题思维寻求解题思绪的办法,有时可以借线段图逆推.如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距.14.化归思维办法:把有可能解决的或未解决的问题,经由过程转化进程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”.而数学常识接洽慎密,新常识往往是旧常识的引申和扩大.让学生面临新知会用化归思惟办法去思虑问题,对自力获得新知才能的进步无疑是有很大帮忙.15.变中抓不变的思惟办法:在纷纷庞杂的变更中若何掌控数目关系,抓不变的量为冲破口,往往问了就水到渠成.如:科技书和文艺书共630本,个中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书若干本?16.数学模子思惟办法:所谓数学模子思惟是指对于实际世界的某一特定对象,从它特定的生涯原型动身,充分应用不雅察.试验.操纵.比较.剖析分解归纳分解等所谓进程,得到简化和假设,它是把生涯中实际问题转化为数学问题模子的一种思惟办法.造就学生用数学的眼力熟悉和处理四周事物或数学问题乃数学的最高境界,也是学生高数学素养所寻求的目的.17.整体思惟办法:对数学问题的不雅察和剖析从宏不雅和大处着手,整体掌控化零为整,往往不掉为一种更便捷更省时的办法.2. 小学生应当形成的根本运动经验有哪些?1.收集信息.提出问题的经验2.收集交换.剖析问题的经验3.收集着手操纵.懂得问题的经验4.收集积聚自立摸索.解决问题的经验5.收集积聚生涯中的经验6.收集着手操纵.懂得问题的经验7.收集着手操纵.懂得问题的经验3. 扼要谈谈学业评价具有哪些功效?一方面要强调评价对学科教师教授教养的鼓励感化.诊断感化和促进感化.另一方面要留意弱化评价的提拔与甄别功效.评价成果要有利于激发学生的内涵进修念头,帮忙学生明白本身的缺少和尽力偏向,促进学生进一步的成长.要尽量弱化评价对学生的提拔与甄别功效,减轻评价对学生造成的压力.教师也要根据评价的反馈成果,反思教授教养进程,改良教授教养办法,进步教授教养才能.慢慢地形成评价与教授教养的互相促进感化.4. 具体谈谈学业评价具有哪些特点?一要尊敬每一个学生,帮忙每一个学生形成健康的价值不雅我们体育先生在教授教养中,要积极地应用多种教授教养手腕创设情境,调动学生积极介入实践运动和互相交换,鼓励学生勇于表达自已的不雅念和倾听他人的思惟.实践运动为学生的合作与交换供给了充分的机遇,学生可以根椐本身的专长和兴致自由联合,选择本身爱好的方法开展实践运动,充分展现情绪.立场和价值不雅.教师要在学生的实践运动中实时评价学生的情绪.立场和价值不雅,以引诱学生在实践运动中可以或许得到很好教练和收成.二要承认个别的差别,帮忙每一个学生成长自身的多元潜能每一个学生都具有不合于他人的先天本质和生涯情形,都有本身的快活爱好.长处和缺少.学生的差别不但表示在学业成绩上,还表示在心理特色.心理特点.念头兴致.快活爱好专长等各个方面.是以,我们在对每一个学生进行评价时应多看他的长处,为每一个学生提出合适他本身的有针对性的建议.三要进步自身的程度,帮忙每一个学生科学健康快活地成长新课程请求我们体育教师在教授教养中帮忙学生树立优越的进修立场,造就学生的进修自动性和创造性.为此教师应把鼓励性评价贯串于教授教养的每一个环节,如教师对学生的一个微笑.一个眼神.这些看似微缺少到的神色赐与学生的倒是信念和动力.实施鼓励性评价,可以充分施展每一个学生的主体意识和才能,加强学生进修的自负念,激发学生自立进修的积极性,对学生的心理健康有很大的促进感化.5. 教师若何经由过程学业评价促进学生公平成长?(1)改变教室教授教养不雅念.教室教授教养不雅念是教师教室行动的指点思惟,要建构公平的教室就必须改变教室教授教养的不雅念,由“选择合适教导的学生”到“创造合适学生的教导”是现代教导不雅念的重大改变.(2)加强师德扶植.英语教师在实施学业评价时,要做到公平忘我,要周全收集反应学生进修状况的原始材料,如学生的功课.磨练试卷.问卷查询拜访表.小论文.运动进程记录等.评价者要明白学业评价对学生的鼓励和促进感化,要意识到学业评价对学生的重要影响,要卖力规范.谨严过细地做好评价工作,使每个学生都得到客不雅.真实的评价.在学业评价中,要杜绝轻视.压抑.排斥.成见等评价行动.(3)树立科学的学业评价系统.①强调成长性评价,表现学业评价的鼓励性.②凸起分解性评价,表现学业评价的科学性.③实施弹性评价,表现学业评价的灵巧性.6. 数学功课有哪些功效?一.设计功课时,要有味味性,让学生在快活中求知.兴致是进修的最好先生,当学生的兴致进步了,进修愿望天然而然就进步了.是以,教师在设计功课时,特殊要在“寓做于兴致之中”高低工夫,也就是说最好把数学常识编成故事.童话.游戏等情势,使学生一看到功课的内容就来劲,就伎痒,激发了学生的求知欲.有味,使学生同意做.乐于做.二.设计功课时,要有实践性,让学生在实践中求知.“纸上得来终觉浅,绝知此事要躬行”,获取常识非要逼真的体验不成.为此,教师要联合有关的教授教养内容,接洽实际生涯中的实际问题,安插有实践性的功课,让学生在亲自实践中去体验所学的常识,在实践中应用常识.盘活常识,经由过程实践使之再进修.再摸索.再进步最终使学生形成解决实际问题的才能.让学生用所学的常识解决实际生涯中的问题,同时在实践中巩固所学的常识.学生在完成这一系列实践功课的进程中,不但造就了与人合作.收集信息.学乃至用等多种才能,并且学生的创造性思维也得到了不合程度的进步.三.设计功课时,要具有凋谢性,让学生在运动中求知.教师在设计功课时要擅长探讨常识中的潜在身分,合理.恰当.奇妙.灵巧地设计一些凋谢性功课,对学生的思维进行求“新”.求“全”.求“活”的调控,让学生发散思维,敢于别具一格,提出各类问题,大胆创新.凋谢性的功课,能让学生对所获信息采纳不合的处理办法,会得到不合的解决成果,并从中发明最有用的解决问题的办法,闪耀着学生奇特的创新精力,从而造就学生的创新才能. 7. 简述试题的编制进程.试题编制必须根据国度课程尺度,杜绝设置偏题.怪题,要采取情势多样的测验方法,周全斟酌学生的基本性成长目的和学科进修目的,既要看重学生的进修成绩,也要看重学生的思惟品格以及多方面潜能的成长,重视学生的创新才能和实践才能,尽力拓展试题思维的空间,增长试题的多样性和选择性,多给学生自立选择的权力,让不合层次.进修才能有差别的学生各取所需,力图让每个学生的专长和潜能在测验中都能得到充分地展现,以周全呵护他们进修的自负念和积极性,促进学生的共性成长.要充分应用测验促进每个学生的进步,进而使其整体本质得到晋升.(1) 制订测验解释.(2) 拟定编题筹划.(3) 肯定双向细目表 .(4) 草拟试题.(5) 筛选组卷.(6) 拟定参考答案及评分细则.8. 若何做好分解本质评价?在进行分解本质评价时,先生会给学生们分发测评表,起首学生须要给本身打分,然后撰写自我评价和学期总结.随后,全班同窗会依次上台朗读自我评价,朗读完毕后,台下的同窗们就会开端给被测评同窗提看法或给五个维度打分.班干部或班主任会记录全班同窗的打分,最终数据成果是全班同窗评分的平均数.或为了公平起见,班主任会分发给学生一张打分表,上面记录着全班同窗的姓名和五个维度,以匿名的方法给全班同窗(包含本身)打分,然后上交至班主任,整顿数据.然后,学生们还要去请求班主任或代课先生为本身撰写学期评价.九年级的”分解本质评价“数据将计入中考档案和学生档案,作为中考和升学的帮助参考数据.最终成果的组成来自于50%的同窗互评和50%的师评.自评不算入个中,只能作为测评参考数据但存档.9. 盘算题命题时的要点.选择题因为其题短小.检讨面宽.解法灵巧.评分客不雅.批阅便利.宜于机读等特色越来越多地为人们所采取.本文给出选择题命题的要点, 1题干要简练.清楚明了,防止应用学生未接触过的或难明的名词或术语. 2题干与备选答案(或称选择支)之间要有独一的对应性.10. 若何盘算试题的难度系数?把试题收录到试题库前,往往须要先辈行多次测试,相符请求的才录入.而断定的根据重要有二:难度系数和差别系数. 别的,每一次考完试后,先生也应当对试卷从难度和差别力长进行剖析,以帮忙找出教授教养和命题中的缺少. 什么是试题难度系数?难度系数反应试题的难易程度,即考生在一个试题或一份试卷中的掉分程度. 测验难度系数盘算公式如下: Dc=1-A/T Dc:难度系数A:考生平均得分(如盘算总体难度系数,则为全卷平均分;如盘算单题难度系数,则为本题平均分) T:满分举例:总体难度系数:一份满分100分的试卷,考生平均得分78分,则难度系数为1-78/100=0.22 单题难度系数:一道题值2分的试题,考生平均得分1.5分,则难度系数为1-1.5/2=0.25 至于一道题或一份试卷的难度系数到底若干为宜,要根据不合的命题须要来选择.并且,即使统一套试题,不合的答题人群做完后盘算出的难度系数也是不合的.幻想的难度系数以控制在0.2阁下为宜. 什么是试题差别系数?区分系数反应试题区分不合程度受试者的才能,即可否考出学生的不合程度,把优良.一般.差三个层次的学生真正分别开. 试题差别系数盘算公式如下:先把成绩从高到低排序,前50%的考生为高分组,后50%为低分组,(样本大的时刻,也可以取前.后各20%.) Dr=2(Ah-Al)/T Dr:差别系数 Ah:高分组平均分 Al:低分组平均分 T:满分举例:总体差别系数:一份满分100分的试卷,高分组平均得分90分,低分组平均得分60分,则差别系数为2(90-60)/100=1.7 单题难度系数:一道题值2分的试题,高分组平均得分1.5分,低分组平均得分0.5分,则差别系数为2(1.5-0.5)/2=1 因为受多种随机身分如:遗传.智力.共性.时光.教师.尽力的程度等的影响,测验成绩一般应呈正态散布.区分系数高的测验,优良.一般.差三个层次的学生都有必定比例,假如某一分数区间学生相对分散,高分太多或不合格太多的测验,区分系数则低.幻想的差别系数以控制在1.5阁下为宜.某些重要的.学生应知应会的必考常识点,单题难度系数许可为“0”.。
数学思想方法在应用题解答中的渗透
耍 想 将 这 块 黑板 在 白纸 上 画 出 来 ,你行 吗 ? 怎 么
画?
升旃 台的高度缩小若 干倍后 画在 你们 的纸 上。协助工 具——米尺 、 竹竿和 明媚 的阳光 。 C组 在你们 组长 的手 上有一块 长方形 的微型 电 池 。你们的任务是 把电池 的平面图放大若干倍 后画在 你们 的纸 上。协助工具——尺子 。 D组 你们现在所处 的位 置是逸夫楼的操场上 , 在 你们的脚下是这座 楼的 占地 面 ,你们的任务 是把这块 占地面缩小若干倍 后画在你 们的纸上 。协 助工具——
二 、 换 思 想 代
第 一小 时 行 的 第 二 小 时 行 的
它是方程解 法的重要原理 ,解题 时可将某个条 件 用别的条件 进行代换 。
分 析与解 : 画出上 面线段 图后 , 可以这 样思 考 : 如
园 里 。 去 体验 一下 吗 ? 想
大 家利用手中 的工 具 , 发挥集体的智 慧各显神通 ,
井 请 一位 同学 记录 你 们在 解决 问题 过 程 中遇 到 的困
难, 看哪一个小组是本次活动中的最佳智囊 团。
【 反思】 案例一的设计, 教师虽然在努力用生活中
的数 学来学习学校数 学,然而就像在盖框 架结构的房
楼。
所 以。 学源 于学生又反作用 于学生 。 教 因为学校数 学的 目的就是 让生活中的数 学得 以规 范、 拓展 。学生பைடு நூலகம்
习数 学就是要 解决 生活中的 问题 ,只有极 少数人 才能
生,还有高大的木棉树及升旋台 :
师: , 嗯 真不少! 下面我们要开展活动 了。
攻关艰深的数学问题,我们不能只为了培养尖端人才
卷 尺。
二、 探究新知
小学数学思想与方法及教学详解
小学数学思想与方法及教学随着素质教育的不断深入,人们越来越清楚地认识到:数学教育要落实素质教育思想,就应体现其发展性,为学生的持续学习、终身学习做准备。
为此,数学教育提供给学生的不应只是只是和技能,更重要的是让学生在获取知识的过程中学会数学思想方法。
现代数学教学论认为,数学思想方法是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁,是培养学生数学意识(观念)、形成优良思维素质的关键。
如果说数学问题是数学的“心脏”、方法是数学的“行为准则”、知识是数学的“躯体”,那么数学思想无疑就是数学的“灵魂”。
一、小学数学思想方法教学意义1、懂得小学数学思想方法就能更好地理解和掌握数学内容。
2、懂得小学数学思想方法有利于记忆。
3、懂得小学数学思想方法有利于数学能力的提高。
4、小学数学思想方法是联结小学数学和中学数学的一条红线。
二、小学数学思想方法的含义数学思想方法既含有思想,又含有方法。
数学思想就是人们对数学知识和数学方法的本质认识,是数学知识与数学方法的高度抽象与概括,是对数学规律的理性认识,是数学教学的“灵魂”。
数学方法则是在数学研究活动中解决数学问题的具体途径、手段和方式的总和,是数学教学的“行为规则”。
数学思想与教学方法,既有联系,又有区别。
思想是方法的升华,方法是思想的体现。
运用数学方法解决数学问题的过程就是感性认识不断提高积累的过程。
当这种积累达到一定程度时就产生飞跃,从而上升为数学思想。
数学思想反过来又对数学方法起着指导作用。
在小学数学中,许多数学思想和方法往往是一致的,如分类思想和分类方法,化归思想和化归法等。
没有不含方法的数学思想,也没有不以数学思想为指导的数学方法。
因此,我们可以把小学数学思想和方法视为一体——数学思想方法。
三、小学数学思想方法的基本内容纵观小学数学教材内容,归纳起来大致可分为概念型、逻辑型和策略型三种类型。
(一)概念型数学思想方法概念型数学思想方法依托于某些现代数学概念内容,包括集合思想、函数思想、统计思想、极限思想、优化思想等。
小学数学思想方法有哪些
小学数学思想方法有哪些数学是一门重要的学科,而数学思想方法的培养对于小学生来说尤为重要。
那么,小学数学思想方法有哪些呢?下面就让我们一起来探讨一下。
首先,小学数学思想方法之一就是观察问题。
观察是数学思维的起点,通过观察可以发现问题的规律和特点。
例如,观察一个图形的形状、大小、颜色等特征,可以帮助学生理解图形的性质和特点。
因此,培养学生的观察力对于数学学习至关重要。
其次,小学数学思想方法还包括分类思维。
分类是数学问题解决的基本方法之一,它可以帮助学生将复杂的问题分解成若干个简单的部分,从而更好地理解和解决问题。
比如,学生可以将数字按照奇数和偶数进行分类,通过这种分类思维可以更好地理解数字的性质和规律。
另外,小学数学思想方法还包括抽象思维。
抽象是数学思维的核心,它可以帮助学生将具体的事物抽象成符号或概念,从而更好地进行数学推理和计算。
例如,学生可以将实际问题抽象成代数表达式,通过这种抽象思维可以更好地解决实际问题。
此外,小学数学思想方法还包括逻辑思维。
逻辑思维是数学问题解决的关键,它可以帮助学生建立正确的数学思维模式,从而更好地理解和解决数学问题。
例如,学生可以通过逻辑推理来解决数学证明题,通过这种逻辑思维可以更好地理解数学定理和公式。
最后,小学数学思想方法还包括实践思维。
实践是数学学习的重要手段,它可以帮助学生将抽象的数学知识转化为具体的实际问题,从而更好地理解和运用数学知识。
例如,学生可以通过实际测量来理解长度、面积和体积的概念,通过这种实践思维可以更好地掌握数学知识。
总之,小学数学思想方法包括观察、分类、抽象、逻辑和实践等多种思维方法,这些方法相辅相成,共同促进学生数学思维能力的全面发展。
因此,教师在教学中应该注重培养学生的数学思维方法,引导他们通过多种途径来理解和解决数学问题,从而提高数学学习的效果。
小学四年级逻辑思维学习—数学思想方法一
小学四年级逻辑思维学习—数学思想方法一知识定位数学是一座智慧的城堡,探索则是打开城堡大门的钥匙。
在这神秘的世界里有许多的难题,应用题便是其中有趣的一族。
这节课向你介绍一些巧妙解应用题的好方法重难点:1.学会如何运用这些数学常用方法2.从多角度考虑问题,运用数学方法解决问题考点:数学方法的综合运用知识梳理一、假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。
有些用一般方法能解答的应用题,用假设法解答可能更简捷。
例如“鸡兔同笼”问题,用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。
二、对应法应用题的一些数量关系之间存在着对应关系,如总数与总份数的对应,路程与时间的对应,分数、百分数应用题中量与率的对应等。
解题时找准数量之间的对应关系,就能实现由未知向已知的转化。
这种运用对应关系解题的方法,就是对应法。
三、从简单情况考虑有时候我们碰到的题目很复杂,乍一看似乎无从入手,这时候我们往往可以先从简单的情况出发,看看有什么规律。
很多情况下我们可以通过这种方法解决一些看起来很难的问题。
例题精讲【题目】在一次登山活动中,张明上山时每分钟走50米,到达山顶后沿原路下山,每分钟走75米,张明上山下山的平均速度是多少?【题目】小红有2分、5分的硬币20枚,共58分钱,那么,2分硬币、5分硬币各多少枚?【题目】有一批零件,师傅单独加工比徒弟少用3小时。
师傅每小时加工10个,徒弟每小时加工8个,这批零件有多少个?【题目】春风小学3名同学去参加数学竞赛,共10道题,答对一道得10分,答错一道题扣3分。
这3名同学都回答了所有的题,小明得了87分,小红得了74分,小华得了9分。
他们三人一共答对了多少道题目?【题目】一张数学试卷,只有25道选择题,做对一题得4分,做错一题倒扣1分。
分数乘除法应用题应渗透数学思想方法
分数乘除法应用题应渗透数学思想方法一、渗透数学思想方法的意义1、数学思想方法不仅是学生掌握数学知识所必须的,而且是进一步学习数学的基础。
2、学习数学的目的就意味着解决问题,解决问题的关键在于找到合理的解题思路,而数学思想方法是构建解题思路的指导思想,是培养学生分析解决问题的重要措施。
3、数学思想方法把传统知识型教学转化为能力型教学的关键。
因此,加强数学思想方法教学不但有利于提高课堂教学质量,而且有利于培养和发展学生认知能力更好地构建和完善学生的认知结构,发挥学生的数学潜能。
二、分数乘除法应用题要渗透哪些数学思想方法(一)渗透数形结合的思想方法。
如一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。
甲五次一共喝了多少牛奶?此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求。
但是,如果我们画一个正方形,假设它的面积为单位“1”来表示一杯牛奶,然后图上表示每次喝去的牛奶,最后由图可知,还剩下1/32,那么(1-1/32)就为所求,这样在学生解题过程中让学生很好地体会了数形结合思想的妙处。
(二)渗透类比的思想方法。
例如:我把例题改造成有一块果园,梨树的种植面积是6000平方米,桃数种植面积是梨树的3倍,桃数种植面积是多少平方米?学生准备练习后,我依次将其中“3倍”改为0.4倍、2/5、40%。
引导学生小结:当数量之间的倍数小于时,通常说成几分之几(或百分之几),可以看作分数倍。
那么求一个数的几倍用乘法计算,求一个数的几分之几也用乘法算,理解时可以把分数(或百分数)当作倍数来思考。
这样就大大减轻了学生思考的负担,从中也渗透了类比的数学思想。
(三)渗透对应的思想方法。
如:“工程队修一条公路,第一周修了40米,第二周修了50米,还剩下55%没修。
这条公路全长多少米?”通过画线段图:学生从图中一目了然看出:这条公路的55%和剩下的米数对应,这条公路的(1-55%)与两周修的(40+50)米对应,这样使问题明朗化,学生能比较直观地找准数量关系,从而轻易地解决,并在不知不觉中发展对应思想。
列一元一次方程解应用题中的思想方法
列一元一次方程解应用题中的思想方法众所周知,数学思想是我们数学解题的灵魂,列一元一次方程解应用题也不例外,在列一元一次方程解应用题过程中也蕴含着许多的数学思想,如果能灵活的加以运用,往往能更好地解决列一元一次方程解应用题,现就列一元一次方程解应用题中的常见的思想方法举例说明。
一、设k法利用一元一次方程解应用题时经常会遇到有关比例问题,这时若能巧妙地设出其中的平分为k,就能轻松地列出方程求解。
例题一个三角形三条边长的比是2∶4∶5,最长的边比最短的边长6厘米,求这个三角形的周长。
思路分析:要求三角形的周长,若知道三边即可,由于三角形三条边长的比是2∶4∶5,可设这三条边长分别为2k,4k,5k,这样根据最长的边比最短的边长6厘米,即可列出方程求解。
二、数形结合思想数形结合思想是指在研究问题的过程中,由数思形、由形想数,把数与形结合起来解析问题的思想方法。
例题如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成。
设中间最小的一个正方形边长为1,则这个矩形色块图的面积为________。
思路分析:通过观察图形可以发现,除了边长为1的正方形,其余5个正方形中,右下角的两个大小相等,然后顺时针方向上的正方形边长依次大1。
答案:解:设右下角两个边长相等正方形的边长为x,则顺时针方向的其余三个正方形的边长依次为x+1、x+2、x+3。
根据矩形的对边相等,可得x+x+(x+1)=(x+2)+(x+3),解得x=4。
所以(x+2)+(x+3)=13,(x+2)+(x+1)=11,即13×11=143。
答:矩形的面积为143平方单位。
三、整体思想在研究应用问题时,若能将所要思考的问题看成一个整体,通盘考虑,则可既便于列方程,又便于解方程。
例题一个六位数左端的数字是1,如果把左端的数字1移到右端,那么所得新的六位数等于原数的3倍,求原来的六位数。
思路分析:本题若逐个设出各位数字,则未知数过多,不易列出方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法和应用题教学
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性概括和认识.而数学方法是解决数学问题的途径,是数学思想的反映.教学中教师应该注重数学思想方法的渗透,数学思想方法应该与整个数学知识的讲授融为一体,才有利于学生真正地理解和掌握所学知识,提高学生学习能力.下面笔者就谈谈在应用题教学中所渗透的几种数学思想方法.
一、应用题教学中要运用方程思想
例如,七年级数学教材一道习题:某中学的学生自己独自整修操场,七年级学生单独完成工作需要6小时,八年级学生单独完成工作需要5小时,如果现在由七、八年级学生一起先工作1小时,再由八年级学生单独完成剩余部分,问总共需要多少时间?
对于刚上七年级的学生来说,不少人还是习惯于用算术方法来解题,而不习惯从列方程的角度来想问题,所以他们会这样解:
七八年级一起做1小时工作量:(1÷6+1÷5)×1=1130,
八年级完成剩余部分所需时间:(1-1130)÷15=196
总共需要时间:1+196=256(小时)
如果运用方程解问题会更简单.设总共需要时间x小时.根据题意很容易发现等量关系:七年级工作量+八年级工作量=1,所以列方程为:
16+x5=1,解得x=256.
答:总共需要时间256 小时.
从这道题解法对比看到,用方程来解简单明了,相比算术方法需要反向思考而言,列方程是用顺向思维解决问题,思维过程比较简单,这样顺着题目中的数量思考解题容易了许多.
二、应用题教学中要渗透数形结合思想
例如,甲、乙分别从A、B两地骑自行车同时相向匀速而行,经过2小时后两人相距30千米,再经过2小时两人又相距30千米,求A、B两地的距离.
解:设A、B两地距离为x千米.由题意画以下直线形示意图.
图1
图2
从图1可以看到2小时两人总行程为(x-30)千米,从图2可以看到4小时两人总行程为(x+30)千米.根据甲乙两人速度和不变,得出方程
x-302+x+304,解得x=90.
答:A、B两地距离为90千米.
利用图形的直观,通过“以形助数”和“以数解形”,将问题由抽象变具体,把模糊变清晰,从图形中找出解题思路,使问题难度降低,从而解决问题.
三、应用题教学中要巧用分类讨论思想
例如,某地移动公司电话计费采用以下两种方式,方式A:免月租,每分钟0.25元;方式B:月租30元,主叫每分钟0.1元.选哪一种方式更省钱?
分析:采用哪种方式省钱,计费的多少与主叫时间有关,不同的使用时间,会有不同可能情况.所以这道题我们只能通过分类讨论才能解决.
解:设主叫时间为x分钟.
当方式A比方式B省钱:0.25x30+0.1x,则有x>200.
答:(略).
四、应用题教学中要发现隐含转化思想
数学转化思想就是指在研究和解决有关数学问题时,把问题从一种形式转化为另一种形式,如把未知条件转化为已知条件;把复杂问题转化为简单问题;从而最终解决问题的一种数学思想.
例如:某中学七年级举办一场数学知识竞赛,共有20道题,答对一题得5分,答错一题扣1分,不答不得分也不扣分,某学生在竞赛中答错的比不答的多3题,总共得71分,问该学生在这次竞赛中答对了多少题?
解:设该学生没有答x题,则答错(x+3)题,答对[20-(x+x+3)]题,依题意得:
5[20-(x+x+3)]-(x+3)=71,
x=1,
∴20-(x+x+3)=20-5=15.
答:该学生答对15题.
(责任编辑黄桂坚)。