概率论与数理统计的起源与发展
【2024版】概率论与数理统计(数理统计的基本概念)
X
2 n
)
D(
X
2 1
)
D(
X
2 2
)
D(
X
2 n
)
nD (
X
2 i
)
n{ E (
X
4 i
)
[E(
X
2 i
)]2
}
n
x4
1
2
e
x2 2
dx
12
n3
1
2n
23
若 2 ~ 2(n) 分布函数为F ( x)
,0 1 若F ( x) P{ 2 x}
则其解称为 2 分布 的 分位数(临界值)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
引入统计量的概念
12
定义 设( X1, X 2 ,, X n )为来自总体X的一个样本,
若n元函数f ( X1, X 2 ,, X n )不含任何未知参数,
则
称f
(
X
1
,
X
2
,,
X
n
)为X
1
,
X
2
概率论与数理统计的起源与发展
概率论与数理统计的起源与发展概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
早在1654年,意大利医生兼数学家卡当,据说曾大量地进行过赌博。
他在赌博时研究不输的方法,实际是概率论的萌芽。
在那个时代,虽然概率论的萌芽有些进展,但还没有出现真正的概率论。
十七世纪中叶,法国贵族德·美黑在骰子赌博中,由于有要急近处理的事情必须中途停止赌博,要靠对胜负的预测把赌资进行合理的分配,但不知用什么样的比例分配才算合理,于是就写信向当时法国的最高数学家帕斯卡请教。
正是这封信使概率论向前迈出了第一步。
帕斯卡和当时第一流的数学家费尔玛一起,研究了德·美黑提出的关于骰子赌博的问题。
于是,一个新的数学分支--概率论登上了历史舞台。
三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。
在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。
后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。
这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、普阿松、切贝谢夫、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。
在这段时间里,概率论的发展简直到了使人着迷的程度。
但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。
因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。
概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。
经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。
概率论和数理统计起源
概率论和数理统计起源(1)从随机现象谈起在自然界和现实生活中,一切事物都是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果关系,可以分成截然不同的两大类:一类是确定性的现象。
这类现象是在一定条件下,必定会导致某种确定的结果。
举例来说,在标准大气压下,水加热到100度,就必然会沸腾。
又如,把铁加热到1530度的时候,必然会熔化成液态。
事物间这种联系是属于必然性的。
通常的自然科学各学科就是专门研究和认识这种必然性,寻求这类必然现象的因果关系,把握它们之间的数量规律,以达到认识世界和改造世界的目的。
另一类是不确定性的现象。
这类现象是在一定条件下,它的结果是不确定的。
举例来说,同一工人在同一车床上加工同一种零件若干个,它们的尺寸总会有些差异。
又如,在同样条件下,进行小麦品种的人工催芽试验,各颗种子的发芽情况也不尽相同,有强弱和早晚之别等等。
为什么在相同的一定条件下,会出现这种种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然性因素影响着结果。
而这些次要的、偶然起作用的因素又是人们无法事先一一能够掌握的。
正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先作出确定的答案。
事物间这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在着的。
比如:拿北京地区来说,测量每年七月份的天气平均气温,每年都各有差异,不完全相同,而且也不能准确地预测来年七月份的平均气温。
这样,“北京七月份平均气温”就是随机现象。
又如,同一名工人,用同一台车床在同一条件下(同材料、同一操作规程)加工一种标准长度150毫米的零件等现象,也是随机现象。
因此,我们说随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所得结果不完全一样,而且无法准确地预测下次所得结果的现象。
概率论与数理统计发展简史
概率论发展简史概率论是一门研究随机现象的数量规律学科。
它起源于对赌博问题的研究。
早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。
他们的研究除了赌博外还与当时的人口、保险业等有关,但由于卡丹等人的思想未引起重视,概率概念的要旨也不明确,于是很快被人淡忘了。
概率概念的要旨只是在17世纪中叶法国数学家帕斯卡与费马的讨论中才比较明确。
他们在往来的信函中讨论"合理分配赌注问题"。
该问题可以简化为:帕斯卡与费马用各自不同的方法解决了这个问题。
虽然他们在解答中没有明确定义概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢得情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡与费马开始的。
概率论起源于博弈问题。
15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。
1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。
这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。
而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。
他在遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理,在概率论发展史上占有重要地位。
伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果。
之后法国数学家蒲丰(C.de Buffon,1707-1788)提出了著名的“普丰问题”,引进了几何概率。
另外,拉普拉斯、高斯和泊松(S.D.Poisson,1781-1840)等对概率论做出了进一步奠基性工作。
概率论与数理统计发展简史
概率论与数理统计发展简史在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献.17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论.早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了.不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论.荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验+++-之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括.继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.通过贝努利和棣谟佛的努力,使数学方法有效地应用于概率研究之中,这就把概率论的特殊发展同数学的一般发展联系起来,使概率论一开始就成为数学的一个分支.概率论问世不久,就在应用方面发挥了重要的作用.牛痘在欧洲大规模接种之后,曾因副作用引起争议.这时贝努利的侄子丹尼尔•贝努利(Daniel Bernoulli)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松(Poisson)又将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》.总之,概率论在18世纪确立后,就充分地反映了其广泛的实践意义.19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展.其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等.概率论的广泛应用,使它于18和19两个世纪成为热门学科,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题,这在一定程度上造成了“滥用”的情况,因此到19世纪后半期时,人们不得不重新对概率进行检查,为它奠定牢固的逻辑基础,使它成为一门强有力的学科.1917年苏联科学家伯恩斯坦首先给出了概率论的公理体系.1933年柯尔莫哥洛夫又以更完整的形式提出了概率论的公理结构,从此,更现代意义上的完整的概率论臻于完成.相对于其它许多数学分支而言,数理统计是一个比较年轻的数学分支.多数人认为它的形成是在20世纪40年代克拉美(H.Carmer)的著作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科.它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科,它有很多分支,但其基本内容为采集样本和统计推断两大部分.发展到今天的现代数理统计学,又经历了各种历史变迁.统计的早期开端大约是在公元前1世纪初的人口普查计算中,这是统计性质的工作,但还不能算作是现代意义下的统计学.到了18世纪,统计才开始向一门独立的学科发展,用于描述表征一个状态的条件的一些特征,这是由于受到概率论的影响.高斯从描述天文观测的误差而引进正态分布,并使用最小二乘法作为估计方法,是近代数理统计学发展初期的重大事件,18世纪到19世纪初期的这些贡献,对社会发展有很大的影响.例如,用正态分布描述观测数据后来被广泛地用到生物学中,其应用是如此普遍,以至在19世纪相当长的时期内,包括高尔顿(Galton)在内的一些学者,认为这个分布可用于描述几乎是一切常见的数据.直到现在,有关正态分布的统计方法,仍占据着常用统计方法中很重要的一部分.最小二乘法方面的工作,在20世纪初以来,又经过了一些学者的发展,如今成了数理统计学中的主要方法.从高斯到20世纪初这一段时间,统计学理论发展不快,但仍有若干工作对后世产生了很大的影响.其中,如贝叶斯(Bayes)在1763年发表的《论有关机遇问题的求解》,提出了进行统计推断的方法论方面的一种见解,在这个时期中逐步发展成统计学中的贝叶斯学派(如今,这个学派的影响愈来愈大).现在我们所理解的统计推断程序,最早的是贝叶斯方法,高斯和拉普拉斯应用贝叶斯定理讨论了参数的估计法,那时使用的符号和术语,至今仍然沿用.再如前面提到的高尔顿在回归方面的先驱性工作,也是这个时期中的主要发展,他在遗传研究中为了弄清父子两辈特征的相关关系,揭示了统计方法在生物学研究中的应用,他引进回归直线、相关系数的概念,创始了回归分析.数理统计学发展史上极重要的一个时期是从19世纪到二次大战结束.现在,多数人倾向于把现代数理统计学的起点和达到成熟定为这个时期的始末.这确是数理统计学蓬勃发展的一个时期,许多重要的基本观点、方法,统计学中主要的分支学科,都是在这个时期建立和发展起来的.以费歇尔(R.A.Fisher)和皮尔逊(K.Pearson)为首的英国统计学派,在这个时期起了主导作用,特别是费歇尔.继高尔顿之后,皮尔逊进一步发展了回归与相关的理论,成功地创建了生物统计学,并得到了“总体”的概念,1891年之后,皮尔逊潜心研究区分物种时用的数据的分布理论,提出了“概率”和“相关”的概念.接着,又提出标准差、正态曲线、平均变差、均方根误差等一系列数理统计基本术语.皮尔逊致力于大样本理论的研究,他发现不少生物方面的数据有显著的偏态,不适合用正态分布去刻画,为此他提出了后来以他的名字命名的分布族,为估计这个分布族中的参数,他提出了“矩法”.为考察实际数据与这族分布的拟合分布优劣问题,他引进了著名“χ2检验法”,并在理论上研究了其性质.这个检验法是假设检验最早、最典型的方法,他在理论分布完全给定的情况下求出了检验统计量的极限分布.19 01年,他创办了《生物统计学》,使数理统计有了自己的阵地,这是20世纪初叶数学的重大收获之一.1908年皮尔逊的学生戈赛特(Gosset)发现了Z的精确分布,创始了“精确样本理论”.他署名“Student”在《生物统计学》上发表文章,改进了皮尔逊的方法.他的发现不仅不再依靠近似计算,而且能用所谓小样本进行统计推断,并使统计学的对象由集团现象转变为随机现象.现“Student分布”已成为数理统计学中的常用工具,“Student氏”也是一个常见的术语.英国实验遗传学家兼统计学家费歇尔,是将数理统计作为一门数学学科的奠基者,他开创的试验设计法,凭借随机化的手段成功地把概率模型带进了实验领域,并建立了方差分析法来分析这种模型.费歇尔的试验设计,既把实践带入理论的视野内,又促进了实践的进展,从而大量地节省了人力、物力,试验设计这个主题,后来为众多数学家所发展.费歇尔还引进了显著性检验的概念,成为假设检验理论的先驱.他考察了估计的精度与样本所具有的信息之间的关系而得到信息量概念,他对测量数据中的信息,压缩数据而不损失信息,以及对一个模型的参数估计等贡献了完善的理论概念,他把一致性、有效性和充分性作为参数估计量应具备的基本性质.同时还在1912年提出了极大似然法,这是应用上最广的一种估计法.他在20年代的工作,奠定了参数估计的理论基础.关于χ2检验,费歇尔1924年解决了理论分布包含有限个参数情况,基于此方法的列表检验,在应用上有重要意义.费歇尔在一般的统计思想方面也作出过重要的贡献,他提出的“信任推断法”,在统计学界引起了相当大的兴趣和争论,费歇尔给出了许多现代统计学的基础概念,思考方法十分直观,他造就了一个学派,在纯粹数学和应用数学方面都建树卓越.这个时期作出重要贡献的统计学家中,还应提到奈曼(J.Neyman)和皮尔逊(E.Pearson).他们在从1928年开始的一系列重要工作中,发展了假设检验的系列理论.奈曼-皮尔逊假设检验理论提出和精确化了一些重要概念.该理论对后世也产生了巨大影响,它是现今统计教科书中不可缺少的一个组成部分,奈曼还创立了系统的置信区间估计理论,早在奈曼工作之前,区间估计就已是一种常用形式,奈曼从1934年开始的一系列工作,把区间估计理论置于柯尔莫哥洛夫概率论公理体系的基础之上,因而奠定了严格的理论基础,而且他还把求区间估计的问题表达为一种数学上的最优解问题,这个理论与奈曼-皮尔逊假设检验理论,对于数理统计形成为一门严格的数学分支起了重大作用.以费歇尔为代表人物的英国成为数理统计研究的中心时,美国在二战中发展亦快,有三个统计研究组在投弹问题上进行了9项研究,其中最有成效的哥伦比亚大学研究小组在理论和实践上都有重大建树,而最为著名的是首先系统地研究了“序贯分析”,它被称为“30年代最有威力”的统计思想.“序贯分析”系统理论的创始人是著名统计学家沃德(Wald).他是原籍罗马尼亚的英国统计学家,他于1934年系统发展了早在20年代就受到注意的序贯分析法.沃德在统计方法中引进的“停止规则”的数学描述,是序贯分析的概念基础,并已证明是现代概率论与数理统计学中最富于成果的概念之一.从二战后到现在,是统计学发展的第三个时期,这是一个在前一段发展的基础上,随着生产和科技的普遍进步,而使这个学科得到飞速发展的一个时期,同时,也出现了不少有待解决的大问题.这一时期的发展可总结如下:一是在应用上愈来愈广泛,统计学的发展一开始就是应实际的要求,并与实际密切结合的.在二战前,已在生物、农业、医学、社会、经济等方面有不少应用,在工业和科技方面也有一些应用,而后一方面在战后得到了特别引人注目的进展.例如,归纳“统计质量管理”名目下的众多的统计方法,在大规模工业生产中的应用得到了很大的成功,目前已被认为是不可缺少的.统计学应用的广泛性,也可以从下述情况得到印证:统计学已成为高等学校中许多专业必修的内容;统计学专业的毕业生的人数,以及从事统计学的应用、教学和研究工作的人数的大幅度的增长;有关统计学的著作和期刊杂志的数量的显著增长.二是统计学理论也取得重大进展.理论上的成就,综合起来大致有两个主要方面:一个方面与沃德提出的“统计决策理论”,另一方面就是大样本理论.沃德是20世纪对统计学面貌的改观有重大影响的少数几个统计学家之一.1950年,他发表了题为《统计决策函数》的著作,正式提出了“统计决策理论”.沃德本来的想法,是要把统计学的各分支都统一在“人与大自然的博奕”这个模式下,以便作出统一处理.不过,往后的发展表明,他最初的设想并未取得很大的成功,但却有着两方面的重要影响:一是沃德把统计推断的后果与经济上的得失联系起来,这使统计方法更直接用到经济性决策的领域;二是沃德理论中所引进的许多概念和问题的新提法,丰富了以往的统计理论.贝叶斯统计学派的基本思想,源出于英国学者贝叶斯的一项工作,发表于他去世后的1763年后世的学者把它发展为一整套关于统计推断的系统理论.信奉这种理论的统计学者,就组成了贝叶斯学派.这个理论在两个方面与传统理论(即基于概率的频率解释的那个理论)有根本的区别:一是否定概率的频率的解释,这涉及到与此有关的大量统计概念,而提倡给概率以“主观上的相信程度”这样的解释;二是“先验分布”的使用,先验分布被理解为在抽样前对推断对象的知识的概括.按照贝叶斯学派的观点,样本的作用在于且仅在于对先验分布作修改,而过渡到“后验分布”――其中综合了先验分布中的信息与样本中包含的信息.近几十年来其信奉者愈来愈多,二者之间的争论,是战后时期统计学的一个重要特点.在这种争论中,提出了不少问题促使人们进行研究,其中有的是很根本性的.贝叶斯学派与沃德统计决策理论的联系在于:这二者的结合,产生“贝叶斯决策理论”,它构成了统计决策理论在实际应用上的主要内容.三是电子计算机的应用对统计学的影响.这主要在以下几个方面.首先,一些需要大量计算的统计方法,过去因计算工具不行而无法使用,有了计算机,这一切都不成问题.在战后,统计学应用愈来愈广泛,这在相当程度上要归公功于计算机,特别是对高维数据的情况.计算机的使用对统计学另一方面的影响是:按传统数理统计学理论,一个统计方法效果如何,甚至一个统计方法如何付诸实施,都有赖于决定某些统计量的分布,而这常常是极困难的.有了计算机,就提供了一个新的途径:模拟.为了把一个统计方法与其它方法比较,可以选择若干组在应用上有代表性的条件,在这些条件下,通过模拟去比较两个方法的性能如何,然后作出综合分析,这避开了理论上难以解决的难题,有极大的实用意义.。
概率论与数理统计发展史简要、主要内容概要及其主要应用
概率论与数理统计是一门研究随机现象和数据分析的学科。
以下是关于概率论与数理统计发展史、主要内容概要以及其主要应用的简要介绍:发展史概率论与数理统计是数学的重要分支之一,其发展可以追溯到17世纪。
以下是一些重要的里程碑事件:- 1654年,法国贵族帕斯卡尔引入概率论的基本概念。
- 18世纪,瑞士数学家伯努利家族对概率论做出了系统的研究,并提出伯努利试验和大数定律。
- 19世纪,法国数学家拉普拉斯在概率论方面有很多重要贡献,提出了拉普拉斯公式和拉普拉斯逼近定理。
-20世纪,俄国数学家科尔莫哥洛夫发展了现代概率论的基本框架,建立起了测度论和概率测度的数学基础。
主要内容概要概率论研究随机现象的规律性和不确定性,主要包括以下几个方面的内容:1. 概率基本概念:包括样本空间、事件、随机变量等。
2. 概率分布:研究随机变量的取值及其对应的概率。
3. 大数定律:研究随机变量序列的稳定性,指出当样本容量足够大时,随机现象的长期平均值收敛于期望值的概率趋近于1。
4. 中心极限定理:研究多个相互独立的随机变量之和的分布趋近于正态分布的概率。
数理统计是利用样本数据对总体特征进行推断和决策的学科,主要内容如下:1. 抽样方法:研究如何从总体中获取代表性样本的方法。
2. 统计描述:通过统计量对总体特征进行度量和描述。
3. 参数估计:利用样本数据对总体参数进行估计。
4. 假设检验:根据样本数据对关于总体的假设进行推断和判断。
5. 方差分析和回归分析:研究多个变量之间的关系和影响。
主要应用概率论与数理统计具有广泛的应用领域,涉及自然科学、社会科学、工程技术等众多领域,包括但不限于以下方面:1. 金融和风险管理:用于分析投资组合的风险、金融市场波动性的预测和金融产品的定价。
2. 医学和生物统计学:应用于疾病概率分析、药物疗效评估和流行病学研究等。
3. 工程和质量控制:用于产品质量分析、过程改进和可靠性评估。
4. 社会科学和市场调查:用于样本调查、舆论调查和社会现象的分析。
概率论与数理统计简史
概率论与数理统计简史概率论与数理统计是一门研究随机现象规律的数学分支。
其历史悠久,应用广泛,发展迅速。
概率论起源于十七世纪中叶,当时在误差、人口统计、人寿保险等范筹中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
数学家费马向一法国数学家帕斯卡提出下列的问题:“现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A赢a局﹝a < s﹞,而赌徒B赢b局﹝b < s﹞时,赌博中止,那赌本应怎样分才合理呢?”于是他们从不同的理由出发,在1654年7月29日给出了正确的解法,而在三年后,即1657年,荷兰的另一数学家惠更斯﹝1629-1695﹞亦用自己的方法解决了这一问题,惠更斯写成了《论赌博中的计算》一书,这就是概率论最早的论著,他们三人提出的解法中,都首先涉及了数学期望﹝mathematical expectation﹞这一概念,并由此奠定了古典概率论的基础。
使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各·伯努利﹝1654-1705﹞。
他的主要贡献是建立了概率论中的第一个极限定理,我们称为“伯努利大数定理”,即“在多次重复试验中,频率有趋稳定的趋势”。
这一定理在他死后的1713年,发表在他的遗著《猜度术》中。
到了1730年,法国数学家棣莫弗出版其著作《分析杂论》,当中包含了著名的“棣莫弗─拉普拉斯定理”。
这就是概率论中第二个基本极限定理的原始初形。
而接着拉普拉斯在1812年出版的《概率的分析理论》中,首先明确地对概率作了古典的定义。
另外,他又和数学家高斯,勒让德等建立了关于“正态分布”及“最小二乘法”的理论。
另一在概率论发展史上的代表人物是法国的泊松。
他推广了伯努利形式下的大数定律,研究得出了一种新的分布,就是泊松分布。
概率论继他们之后,其中心研究课题则集中在推广和改进伯努利大数定律及中心极限定理。
第一章 事件与概率
事件的和(A∪B) : 事件A和事 件B中至少有一个发生的这 一事件称为事件A和事件B 的和, 记为A∪B. 事件的积(A∩B) : 事件A和事 件B同时发生这一事件称为 事件A和事件B的积, 记为 A∩B. 如果A∩B= Φ, 则称A和B不相 容, 即事件A和B不能同时发 生.
概率论与数理统计
概率论与数理统计
样本空间的分割
设B1, B2, · · · Bn是样本空间Ω中的两两不相 容的一组事件, 即BiBj = Φ, i ≠ j, 且满足 n i =1 Bi =Ω, 则称B1, B2, · · · , Bn 是样本空间Ω 的一 个分割(又称为完备事件群,英文为partition).
Ac
对立事件: A不发生这一 事件称为事件A的对立 事件(或余事件) .
事件A和事件B的差A−B: 事件A发生而事件B不发 生这一事件称为事件A 和事件B的差, 记为A−B.
概率论与数理统计
De Morgan对偶法则
De Morgan对偶法则
上面公式可以推广到n个事件:
概率论与数理统计
什么是概率
概率论与数理统计
随机现象和随机试验
随机现象:自然界中的客观现象, 当人们观测它时, 所得结果不能预先确定, 而仅仅是多种可能结果 之一.
随机试验: 随机现象的实现和对它某特征的观测.
随机试验的要求: 结果至少有两个;每次只得到其 中一种结果且之前不能预知;在相同条件下能重复 试验. 举例说明随机现象和随机试验.
概率论与数理统计
(三)主观概率
人们常谈论种种事件出现机会的大小, 如某人有80% 的可能性办成某事. 而另一人则可能认为仅有50%的 可能性. 即我们常常会拿一个数字去估计这类事件发 生的可能性, 而心目中并不把它与频率挂钩.
概率论与数理统计的起源与发展
概率论与数理统计的起源与发展张伟超(哈尔滨工业大学,能源学院1202102班,学号1120200225)摘要:概率论与数理统计是研究随机现象及其规律性的一门数学学科,研究随机现象的规律性有其独特的思想方法,它不是寻求出现的每一种现象的一切物理因素,不能用研究确定性现象的方法来研究随机现象,而是承认在所研究的问题中存在有一些人们不能认识或者根本不知道的随机因素的作用下,发生了随机现象。
这样,人们可以通过试验来观察随机现象,从而得到规律。
概率论的起源比较早,但是真正意义上确定其地位的不到200年。
关键词:概率论与数理统计,起源,发展,应用。
正文1,概率论与数理统计概率论是研究随机现象数量规律的数学分支,是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,是的人们可以利用以成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他学科提供了解决办法的新思路和新方法。
数理统计是以概率论为基础的,基于有效地观测,收集,整理,分析带有随机性的数据来研究随机现象,进而对所观测的问题作出推断和预测,直到为采取一定的决策和行动提供依据和建议。
2,其起源概率论的起源与赌博问题有关。
16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。
有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。
他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。
其中显著的是1654 年,费马与帕斯卡的通信中关于分赌注问题的讨论被公认为是概率论诞生的标志。
概率论与数理统计发展史
概率论与数理统计发展史标准化工作室编码[XX968T-XX89628-XJ668-XT689N]概率论与数理统计发展简史姓名:苗壮班级:1108105指导教师:曹莉摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献.关键词:概率论、数理统计、发展史正文:1.概率论的发展17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论.早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性,卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了.不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性,比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论.荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期着作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名着《推想的艺术》发表.在这部着作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括.继贝努利之后,法国数学家棣谟佛(AbrahamdeMoiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.1706年法国数学家蒲丰(ComtedeBuffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.通过贝努利和棣谟佛的努力,使数学方法有效地应用于概率研究之中,这就把概率论的特殊发展同数学的一般发展联系起来,使概率论一开始就成为数学的一个分支.概率论问世不久,就在应用方面发挥了重要的作用.牛痘在欧洲大规模接种之后,曾因副作用引起争议.这时贝努利的侄子丹尼尔·贝努利(DanielBernoulli)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松(Poisson)又将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》.总之,概率论在18世纪确立后,就充分地反映了其广泛的实践意义.19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展.其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等.概率论的广泛应用,使它于18和19两个世纪成为热门学科,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题,这在一定程度上造成了“滥用”的情况,因此到19世纪后半期时,人们不得不重新对概率进行检查,为它奠定牢固的逻辑基础,使它成为一门强有力的学科.1917年苏联科学家伯恩斯坦首先给出了概率论的公理体系.1933年柯尔莫哥洛夫又以更完整的形式提出了概率论的公理结构,从此,更现代意义上的完整的概率论臻于完成.相对于其它许多数学分支而言,数理统计是一个比较年轻的数学分支.多数人认为它的形成是在20世纪40年代克拉美(H.Carmer)的着作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科.它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科,它有很多分支,但其基本内容为采集样本和统计推断两大部分.发展到今天的现代数理统计学,又经历了各种历史变迁.2.统计的发展统计的早期开端大约是在公元前1世纪初的人口普查计算中,这是统计性质的工作,但还不能算作是现代意义下的统计学.到了18世纪,统计才开始向一门独立的学科发展,用于描述表征一个状态的条件的一些特征,这是由于受到概率论的影响.高斯从描述天文观测的误差而引进正态分布,并使用最小二乘法作为估计方法,是近代数理统计学发展初期的重大事件,18世纪到19世纪初期的这些贡献,对社会发展有很大的影响.例如,用正态分布描述观测数据后来被广泛地用到生物学中,其应用是如此普遍,以至在19世纪相当长的时期内,包括高尔顿(Galton)在内的一些学者,认为这个分布可用于描述几乎是一切常见的数据.直到现在,有关正态分布的统计方法,仍占据着常用统计方法中很重要的一部分.最小二乘法方面的工作,在20世纪初以来,又经过了一些学者的发展,如今成了数理统计学中的主要方法.从高斯到20世纪初这一段时间,统计学理论发展不快,但仍有若干工作对后世产生了很大的影响.其中,如贝叶斯(Bayes)在1763年发表的《论有关机遇问题的求解》,提出了进行统计推断的方法论方面的一种见解,在这个时期中逐步发展成统计学中的贝叶斯学派(如今,这个学派的影响愈来愈大).现在我们所理解的统计推断程序,最早的是贝叶斯方法,高斯和拉普拉斯应用贝叶斯定理讨论了参数的估计法,那时使用的符号和术语,至今仍然沿用.再如前面提到的高尔顿在回归方面的先驱性工作,也是这个时期中的主要发展,他在遗传研究中为了弄清父子两辈特征的相关关系,揭示了统计方法在生物学研究中的应用,他引进回归直线、相关系数的概念,创始了回归分析.数理统计学发展史上极重要的一个时期是从19世纪到二次大战结束.现在,多数人倾向于把现代数理统计学的起点和达到成熟定为这个时期的始末.这确是数理统计学蓬勃发展的一个时期,许多重要的基本观点、方法,统计学中主要的分支学科,都是在这个时期建立和发展起来的.以费歇尔(R.A.Fisher)和皮尔逊(K.Pearson)为首的英国统计学派,在这个时期起了主导作用,特别是费歇尔.继高尔顿之后,皮尔逊进一步发展了回归与相关的理论,成功地创建了生物统计学,并得到了“总体”的概念,1891年之后,皮尔逊潜心研究区分物种时用的数据的分布理论,提出了“概率”和“相关”的概念.接着,又提出标准差、正态曲线、平均变差、均方根误差等一系列数理统计基本术语.皮尔逊致力于大样本理论的研究,他发现不少生物方面的数据有显着的偏态,不适合用正态分布去刻画,为此他提出了后来以他的名字命名的分布族,为估计这个分布族中的参数,他提出了“矩法”.为考察实际数据与这族分布的拟合分布优劣问题,他引进了着名“χ2检验法”,并在理论上研究了其性质.这个检验法是假设检验最早、最典型的方法,他在理论分布完全给定的情况下求出了检验统计量的极限分布.1901年,他创办了《生物统计学》,使数理统计有了自己的阵地,这是20世纪初叶数学的重大收获之一.1908年皮尔逊的学生戈赛特(Gosset)发现了Z的精确分布,创始了“精确样本理论”.他署名“Student”在《生物统计学》上发表文章,改进了皮尔逊的方法.他的发现不仅不再依靠近似计算,而且能用所谓小样本进行统计推断,并使统计学的对象由集团现象转变为随机现象.现“Student分布”已成为数理统计学中的常用工具,“Student氏”也是一个常见的术语.英国实验遗传学家兼统计学家费歇尔,是将数理统计作为一门数学学科的奠基者,他开创的试验设计法,凭借随机化的手段成功地把概率模型带进了实验领域,并建立了方差分析法来分析这种模型.费歇尔的试验设计,既把实践带入理论的视野内,又促进了实践的进展,从而大量地节省了人力、物力,试验设计这个主题,后来为众多数学家所发展.费歇尔还引进了显着性检验的概念,成为假设检验理论的先驱.他考察了估计的精度与样本所具有的信息之间的关系而得到信息量概念,他对测量数据中的信息,压缩数据而不损失信息,以及对一个模型的参数估计等贡献了完善的理论概念,他把一致性、有效性和充分性作为参数估计量应具备的基本性质.同时还在1912年提出了极大似然法,这是应用上最广的一种估计法.他在20年代的工作,奠定了参数估计的理论基础.关于χ2检验,费歇尔1924年解决了理论分布包含有限个参数情况,基于此方法的列表检验,在应用上有重要意义.费歇尔在一般的统计思想方面也作出过重要的贡献,他提出的“信任推断法”,在统计学界引起了相当大的兴趣和争论,费歇尔给出了许多现代统计学的基础概念,思考方法十分直观,他造就了一个学派,在纯粹数学和应用数学方面都建树卓越.这个时期作出重要贡献的统计学家中,还应提到奈曼(J.Neyman)和皮尔逊(E.Pearson).他们在从1928年开始的一系列重要工作中,发展了假设检验的系列理论.奈曼-皮尔逊假设检验理论提出和精确化了一些重要概念.该理论对后世也产生了巨大影响,它是现今统计教科书中不可缺少的一个组成部分,奈曼还创立了系统的置信区间估计理论,早在奈曼工作之前,区间估计就已是一种常用形式,奈曼从1934年开始的一系列工作,把区间估计理论置于柯尔莫哥洛夫概率论公理体系的基础之上,因而奠定了严格的理论基础,而且他还把求区间估计的问题表达为一种数学上的最优解问题,这个理论与奈曼-皮尔逊假设检验理论,对于数理统计形成为一门严格的数学分支起了重大作用.以费歇尔为代表人物的英国成为数理统计研究的中心时,美国在二战中发展亦快,有三个统计研究组在投弹问题上进行了9项研究,其中最有成效的哥伦比亚大学研究小组在理论和实践上都有重大建树,而最为着名的是首先系统地研究了“序贯分析”,它被称为“30年代最有威力”的统计思想.“序贯分析”系统理论的创始人是着名统计学家沃德(Wald).他是原籍罗马尼亚的英国统计学家,他于1934年系统发展了早在20年代就受到注意的序贯分析法.沃德在统计方法中引进的“停止规则”的数学描述,是序贯分析的概念基础,并已证明是现代概率论与数理统计学中最富于成果的概念之一.从二战后到现在,是统计学发展的第三个时期,这是一个在前一段发展的基础上,随着生产和科技的普遍进步,而使这个学科得到飞速发展的一个时期,同时,也出现了不少有待解决的大问题.这一时期的发展可总结如下:一是在应用上愈来愈广泛,统计学的发展一开始就是应实际的要求,并与实际密切结合的.在二战前,已在生物、农业、医学、社会、经济等方面有不少应用,在工业和科技方面也有一些应用,而后一方面在战后得到了特别引人注目的进展.例如,归纳“统计质量管理”名目下的众多的统计方法,在大规模工业生产中的应用得到了很大的成功,目前已被认为是不可缺少的.统计学应用的广泛性,也可以从下述情况得到印证:统计学已成为高等学校中许多专业必修的内容;统计学专业的毕业生的人数,以及从事统计学的应用、教学和研究工作的人数的大幅度的增长;有关统计学的着作和期刊杂志的数量的显着增长.二是统计学理论也取得重大进展.理论上的成就,综合起来大致有两个主要方面:一个方面与沃德提出的“统计决策理论”,另一方面就是大样本理论.沃德是20世纪对统计学面貌的改观有重大影响的少数几个统计学家之一.1950年,他发表了题为《统计决策函数》的着作,正式提出了“统计决策理论”.沃德本来的想法,是要把统计学的各分支都统一在“人与大自然的博奕”这个模式下,以便作出统一处理.不过,往后的发展表明,他最初的设想并未取得很大的成功,但却有着两方面的重要影响:一是沃德把统计推断的后果与经济上的得失联系起来,这使统计方法更直接用到经济性决策的领域;二是沃德理论中所引进的许多概念和问题的新提法,丰富了以往的统计理论.贝叶斯统计学派的基本思想,源出于英国学者贝叶斯的一项工作,发表于他去世后的1763年后世的学者把它发展为一整套关于统计推断的系统理论.信奉这种理论的统计学者,就组成了贝叶斯学派.这个理论在两个方面与传统理论(即基于概率的频率解释的那个理论)有根本的区别:一是否定概率的频率的解释,这涉及到与此有关的大量统计概念,而提倡给概率以“主观上的相信程度”这样的解释;二是“先验分布”的使用,先验分布被理解为在抽样前对推断对象的知识的概括.按照贝叶斯学派的观点,样本的作用在于且仅在于对先验分布作修改,而过渡到“后验分布”――其中综合了先验分布中的信息与样本中包含的信息.近几十年来其信奉者愈来愈多,二者之间的争论,是战后时期统计学的一个重要特点.在这种争论中,提出了不少问题促使人们进行研究,其中有的是很根本性的.贝叶斯学派与沃德统计决策理论的联系在于:这二者的结合,产生“贝叶斯决策理论”,它构成了统计决策理论在实际应用上的主要内容.三是电子计算机的应用对统计学的影响.这主要在以下几个方面.首先,一些需要大量计算的统计方法,过去因计算工具不行而无法使用,有了计算机,这一切都不成问题.在战后,统计学应用愈来愈广泛,这在相当程度上要归公功于计算机,特别是对高维数据的情况.计算机的使用对统计学另一方面的影响是:按传统数理统计学理论,一个统计方法效果如何,甚至一个统计方法如何付诸实施,都有赖于决定某些统计量的分布,而这常常是极困难的.有了计算机,就提供了一个新的途径:模拟.为了把一个统计方法与其它方法比较,可以选择若干组在应用上有代表性的条件,在这些条件下,通过模拟去比较两个方法的性能如何,然后作出综合分析,这避开了理论上难以解决的难题,有极大的实用意义.参考文献:(无)百度文库。
演变历程从概率论到数理统计的发展
演变历程从概率论到数理统计的发展概率论和数理统计作为数学中最为重要的分支领域之一,具有广泛而深远的应用价值。
它们的演变历程可以追溯到古希腊时期的概念探索,经过多个世纪的发展和完善,如今已成为现代科学和实证研究的基石。
本文将从古代世纪开始探讨概率论和数理统计的历史演变,并探讨它们之间的关系以及对现代社会的影响。
一、古代概念的起源在我们研究概率论和数理统计的历史演变之前,我们需要了解古代最早的概念和思想对这两个领域的形成产生了什么影响。
在古希腊时期,早期的学者就对随机事件和几率进行了探索。
例如,柏拉图和亚里士多德都对偶然事件和其对人类生活的影响进行了思考。
此外,一些早期的游戏、赌博以及宗教仪式中的抽签活动,也为概率论和数理统计的发展提供了实践基础和思想启示。
二、概率论的发展概率论的发展始于十七世纪的法国数学家帕斯卡尔和费马。
帕斯卡尔在《赌场问题的书信》中研究了赌博中的几率问题,提出了著名的帕斯卡三角形,通过组合数的方法计算了赌博胜率。
费马在处理赌博问题时,提出了费马小定理,扩展了概率论的范畴。
此外,英国数学家哈代也对概率论做出了重要贡献,他将概率论与数学分析结合,提出了概率论的数学化定义,为概率论的形式化奠定了基础。
随着概率论的发展,一些重要的概念和定理被逐渐建立。
例如,拉普拉斯提出了概率的频率解释,奠定了概率论统计推断的理论基础。
伯努利提出了大数定律,指出在大量试验中,事件发生的频率会趋近于事件的概率。
此外,柯尔莫哥洛夫和科尔莫哥洛夫提出了概率空间的概念,系统地研究了概率论的公设和性质,进一步完善了概率论的基本框架。
三、数理统计的崛起随着概率论的不断发展,人们开始将概率论与实践问题相结合,从而形成了数理统计。
数理统计作为概率论的应用分支,致力于通过对样本数据的分析来推测和推断总体的特征。
十八世纪末至十九世纪初,高斯和拉普拉斯等数学家成为数理统计领域的开拓者。
高斯在统计学中提出了正态分布的概念,通过对测量误差的分析,发现了正态分布的普遍存在性,从而成为现代统计分析中最重要的分布之一。
随机试验
在社会科学领域 , 特别是经济学中研究 最优决策和经 济的稳定增长等问题 , 都大 量采用《概率统计方法》. 法国数学家拉普拉斯(Laplace) 说对了: “ 生活中最重要的问题 , 其中绝大
多数在实质上只是概率的问题.”
英国的逻辑学家和经济学家杰文斯曾
1:由条件→结果:确定性事件(现象) 2:随机事件(现象)
说明 1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性, 但在大量试或观察中, 这种结果的出现具有一 定的统计规律性 , 概率论就是研究随机现象这种 本质规律的一门数学学科. 如何来研究随机现象?
实例 1. 在相同条件下掷一枚均匀的硬币,观察 正反两面出现的情况.
结果有可能出现正面也可能出现反面.
2. 一天内进入某超市的顾客数
3. 某种型号电视机的寿命
实例4 从一批含有正品 和次品的产品中任意抽取 一个产品.
实例5 过马路交叉口时, 可能遇上各种颜色的交通 指挥灯.
其结果可能为: 正品 、次品.
对概率论大加赞美:“ 概率论是生活真正 的领路人, 如果没有对概率的某种估计, 那 么我们就寸步难行, 无所作为.
国内有关经典著作
1.《概率论基础及其应用》
王梓坤著 科学出版社 1976 年版
2.《数理统计引论》
陈希儒著 科学出版社 1981年版
概率统计专业 首位中科院院士
国外有关经典著作
1.《概率论的分析理论》 概率论的最早著作
AB
AB
事件之间的运算律与集合之间的运算规律一致
交换律: AB B A; A B B A 结合律: A(BC) ( AB)C;
数理统计的起源和发展
数理统计的起源和发展李永利黑龙江八一农垦大学信息技术学院农业电气化任何一门学科的产生和发展,都离不开实践的需要,离不开已建立的其他邻近学科.对数理统计这门学科来说,尤其是这样。
因而在谈到数理统计的起源和发展时,必须介绍概率论的产生和形成,田为概率论是数理统计的理论基础。
Ⅰ.起源起源与理统计与概率论的关系,可以用测地学与几何学的关系来比拟。
几何学产生于土地的测量,这是众所周知的。
概率论,也是述主人们观亲大量约髓机现象,搜集大量的数据,进行归纳分析,而逐步产生出来的。
所以,从某种意义上说,概率论的创立,与初等统计是有密切关系的。
在西方各国,统计工作开始于公元前3050年,埃及建造金字塔,为征收建筑费用,对全国人口进行普查和统计。
到了亚里斯多德(Aristotle)时代,统计工作开始往理性演变。
这时,统计在卫生、保险、国内外贸易、军事和行政管理等方面的应用,都有详细的汜载。
统计(Statistics)一词,就是从意大利文Statisti(意指国家、政治)逐步演变而成。
到了15世纪,意大利进入了文艺复兴时期。
一些随机博奕盛行,有的赌徒为了获胜,终日冥思苦想,作了大量的试验和统计工作,从中发现一些解释不了的现象,便去请教当时著名的数学家、天文学家吉里埃(Galilco1564—1642)。
吉里埃研究了赌徒们提出的问题后,损凡了关于概率论的一些简要而有价值的定理。
这些定理,为妆坦统计的皮展奠定了根基。
到了16、l7世纪,各种娱乐和赌钱的方法越来越复杂,这样,有些人又提出了一些新的问题,需要专家们来解释。
如当时法国的一位叫梅耳(Me’re’)的著名赌徒,他曾向当时的哲学家和数学家巴士加(B.Fascal1623一1662)提出如下问题:掷一粒骼子,4次中至少出现一个6的机会,要比掷两粒骼子4次中至少出现一对6的机会更多丝,这是否成立?这一问题,引起了巴士加和他的朋友——另一位数学家费尔马(Fermat1601—1665)的兴趣。
概率论与数理统计概率历史介绍
概率论与数理统计概率历史介绍-CAL-FENGHAI.-(YICAI)-Company One1一、概率定义的发展与分析1.古典定义的历史脉络古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比.2.古典定义的简单分析古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提.如何在更多和更复杂的情况下,体现出“同等可能”伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题.“应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评.3.统计定义的历史脉络概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布•伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”.事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯•米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.4.统计定义的简单分析虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.5.公理化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格的考察.1900年,38岁的希尔伯特(1862—1943)在世界数学家大会上提出了建立概率公理系统的问题,这就是著名的希尔伯特23个问题中的第6个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903—1987)成绩最为卓著,1933年,他在《概率论基础》中运用集合论和测度论表示概率论的方法赋予了概率论严密性.6.公理化定义的简单分析为什么直到20世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.二、关于概率定义教学的几点思考对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.1.古典定义的教学定位在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.2.统计定义的教学定位从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定义定位在其合理性和必要性是比较恰当的.如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和方法.3. 概率与统计教学的背后:专业素养的提升在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定频率估计概率,一定要大量试验实验次数多少合适事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.举个例子:伯努利大数定律:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则对任意的,有.狄莫弗-拉普拉斯极限定理:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则.伯努利大数定律只是告诉我们,当n趋于无穷时,频率依概率收敛于概率p.伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p,因为频率是随着试验结果变化的,在n次试验中,事件A出现n次也是有可能的,此时p就不成立了.伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗-拉普拉斯极限定理给出了解答:.(*)例如研究课中掷硬币的问题,若要保证有95%的把握使正面向上的频率与其概率0.5之差落在0.1的范围内,那要抛掷多少次?根据(*)式,可以估计出.三、概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。
演变过程从概率论到数理统计的发展
演变过程从概率论到数理统计的发展概率论和数理统计是数学中两个重要的分支,它们在现代科学和实践中起着至关重要的作用。
从概率论到数理统计的发展经历了漫长的历史过程,本文将追溯这一演变的发展过程。
一、概率论的起源概率论的概念最早可追溯到古希腊时期的赌博问题,人们开始思考赌博事件发生的可能性。
然而,概率论的正式建立始于17世纪,由法国数学家布莱兹·帕斯卡尔和皮埃尔·德费尔马特推动。
帕斯卡尔对赌博问题的研究促使他提出了概率的概念,并建立了概率的数学理论。
德费尔马特进一步完善了概率的数学模型,提出了概率论的公理系统,奠定了概率论的基础。
二、概率论的发展18世纪,瑞士数学家洛朗斯·伯努利在概率论领域做出了重要贡献。
他研究了伯努利实验,并提出了大数定律,说明概率在重复试验中的稳定性。
这为概率论的应用奠定了基础,促使人们开始将概率应用于风险管理、保险等领域。
19世纪末期,概率论得到了进一步的发展。
俄国数学家安德烈·马尔可夫提出了马尔可夫链的概念,为随机过程的研究奠定了基础。
法国数学家勒贝格则提出了测度论的理论框架,为概率论的严格化提供了数学基础。
三、数理统计的兴起概率论的建立为数理统计的发展提供了基础。
数理统计是通过收集和分析数据来推断总体特征和进行决策的一门学科。
它开始于19世纪末20世纪初的统计学家们对数据的研究。
最著名的统计学家之一是英国统计学家卡尔·皮尔逊。
他提出了相关系数和卡方检验等统计方法,为数理统计的理论与方法的发展做出了贡献。
同时,他也是现代数理统计学派中“贝叶斯学派”的代表人物之一。
20世纪初,数理统计学得到了广泛的应用。
在工业、医学、生物学等领域,统计学的方法被用于数据分析和决策。
此外,两次世界大战期间,统计学的应用也在军事领域发挥了重要作用,例如用于战略决策和情报分析。
四、概率论与数理统计的融合概率论和数理统计逐渐融合成为现代统计学的核心内容。
概率论与数理统计发展及应用1
概率论与数理统计发展及应用摘要:通过上半学期概率论与数理统计这门课的学习,我大概了解了基本的概率知识,意识到这门课对于自己以后的发展和创新有着很大的帮助。
本文将根据自己的学习心得以及在网上,图书中查找的资料,从概率论的发展历程,以及其在各重要领域中的应用两个方面来阐述我对本门课的理解。
关键词:概率论,数理统计,发展,主要应用正文一、概率论及数理统计的发展1、历史背景17、18世纪,数学获得了巨大的进步。
数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。
除了分析学这一大系统之外,概率论就是这一时期"使欧几里得几何相形见绌"的若干重大成就之一。
2、概率论的起源与发展概率论是一门研究随机现象规律的数学分支。
概率论的研究始于意大利文艺复兴时期当时在误差、人口统计、人寿保险等范畴中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
当时赌博盛行,而且赌法复杂,赌注量大,一些职业赌徒,为求增加获胜机会,迫切需要计算取胜的思路,研究不输的方法。
十七世纪中叶,帕斯卡和当时一流的数学家费尔马一起,研究了德·美黑提出的关于骰子赌博的问题,这就是概率论的萌芽。
1657年荷兰物理学家惠更斯发表了“论赌博中的计算”的重要论文,提出了数学期望的概念,伯努利把概率论的发展向前推进了一步,于1713年出版了《猜测的艺术》,指出概率是频率的稳定值,他第一次阐明了大数定律的意义。
1718年法国数学家棣莫弗发表了重要著作《机遇原理》,书中叙述了概率乘法公式和复合事件概率的计算方法,并在1733年发现了正态分布密度函数,但他没有把这一结果应用到实际数据上,直到1924年菜被英国统计学家K·皮尔森在一家图书馆中发现。
德国数学家高斯从测量同一物体所引起的误差这一随机现象独立的发现正态分布密度函数方程,并发展了误差理论,提出了最小二乘法。
概率论与数理统计的发展阶段
概率论与数理统计的发展阶段概率论的初创阶段可以追溯到17世纪。
当时,法国数学家帕斯卡开始研究赌博中的概率问题,他提出了著名的帕斯卡三角形,并初步建立了概率论的基本概念。
后来,拉普拉斯进一步推动了概率论的发展,他提出了古典概率的概念,并建立了概率计算的公式。
此外,拉普拉斯还在概率论中引入了极限论的思想,这为概率论的进一步发展奠定了基础。
1888年,概率论进入了发展阶段。
法国数学家勒贝格独立地发展了测度论,为概率论提供了数学基础。
勒贝格提出了概率空间的概念,并基于此进行了更深入的研究,推广了拉普拉斯概率论。
此外,勒贝格还提出了测度的可数可加性,这为随机变量的引入提供了理论支持。
概率论进一步发展的另一个重大事件是俄国数学家切比雪夫的工作。
他提出了切比雪夫不等式,将概率论与数学分析结合起来,为概率论的应用提供了强大的工具。
20世纪初,概率论进入了现代阶段。
此时,概率论不再是独立于其他数学领域的分支,而是与统计学、信息论等其他学科相互关联,形成了现代概率论。
在这一阶段,概率论和数理统计的研究逐渐走向应用,并取得了众多重要的成果。
其中,最著名的是由克拉美尔和拉斯金提出的极大似然估计方法,该方法被广泛应用于统计推断中。
此外,还出现了贝叶斯统计方法和马尔可夫链蒙特卡洛方法等新的统计学方法,为概率论和统计学的进一步发展提供了新的思路。
总之,概率论与数理统计的发展经历了初创阶段、发展阶段和现代阶段。
从最初的概念建立到数学基础的发展,再到与其他学科的交叉融合,概率论与数理统计在数学和应用领域中发挥了重要的作用。
随着科学技术不断进步和应用需求的不断增加,概率论和数理统计将继续发展,并为我们解决更多的实际问题提供理论和方法。
概率论与数理统计第一章随机事件及其概率
概率论与数理统计配套教材:苏德矿等,概率论与数理统计,高等教育出版社概率论产生于17世纪,本来是由保险事业发展而产生的,但是来自赌博者的请求,却是数学家们思考概率论问题的源泉1>. 早在1654年,有一个赌徒梅勒向当时的数学家帕斯卡提出了一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算获胜,全部赌本就归胜者,但是当其中一个人甲赢了a(a<m)局的时候,赌博中止,问赌本应当如何分配才算合理?”概率论在物理、化学、生物、生态、天文、地质、医学等学科中,在控制论、信息论、电子技术、预报、运筹等工程技术中的应用都非常广泛。
序言自然界和社会上发生的现象是多种多样的.在观察、分析、研究各种现象时,通常我们将它们分为两类:(1)可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或者根据它过去的状况,在相同条件下完全可以预言将来的发展,例如,在标准大气压下,纯水加热到100℃必然沸腾;向空中抛掷一颗骰子,骰子必然会下落;在没有外力作用下,物体必然静止或作匀速直线运动;太阳每天必然从东边升起,西边落下等等,称这一类现象为确定性现象或必然现象.第一章随机事件及其概率人们经过长期实践和深入研究之后,发现随机现象在个别试验中,偶然性起着支配作用,呈现出不确定性,但在相同条件下的大量重复试验中,却呈现出某种规律性.随机现象的这种规律性我们称之为统计规律性.概率论与数理统计是研究和揭示随机现象的统计规律性的一门数学学科.(2)在个别试验中呈现不确定的结果,而在相同条件下大量重复试验中呈现规律性的现象称为随机现象(或偶然现象).例如,在相同条件下,抛掷一枚硬币,其结果可能是正面朝上,也可能是反面朝上,并且在每次抛掷之前无法确定抛掷的结果是什么.§1 随机事件在一定条件下,并不总是出现相同结果的现象称为随机现象.§1.1 随机试验与样本空间(1)抛一枚硬币,有可能正面H朝上,也有可能反面T朝上.(2)抛一粒骰子,出现的点数.(3)一只灯泡使用的寿命.在相同条件下可以重复的随机现象称为随机试验(Random experiment).随机试验具有以下特点:(1)可以在相同条件下重复进行;(2)每次试验的可能结果不止一个,并且事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.试验的样本空间的实例E1:抛一枚硬币,观察正面H、反面T出现的情况.则样本空间为Ω1 ={H,T}E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.则样本空间为Ω 2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}E3:将一枚硬币抛掷三次,观察正面H出现的次数.则样本空间为Ω 3={0,1,2,3}E7:记录某地一昼夜的最高温度和最低温度.则样本空间为Ω 7={(x,y)|T0≤x≤y≤T1}这里x表示最低温度,y表示最高温度;并设这一地区的温度不会小于T0,不会大于T1.E4:抛一粒骰子,观察出现的点数.则样本空间为Ω 4={1,2,3,4,5,6}E5:记录电话交换台一分钟内接到的呼唤次数.则样本空间为Ω5={0,1,2,3,…}E6:在一批灯泡中任意抽取一只,测试它的寿命.则样本空间为Ω 6={t|t≥0}于是样本空间是由三个样本点构成的集合这个例子表明:试验的样本点与样本空间是根据试验的内容而确定的.例:抛二粒骰子的样本空间为:§1.2 随机事件(random event)(6)空集?? 称为不可能事件(Impossible event ).(5)样本空间Ω称为必然事件(Certain event) .(4)由样本空间中的单个元素组成的子集称为基本事件(Basic events) . 随机现象的某些样本点组成的集合称为随机事件,简称事件.(2)事件A发生当且仅当A中的某个样本点出现.(1)任一事件A是相应样本空间的一个子集.(3)事件可用集合A表示,也可用语言描述.例:对于试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况. A2={HHH,TTT}(2)事件A2:“三次出现同一面”,则A1={HHH,HHT,HTH,HTT}(1)事件A1:“第一次出现的是正面H”,则A2={HHT,HTH,THH}(3)事件A3:“出现二次正面”,则例:对于试验E6:在一批灯泡中任意抽取一只,测试它的寿命.B={t|0≤t<1000}事件B:“寿命小于1000小时”,则例:对于试验E7:记录某地一昼夜的最高温度和最低温度.C={(x,y)|y-x=10, T0≤x≤y≤T1}事件C:“最高温度与最低温度相差10度”,则§1.3 事件的关系(Relation of events )设试验E的样本空间为Ω ,而A,B,Ak(k=1,2,…)是Ω的子集.事件是一个集合,因而事件间的关系与事件的运算自然按照集合论中集合之间的关系和集合运算来处理.根据“事件发生”的含义,下面给出事件的关系和运算在概率论中的提法.§1.3.1 包含关系(Inclusion relation)定义:若属于A的样本点必属于B,则称事件B包含事件A,记为A ?? B .即事件A发生必然导致事件B发生.例:抛一粒骰子,事件A=“出现4点”,B=“出现偶数点” .则事件A发生必然导致B发生,所以A ?? B .§1.3.2 相等关系(equivalent relation)定义:若属于A的样本点必属于B,且属于B的样本点必属于A,则称事件A 与事件B相等,记为A= B .A=B ?? A??B且B??A例:抛二粒骰子,A=“二粒骰子点数之和为奇数”,B=“二粒骰子的点数为一奇一偶” .则事件A发生必然导致B发生,而且B发生必然导致A发生,所以A = B .§1.3.3 互不相容(Incompatible events)定义:若事件A与事件B没有相同的样本点,则称事件A与B互不相容 .A与B互不相容,即事件A与事件B不可能同时发生.A与B互不相容?? AB=??§1.4.1 事件的并(Union of events)定义:由事件A与B中所有样本点(相同的样本点只计入一次)组成的新事件称为事件A与B的并.§1.4 事件的运算(operation of events )(1)A∪B={x|x∈A或x∈B}(2)当且仅当A,B中至少有一个发生时,事件A∪B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∪B={1,2,3,4,6}§1.4.2 事件的交(Product of events)定义:由事件A与B中公共的样本点组成的新事件称为事件A与B的交.(2)当且仅当A与B同时发生时,事件AB发生.(1)A∩B=AB={x|x∈A且x∈B}例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∩B={2}§1.4.3 事件的差(Difference of events)定义:由事件A中而不B中的样本点组成的新事件称为事件A对B的差.(1)A-B={x|x∈A且x∈B}(2)当且仅当A发生,而B不发生时,事件A-B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} .所以,A-B={1,3}问:B-A=?§1.4.4 对立事件(Opposite events)定义:由在Ω中而不在A中的样本点组成的新事件称为A的对立事件. (1)事件A与B互为对立事件?? A∪B= Ω且AB=?? .(2)A的对立事件记作B=? .例:抛一粒骰子,事件A=“出现点数不超过3”.则A={1,2,3},而Ω={1,2,3,4,5,6,}.所以, ? ={4,5,6}§1.4.5 事件运算的规则1、交换律(Exchange law) :A??B=B??A,AB=BA2、结合律(Combination law) :(A??B)??C=A??(B??C),(AB)C=A(BC)3、分配律(Distributive law) :(A??B)C=(AC)??(BC),(AB)??C=(A??C)(B??C)4、 7>De Morgan对偶律(Dual law) :(1)第三次未中奖(2)第三次才中奖(3)恰有一次中奖(4)至少有一次中奖(5)不止一次中奖(6)至多中奖二次§2 随机事件的概率定义:随机事件A发生可能性大小的度量(数值),称为A发生的概率,记作P(A).对于一个随机事件(必然事件和不可能事件除外)来说,它在一次试验中可能发生,也可能不发生.我们希望知道某些事件在一次试验中发生的可能性究竟有多大,找到一个合适的数来表示事件在一次试验中发生的可能性大小.§2.1 概率的公理化定义定义:设Ω为一个样本空间,如果对任一事件A,赋予一个实数P(A).如果集合函数P(.)满足下列条件:(1)非负性公理:对于每一事件A,有P(A)≥0;(2)正则性公理:P(Ω)=1;(3)可列可加性公理:设A1,A2,…是互不相容的事件,即对于i≠j,AiAj=??,i,j=1,2,…,则有则称P(A)为事件A的概率(Probability).§2.2 概率的统计定义(The statistic definition of probability)定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数.比值nA/n称为事件A发生的频率,并记为fn(A).频率具有下述性质:(1)0≤fn(A)≤1;(2)fn(Ω )=1;(3)若A1,A2,…,Ak是两两互不相容的事件,则§2.2.1 频率(Frequency)历史上抛掷匀质硬币的若干结果§2.2.2 概率的统计定义0.49981499430000维尼0.50051201224000皮尔逊0.5016601912000皮尔逊0.506920484040蒲丰0.51810612048德.摩尔根正面出现频率m/n正面出现次数m抛掷次数n试验者定义:在相同的条件下,进行了n次重复试验,在这n次试验中,事件A发生了nA次,当试验的次数n很大时,如果事件A发生的频率fn(A)=nA/n稳定在某一数值p的附近摆动,而且随着试验次数的增大,这种摆动的幅度越变越小,则称数值p为事件A在这组条件下发生的概率,记作P(A)=p.这样定义的概率称为统计概率.性质1:P(??)=0.§2.3 概率的性质于是由可列可加性得又由P(??)≥0得, P(??)=0证明: 令An+1=An+2=…=??,则由可列可加性及P(??)=0得即性质3:对于任一事件A,有证明:由A ?? B知B=A∪(B-A),且A(B-A)=??,性质4:设A,B是两个事件,若A ?? B,则有P(B-A)=P(B)-P(A)推论:若A ?? B,则P(B)≥P(A)证明:由P(B)=P(A)+P(B-A)又由概率的定义知P(B-A)≥0因此有P(B)≥P(A)因此由概率的有限可加性得P(B)=P(A)+P(B-A)从而有 P(B-A)=P(B)-P(A)证明:因为A-B=A-AB,且AB ?? A性质6:对于任意两事件A,B,有P(A-B)=P(A)-P(AB)故 P(A-B)=P(A-AB)=P(A)-P(AB)证明:因为A ?? Ω,因此有P(A)≤P(Ω)=1性质5:对于任一事件A,有P(A)≤1证明:因为A∪B=A∪(B-AB),且A(B-AB)=??,AB?? B故 P(A∪ B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB)性质7:对于任意两事件A,B,有P(A∪B)=P(A)+P(B)-P(AB)上式称为概率的加法公式.概率的加法公式可推广到多个事件的情况.设A,B,C是任意三个事件,则有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)一般,对于任意n个事件A1,A2,…,An,有§3 古典概型与几何概率具有以上两个特点的随机试验称为古典概型,也称为等可能概型. 在概率论发展的初期主要研究具有如下两个特点的随机试验: (1)试验的样本空间的元素只有有限个;(2)试验中每个基本事件发生的可能性相同.§3.1 古典概型古典概型的计算公式因此,若事件A={ei1}∪{ei2}∪…∪{eik}包含k个基本事件,则有P(A)=k/n.设随机试验的样本空间为Ω ={e1,e2,…,en},由于在试验中每个基本事件发生的可能性相同,即有P({e1})=P({e2})=…=P({en})又由于基本事件是两两不相容的,于是有1=P(Ω )=P({e1}∪{e2}∪…∪{en})=P({e1})+ P({e2})+…+P({en})=nP({ei}) i=1,2,…,n所以 P({ei})=1/n i=1,2,…,n即样本空间有4个样本点,而随机事件A1包含2个样本点,随机事件A2包含3个样本点,故P(A1)=2/4=1/2P(A2)=3/4例:将一枚硬币抛掷二次,设事件A1为“恰有一次出现正面”; 事件A2为“至少有一次出现正面”.求P(A1)和P(A2).解:正面记为H,反面记为T,则随机试验的样本空间为Ω ={HH,HT,TH,TT}而 A1={HT,TH}A2={HH,HT,TH}例: 抛掷一颗匀质骰子,观察出现的点数,求出现的点数是不小于3的偶数的概率.解设A表示出现的点数是大小于3的偶数,则基本事件总数n=6,A包含的基本事件是“出现4点”和“出现6点”即m=2,故§3.2 排列与组合公式乘法原理:设完成一件事需分两步,第一步有n1种方法,第二步有n2种方法,则完成这件事共有n1n2种方法A B C加法原理:设完成一件事可有两种途径,第一种途径有n1种方法,第二种途径有n2种方法,则完成这件事共有n1+n2种方法。
gailuqiyuan
概率论与数理统计的起源与发展一、概率论的起源概率论是一门研究客观世界随机现象数量规律的数学分支学科,它起源于赌博。
三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大(两者的概率均为2/21)?17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多(概率为0.5177),而同时将两枚骰子掷24次,至少出现一次双六的机会却很少(概率为0.04672)。
这是什么原因呢?后人称此为德·梅耳问题。
与概率论的起源联系最为密切的一个问题是意大利数学家帕巧利(Luca Pacioli,1445—1509)在1494年出版的《算术书》(Summa de Arithmetica)一书中提出的赌博中常常遇到的“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。
如果在一个人赢4局,另一人赢3局时因故终止赌博,应如何分赌本才合理?帕巧利给出的答案是按4:3分。
后来人们一直对这种分配原则表示怀疑,但没有一个人提出更合适的办法来。
时间过去了半个世纪,另一位意大利数学家卡尔达诺(1501-1576)潜心研究赌博不输的方法,出版了一本《赌博之书》。
他在书里提出了这样一个问题:掷两颗骰子,以赌两颗骰子的点数和作输赢,那么押几点羸得可能性最大?卡尔达诺认为为7点最好(其实押6、7、8点羸得可能性都最大,均为1/7)。
卡尔达诺还在书中对帕巧利提出的问题进行了研究,认为需要分析的不是赌过的次数,而是剩下的次数。
卡尔达诺对“分赌注问题”给出了正确的思路,但仍然没有给出正确的答案。
时间又过去了一个世纪,在1651年,法国大贵族德.梅勒(de Mere,1607——1684)把这个问题寄给了当时的数学著名数学家帕斯卡,从此概率论历史上一个决定性的阶段才开始了。