圆的双动点最值问题
动点问题中的最值、最短路径问题解析版
专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.(2)双动点模型P是∠AOB一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.OBPP'P''MN5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2.(2019·凉山州)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()x y A B C F D EO x=-5A .817B . 717C . 49D . 59例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +22AM QM +332时,求b 的值.例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. ABC DH O M N专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A . 817B . 717C . 49D . 59【答案】B .【解析】解:S △ABE =142BE OA BE ⨯⨯=,当BE 取最小值时,△ABE 面积为最小值.设x =-5与x 轴交于点G ,连接DG ,因为D 为CF 中点,△CFG 为直角三角形,所以DG =152CD =,∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 xyABD E O x=-5G由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,xyABD E O x=-5G H过点E 作EH ⊥AB 于H ,∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12,△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA=8,得:BE =143,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723, ∴tan ∠BAD =727317172EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12,即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确;连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD 即:1225EG DF =,512AF AD EG AE ==, 即:51125AF EG DF ==,设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26,在Rt △ODF 中,由勾股定理得:OF =26,即点D 的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③. 例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,2222AM QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出22AM QM ⎛⎫+ ⎪⎝⎭即可得到22AM QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =22AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM=2QH=3224b⎛⎫+⎪⎝⎭,GM=22AM=()212m+∴()223332222=21222244bAM QM AM QM m⎛⎫⎡⎤⎛⎫+=++++=⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦①∵QH=MH,∴324b+=12b m+-,解得:m=124b-②联立①②得:m=74,b=4.即当22AM QM+的最小值为3324时,b=4.【点睛】此题需要利用等腰直角三角形将22AM QM+转化为222AM QM⎛⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12AC cm=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2cm.【答案】24-1223623126;【解析】解:如图1所示,当E运动至E’,F滑动到F’时,DD'E'G图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;BD'图2∵∠BAC =30°,AC =12,DE =CD∴BC =CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-D'图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯+⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.BD【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=-△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OCtan 30°=3, 即PD =OP +OD=B D。
动态几何中的双动点最值问题的求解策略
动态几何中的双动点最值问题的求解策略双动点问题将几何知识与数学知识融合一起,综合考查学生应用知识的能力.这类问题综合度高,立意深,对学生的能力要求高,往往形成学生学习中的难点,尤其是双动点问题中的最值问题,对学生思维要求更高.如何引导学生解决这类问题,成为中考复习的一个要点.本文以双动点中的线段最值问题、面积最值问题、情景最值问题为例,进行详解,以期找到解决这类问题的一般方法.一、双动点形成的线段最值问题例1 如图l,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和l,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是.解析由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,如图2,连接BD,∵菱形ABCD中,∠A=60°,∴△ABD是等边三角形.∴BD=AB=AD=3.∵⊙A、⊙B的半径分别为2和1.∴PE=1,DF=2,∴PE+PF的最小值是3.点评本题需要综合应用菱形的性质,相切两圆的性质;等边三角形的判定和性质,才能使问题得以解决.在数学思维应用中要特别重视数形结合的思想,从中找到最值的条件是关键.二、双动点问题形成的面积最值问题例2如图3,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.解析如图4,过点O作OC垂直AB于C,交⊙O于D、E两点,连接OA、OB、DA、DB、EA、EB.∵∠AMB =45°,∴∠AOB =2∠AMB =90°, ∴△OAB 是等腰直角三角形,∴ OA 而S 四边形MANB =S △MAB +S △NAB ,∵当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB的距离最大,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E点时,四边形MANB 面积最大.∴四边形MANB 面积最大值:S 四边形DAEB =S △DAB +S △EAB =12AB ·CD+12AB·CE=12AB·(CD+CE)=12AB·DE=12× 点评 本题将圆与三角形知识综合在一起,需要深刻理解垂径定理、圆周角定理、等腰三角形的判定与性质,通过两动点运动,找到组成四边形的两三角形面积最值情景,从而使问题得以解决.三、双动点问题中形成的情景最值问题例3 如图5,直线y =43x -+8与x 轴交于A 点,与y 轴交于B 点,动点P 从A 点出发,以每秒2个单位的速度沿AO 方向向点O 匀速运动,同时动点Q 从B 点出发,以每秒1个单位的速度沿BA 方向向点A 匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ ,设运动时间为t (s)(0<t ≤3).(1)写出A ,B 两点的坐标;(2)设△AQP 的面积为S ,试求出S 与t 之间的函数关系式;并求出当t 为何值时,△AQP 的面积最大;(3)当t 为何值时;以点A ,P ,Q 为顶点的三角形与△ABO 相似?并直接写出此时点Q 的坐标.解析 (1)令y =0,则43x -+8=0,解得x =6;令x =0,则y =8.所以OA =6,OB =8,所以点A (6,0),B (0,8)(2)在Rt △AOB 中,由勾股定理得,AB .因为点P 的速度是每秒2个单位,点Q 的速度是每秒1个单位所以AP =2t ,AQ =AB-BQ =10-t .所以点Q 到AP 的距离为AQ·sin∠AOB=(10-t)×810=45(10-t).所以△AQP的面积S=122t·45(10-t)=45-t2+5t(0<t≤3).又因为S=45-(t-5)2+20,45-<0,0<t≤3,所以当t=3时,△AQP的面积S最大=845.(3) t=3013秒时,点Q的坐标是(1813,8013).。
圆的方程(交点,轨迹)难题
搞定圆的方程(交点,轨迹类难题)常见的隐藏圆已知动点P和两定点A,B。
�����⃗⋅PPPP�����⃗=λλ1.PPPP2.PPPP2+PPPP2=λλ3.PPPP PPPP=λλ(阿波罗尼斯圆)4.直径所对圆周角为9005.圆周角的相关性质6.关于阿波罗尼斯圆(阿氏圆)的相关性质:内分点(圆内点),外分点(圆外点),(即两定点),阿氏圆圆心在一条直线上当一个圆以及其内分点或外分点中一点确定,另外一点必然唯一确定小结论−DD=xx1+xx2−EE=yy1+yy2FF=xx1⋅xx2=yy1⋅yy2以找临界为通法的一类问题【链接】双动点类问题,其中一个在圆上的动点利用三角换元简化问题:消参数法:变式:若上述问题,两圆及定点不变,MA⊥MB,求AB的最值。
(取AB中点,利用RT三角形中,斜边中线等于斜边一半的结论,转为上述问题)(原问题)临界法:临界法:在平面直角坐标系x Oy 中,已知圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,且满足PA=2AB ,则半径r 的取值范围是 . [5,55]临界法:已知圆A:xx2+yy2=1,圆B:xx2+yy2−6xx−8yy+aa=0,若对于圆A上任意一点,,在圆B上总存在不������⃗=3PPMM������⃗,则实数aa的取值范围是________.(9,16]同的两点M,N,使得PPPP中华中学14临界法:角度类临界问题南京一中14易得,M点在轨迹圆xx2+yy2=1上。
对于每一个在轨迹圆上的点M,均做以OM为弦,所对圆周角为30°的外接圆,点P可以在每一个同样的外接圆的优弧上,这些外接圆优弧铺满了一个圆环面,即图中两个圆中间的区域。
我们需要知道最外层的圆的半径,易知,最外层圆的半径即为外接圆的直径2(最远距离)。
与圆有关的最值问题课件高二上学期数学人教A版选择性
赋代数式子几何意 义
利用数形结合 思想解决问题
4
例题 已知圆C: x 32 y2 4 ,O为坐标原点;Q是圆C上的一点.
双动点问题
化归
单动点问题
把双动点改为双动直线,就能得到以下的新问题.
例题 已知圆C: x 32 y2 4 ,O为坐标原点;Q是圆C上的一点.
问题(4)若P在直线m: 3x-4y+12=0上,过P作圆C的两条切线,切点 分别为A、B ,则四边形PACB面积的最小值为______ .
问题(3) 若P在直线m: 3x-4y+12=0上,则|PQ|的最小值是____ .
方法一:P固定,Q运动;d为圆心C到直线m的距离.
|PQ|≥|PC|-r=|PC|-2
≥d-2 =
21 2 11.55 Nhomakorabea答案:11 . 5
例题 已知圆C: x 32 y2 4 ,O为坐标原点,Q是圆C上的一点.
由 |3+b| 2, 11
得 b=-3+2 2 或 b=-3-2 2 .
答案: 3 2 2, 3 2 2 .
小结 一般地: (1)形如 k y b 的最值问题,可转化为动直线斜率的最值问题.
xa (2)形如 m ax by 的最值问题,可转化为动直线截距的最值问题.
(3)形如 r2 (x a)2 ( y b)2 的最值问题,可转化为曲线上的点到点(a, b)的距离平方的最值问题.
除距离、面积、角度这些有明显几何意义的问题外,有时也会碰到以 下问题:
例题 已知圆C: x 32 y2 4 ,O为坐标原点;Q是圆C上的一点.
问题(6) 设Q(x,y),则 y 2 的最大值和最小值分别是___,___ .
x2
专题32 动态几何之双(多)动点形成的最值问题(压轴题)
《中考压轴题》专题32:动态几何之双(多)动点形成的最值问题一、填空题1.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.2.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.3.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是.二、解答题1.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?2.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?3.如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.4.在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.(1)如图①,当点E 自D 向C ,点F 自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 与DF 的位置关系,并说明理由;(2)如图②,当E ,F 分别移动到边DC ,CB 的延长线上时,连接AE 和DF ,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE ,DF ,(1)中的结论还成立吗?请说明理由;(4)如图④,当E ,F 分别在边DC ,CB 上移动时,连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD=2,试求出线段CP 的最小值.5.如图,在平面直角坐标系xOy 中,抛物线2y ax bx 4=+-与x 轴交于点A(﹣2,0)和点B ,与y 轴交于点C ,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M ,H 分别从点A ,B 以每秒1个单位长度的速度沿x 轴同时出发相向而行,当点M 到达原点时,点H 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动,经过点M 的直线l ⊥x 轴,交AC 或BC 于点P ,设点M 的运动时间为t 秒(t >0).求点M 的运动时间t 与△APH 的面积S 的函数关系式,并求出S 的最大值.6.如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c 与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.7.如图,直线4y x83=-+与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.8.如图,在平面直角坐标系中,抛物线2y ax bx 3(a 0)=+-≠与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C.(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使CBK PBQ S S 5:2=△△:,求K 点坐标.9.如图,抛物线y=ax 2+bx+c (a≠0)的图象过点C (0,1),顶点为Q (2,3),点D 在x 轴正半轴上,且OD=OC .(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ;(4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.如图,直线y x 412=-+与坐标轴分别交于点A 、B ,与直线y=x 交于点C .在线段OA 上,动点Q 以每秒1个单位长度的速度从点O 出发向点A 做匀速运动,同时动点P 从点A 出发向点O 做匀速运动,当点P 、Q 其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .若运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形(点P 、Q 重合除外).(1)求点P 运动的速度是多少?(2)当t 为多少秒时,矩形PEFQ 为正方形?(3)当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值.11.如图,在平面直角坐标系中,O 为坐标原点,点A 、B 的坐标分别为(8,0)、(0,6).动点Q 从点O 、动点P 从点A 同时出发,分别沿着OA 方向、AB 方向均以1个单位长度/秒的速度匀速运动,运动时间为t (秒)(0<t≤5).以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为点C 、D ,连结CD 、QC .(1)求当t 为何值时,点Q 与点D 重合?(2)设△QCD 的面积为S ,试求S 与t 之间的函数关系,并求S 的最大值?(3)若⊙P 与线段QC 只有一个交点,请直接写出t 的取值范围.12.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.13.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P 是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N 以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.14.如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=22.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.15.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P 有几个?并求出点P到线段OD的距离;若不存在,请说明理由.16.已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.17.如图,正方形AOCB 在平面直角坐标系xOy 中,点O 为原点,点B 在反比例函数k y x =(x >0)图象上,△BOC 的面积为8.(1)求反比例函数k y x=的关系式;(2)若动点E 从A 开始沿AB 向B 以每秒1个单位的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t 表示,△BEF 的面积用S 表示,求出S 关于t 的函数关系式,并求出当运动时间t 取何值时,△BEF 的面积最大?(3)当运动时间为34秒时,在坐标轴上是否存在点P ,使△PEF 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.18.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C 的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.19.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒53个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?20.如图,甲、乙两人分别从A(1)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.21.如图,在O A B C中,点A在x轴上,∠A O C=60o,O C=4c m.O A=8c m.动点P从点O出发,以1c m/s的速度沿线段O A→A B运动;动点Q同时..从点O出发,以a c m/s的速度沿线段O C→C B运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(______,______),对角线OB的长度是_______cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.22.如图,抛物线2y x 2=-++与x 轴交于C .A 两点,与y 轴交于点B ,点O 关于直线AB 的对称点为D ,E 为线段AB 的中点.(1)分别求出点A .点B 的坐标;(2)求直线AB 的解析式;(3)若反比例函数k y x=的图象过点D ,求k 值;(4)两动点P 、Q 同时从点A 出发,分别沿AB .AO 方向向B .O 移动,点P 每秒移动1个单位,点Q 每秒移动12个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值;若不存在,请说明理由.23.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<103)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.24.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.。
高考数学培优---圆的“双切线”问题
高考数学培优---圆的“双切线”问题【方法点拨】1.涉及从圆外一点向圆引两条切线的相关线段长计算问题,根据对称性,常将双切线问题转化为一条切线问题,抓住“特征直角三角形”(切点、圆心、圆外点为顶点),向点与圆心的距离问题转化.2.圆上存在一点、圆心与圆外一点(或圆上存在两点与圆外一点)的张角有最大值,张角最大时,直线与圆相切,转化为点与圆心的距离问题.【典型题示例】例1已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据22PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以12222PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而PA = 当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小. ∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.例2 在平面直角坐标系xOy 中,已知直线l :y =kx +6上存在点P ,过点P 作圆O : x 2+ y 2=4的切线,切点分别为A (x 1,y 1),B (x 2,y 2),且x【答案】(-∞,-52]∪[52,+∞) 【分析】由x 1 x 2+ y 1y 2=-2直线l :y =kx +6上的点P 只需满足PC 以垂线段最短,故只需C 【解析】由x 1 x 2+ y 1y 2=-2得: 1212=cos x x y y OA OB OA OB +=⋅在△P AC ,∠APC =300,PC =4,当直线l 上的点 P 满足PC =4又因为点C 与直线上点间的距离,以垂线段最短,故只需C 到直线的距离不大于4.4≤,解之得22k k ≤-≥ 所以k 的取值范围为(-∞,-52]∪[52,+∞).例 3 过点)1,1(-P 作圆C :)(1)2()(22R t t y t x ∈=+-+- 的切线,切点分别为B A ,,则PA PB ⋅ 的最小值为__________.【答案】214【分析】为了求出PA PB ⋅的最小值,需建立目标函数,这里选择使用数量积的定义作为突破口,选择线段PC 长为“元”.设∠APC =θ,则1sin PC θ=,222cos 212sin 1PC θθ=-=-, 故222222cos 2(1)(1)3PA PB PA PB PC PC PC PCθ⋅==--=+- 又点(,2)C t t -在直线20x y --=,故22PC ≥即28PC ≥所以2218384PA PB ⋅≥+-=,故PA PB ⋅ 的最小值为214. 点评:(1)求最值问题要牢固树立建立目标函数的意识;(2)涉及从圆外一点向圆引两条切线的相关线段长计算问题,常将双切线问题转化为一条切线问题,抓住“特征直角三角形”,向点与圆心的距离问题转化.例4 已知圆O :x 2+y 2=1,圆M :(x +a +3)2+(y -2a )2=1(a 为实数).若圆O 与圆M 上分别存在点P ,Q ,使得∠OQP =30︒,则a 的取值范围为 .【答案】[-65,0] 【分析】双动点问题先转化为一点固定不动,另一点动.这里,先将Q 固定不动,则点P 在圆O 运动时,当PQ 为圆O 的切线时,∠OQP 最大,故满足题意,需∠OQP ≥30︒,再将角的范围转化为O 、Q 间的距离问题,即需OQ ≤2.再固定P 不动,易得只需OM ≤3即可,利用两点间距离公式(a +3)2+(2a )2≤9,解得-65 ≤a ≤ 0.点评:圆上存在一点(或两点)与圆外一点的张角问题,张角最大时,直线与圆相切,转化为点与圆心的距离问题.例5 平面直角坐标系xOy 中,点P 在x 轴上,从点P 向圆C 1:x 2+(y -3)2=5引切线,切线长为d 1,从点P 向圆C 2:(x -5)2+(y +4)2=7引切线,切线长为d 2,则d 1+d 2的最小值为_____.【答案】52【分析】求切线长问题再利用数形结合思想解决最值问题.【解析】设点P (x ,0),则d 1=x 2+(-3)2-5,d 2=(x -5)2+42-7,d 1+d 2=x 2+4+(x -5)2+9,几何意义:点P (x ,0)到点M (0,2),N (5,-3)的距离和.当M,P,N三点共线时,d1+d2有最小值52,此时P(2,0).【巩固训练】1.在平面直角坐标系xOy 中,已知圆C :x 2+(y -3)2=2,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 的长的取值范围是________.2.已知圆M :(x -1)2+(y -1)2=4,直线l :x +y -6=0,A 为直线l 上一点.若圆M 上存在两点B ,C ,使得∠BAC =60°,则点A 横坐标的取值范围是__________.3.已知椭圆C 1:22221x y a b +=(a >b >0)与圆C 2:22234b x y +=,若在椭圆C 1上不存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是_______4.在平面直角坐标系xOy 中,已知圆O : x 2+ y 2= r 2 (r >0) 与圆C : (x -6)2+ (y -8)2=4,过圆O 上任意一点P 作圆C 的切线,切点分别为A ,B ,6PA PB +≥,则实数r 的取值范围为 .5.在平面直角坐标系xOy 中,已知圆C :22(3)(4)16x y +++=,若对于直线10x my ++= 上的任意一点P ,在圆C 上总存在Q 使∠PQC =2π,则实数m 的取值范围为 . 6.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,直线l :x +ay -3=0(a >0),过直线l 上一点P 作圆O的两条切线,切点分别为M ,N .若PM →·PN →=23,则正实数a 的取值范围是________. 7. 过直线l :y =x -2上任意一点P 作圆C :x 2+y 2=1的两条切线,切点分别为A ,B ,当切线最短时,△P AB 的面积为________.8. 已知圆C :(x -1)2+(y -4)2=10上存在两点A ,B ,P 为直线x =5上的一个动点.且满足AP ⊥BP ,那么点P 的纵坐标的取值范围是________.。
如何求解双动点线段长的最小值问题
如何求解双动点线段长的最小值问题双动点线段是指线段的两个端点都在某个图形上运动的线段•由于线段的两个端点都在运动,因此增加了解决问题的难度,这类问题的解题策略是:消点一一将双动点转化为单动点,然后利用“垂线段最短”确定单动点线段长的最小值,进而得到双动点线段长的最小值.下面举例说明.例1如图1,线段AB的长为2, C为AB上一个动点,分别以AC, BC为斜边在AB的同侧作两个等腰直角三角形△ ACD^D^ BCE那么DE长的最小值是_________________ .解析延长AD.RE交于点尺连结 F ⑺切和£^BCE都足等腫直角三角川、代LADC = = 90°,= Z1B = 45\= MEF= 90°+阳]£AFB= 180°- — IB« 180° ^45° x 2 - 90ft,A四边形EdfE星矩形,代DE = CK由“雜线段駅ft/”可知’当fF丄沖呂时CF讎小,毗时町F - yAB = y x2 = 1,二农E长的最小值是】・说明本题构造矩形,利用“矩形的对角线相等“将双动点线段DE转化为单动点线段CF.达到消点目的.例2 如图2,在等腰Rt△ ABC中,/ C= 90°, AC= 8, F是AB边上的中点,点D, E 分别在AC BC边上运动,且保持AD= CE连结DE,贝U DE长的最小值是 _________________ .解析取朋中点化连結「A4BC是等腰賣角三角形. C:-AF h CF,£A = LFX工45%CF1 AB.DF = - iCA'E. 图屛J LDF£= £0阳 + Z.CFE=2LDFC + LAFD = £AFC七90S二ADEF足筹腰H朋三角形,DE = ^2DF.由“垂线段最短”可知,当DF丄AC时DF长最小,此时,DF=】AC」X 8 = 4,••• DE 长的最小值是 4.2 .说明 本题构造等腰直角三角形,利用等腰直角三角形的斜边与直角边的关系,将双动点线段DE 与单动点线段 DF 建立联系,进行消点.例3如图3,已知点A 在反比例函数y = 6的图象上,且点 A 横坐标为2•现将一个x含30°的三角板的直角顶点与点 A 重合并绕点A 旋转,旋转时三角板的两直角边与 x 轴的 交点分别为点 B C,贝懺段BC 的最小值是 ______________________ .解析 过点A 作AD 丄BC 于点D,取线段BC 的中点E ,连结AE当 x = 2 时,y = 6 = 3,x•••点A 坐标为(2 , 3),• AD-3.•••/ BAC= 90°, E 为线段BC 的中点,• BC = 2AE.由“垂线段最短”可知,当 AE 丄BC 时AE 最小,此时 AE = AD- 3.• BC 的最小值为6.说明 本题构造三角形中线,利用直角三角形斜边上的中线等于斜边的一半,将双动 点线段BC与单动点线段 AE 建立联系,从而灵活消点.例4 如图4,在平面直角坐标系 xOy 中,直线AB 过点A (- 4, 0)、B(0, 4) , O O 的半径为1(0为坐标原点),点P 在直线AB 上,过点P 作O 0的一条切线PQ Q 为切点,则切线长PQ 的最小值为 ________ .解析 连结OP.OQ. "Q 切<3。
九年级上册圆的最值题型整理与寻找隐圆和动点路径长方法归纳
授课类型 T 能力( 圆最值 )授课日期及时段2019年教学内容(比一比!)动点运动轨迹——圆或圆弧型动点轨迹为定圆,利用三点共线方法指导:1.当动点的轨迹是定圆时,可利用“一定点与圆上的动点距离最大值为定点到圆心的距离与半径和,最小值为定点到圆心的距离与半径差”性质求解.2.试着观察“动点与其他定点连结的线段长是否为‘定值’或动点与两定点构成的角是否为直角”,这是常见判断动点轨迹是圆的条件。
Ⅰ 动点到定点的距离不变..........,则点的轨迹是圆或圆弧; 1.如图 1,在正方形 ABCD 中,边长为 2,点 E 是 AB 的中点,点 F 是 BC 边上任意一点,将△BEF 沿 EF 所在直线折叠得到△PEF ,连接 AP ,则 CP 的最小值________,AP 的最小值是_________.【变式 1】在矩形 ABCD 中,已知 AB =2cm ,BC =3cm ,现有一根长为 2cm 的木棒 EF 紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒 EF 的中点 P 在运动过程中所围成的图形的面积_______cm 2.T 能力——圆最值检测定位【变式2】如图,一根木棒AB 长为2a,斜靠在与地面OM 垂直的墙壁ON 上,与地面的倾斜角∠ABO=60°,若木棒沿直线NO 下滑,且 B 端沿直线OM 向右滑行,则木棒中点P 也随之运动,已知 A 端下滑到A′时,AA′)a,则木棒中点P 随之运动到P′所经过的路线长_______________.=(323.如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是________.4.如图,在□ABCD 中,∠BCD=30°,BC=4,CD=3 3,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A′MN,连接A′C,则A′C 长度的最小值是________.5.如图,在四边形ABCD 中,AB=AC=AD,若∠BAC=25°,∠CAD=75°,则∠BDC=_________°,∠DBC=____________°.定边对定角模型定弦定角当某条边与该边所对的角是定值时,该角的顶点的轨迹是圆弧.见.直角→找.斜边(定长)→想.直径→定.外心→现.“圆”形;见.定角→找.对边(定长)→想.周角→转.心角→现.“圆”形;【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
解读双动点轨迹之线段最值问题的捆绑变换
以以图片或者视频为基础,结合数学知识点创设情境视频,让学生们在看视频的过程中学习,也可以是在学习的时候通过图片中的情境展开教学,进而完成教学任务.例如,以“画正多边形”这一课学习为例,由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一.这一课的学习目标就是要让学生们能够画正多边形,并且能够应用画正多边形解决实际问题,通过运用正多边形的有关计算和画图解决实际问题培养学生分析问题、解决问题的能力.教师通过播放视频让学生们看一下画正多边形的步骤,学生们跟着视频的脚步画出正多边形,作出已知圆的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与圆相交,或作各中心角的角平分线与圆相交,即得圆内接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形…运用多媒体创设情境的教学方式,能够将多媒体技术与课堂教学有机结合,是一种积极的,合作的教学模式,由于其视听结合、手眼并用的特点及其模拟、反馈、个别指导和游戏的内在感染力,故具有极大的吸引力,最终使学生成为学习的主人,做到自主学习和高效学习.在现行教学中恰当、正确地使用多媒体手段来辅助教学,有助于提高学生学习兴趣,突破教学难点,对优化数学教学起着显著的作用.实验教学将数学知识点与实验相结合,进而让学生们的学习兴趣提高,都参与到教师创设的实验环境中,进而让学生们的学习效率得到提升;提出问题的教学方式不仅能够将即将学习的课题引出来,还能够帮助学生认清学习的目标,对于需要学习什么有更清晰的认识;还可以通过多媒体创设情境的教学措施让学生们更加直观地学习相关的数学知识,让学生掌握数学知识.参考文献:[1]刘坚.初中数学新课导入的教学策略研究[J ].中国校外教育,2015(13):26.[2]毕连庆.初中数学教学模式的探究和实践[J ].课程教育研究,2013(31):130.[3]毕连庆.初中数学教学模式的探究和实践[J ].课程教育研究,2013(31):130.[4]何晓艳.初中数学教学中问题解决教学模式的应用探讨[J ].课程教育研究,2013(32):142-143.[5]林可赞.初中数学教学中实施以学定教的策略探讨[J ].数学学习与研究,2014(06):17.[6]张灵.浅谈“创新思维”对提高初中数学教学的有效性[J ].数学学习与研究,2014(06):48.[7]张义家.浅析提升初中数学教学效率的几个方法[J ].数学学习与研究,2014(08):27-28.[责任编辑:李克柏]解读双动点轨迹之线段最值问题的捆绑变换李登位(湖北省恩施市龙凤民族初级中学445000)摘要:在近几年中考题的选择题、填空题及压轴题中,我们经常会碰到一类求线段最值的问题.线段最值问题通常是动点轨迹问题.针对这样的问题,寻找从主动点到从动点的变换关系,求线段最值问题中的一种类型,把它叫做“捆绑变换”.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键词:双动点轨迹;线段最值问题;捆绑变换中图分类号:G632文献标识码:A文章编号:1008-0333(2019)26-0021-02收稿日期:2019-06-15作者简介:李登位(1968.1-),男,湖北省恩施人,本科,中学一级教师,从事初中数学教学研究.一、前言所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.从变换的角度和运动变化来研究三角形、四边形、函数图象等几何图形,通过“图形变换、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理.选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程.在变化中找到不变的性—12—质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.二、举例解析数学卷中的数学压轴题中涉及数形结合、动态几何、动手操作、实验探究等方面题型较多、题意创新,目的是考查学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,更好地培养学生解题素养.线段最值问题最常见的就是定点到动点最大距离或最小距离问题.因此,解决这类问题的关键在于弄清楚动点运动的轨迹.下面学习如何利用“捆绑变换”思想来探寻动点轨迹,从而解决线段的最值问题.例1如图1,矩形ABCD 中,AD =2AB =4,长度为2的动线段AE 绕点A 旋转,连接EC ,取EC 的中点F ,连接DF ,求线段DF 长的最大值和最小值.思路分析利用几何画板观察到,E 点为主动点,轨迹是圆,F 点为从动点,轨迹也是圆,E 在以A 为圆心AE 为半径的圆上.需要找到F 点所在圆的圆心和半径,捆绑AE 作相同的变换,即:将圆心A 仿照E 作相同的变换得到F 点所在圆的圆心,连接AC ,取AC 的中点O ,点O 就是F 点所在圆的圆心.因O 、F 分别是AC 、EC 的中点,则OF 是△ACE 的中位线,OF =12AE =1,所以点F 在以O 为圆心,1为半径的圆上运动.根据勾股定理求得AC =AD 2+CD 槡2槡=25,OD =12AC 槡=5.所以DF 长的最大值为槡5+1,最小值为槡5-1.例2如图2,AB =4,O 为AB 的中点,⊙O 的半径为1,点P 是⊙O 上一动点,以点P 为直角顶点作等腰三角形△PBC (点P 、B 、C 按照逆时针方向排列),则线段AC 长的取值范围是.思路分析需要明白从主动点P 到从动点C 是作了怎样的变换?利用几何画板观察到,将点P 绕着点B 按照顺时针方向旋转45度并将BP 放大到槡2倍得到点C ,再找从动点C 所在圆的圆心和半径,捆绑OP 作相同的变换,即:将点O 绕着点B 按照顺时针旋转45度并将BO 放大到槡2倍得到点O',则点O'就是点C 所在圆的圆心,半径为O'C.连接点O'C ,连接OP ,易得BO BO /=BP BC =1槡2,则△OBP ∽△O'BC ,得CO /PO =CBPB 槡=2,所以CO'槡=2,点C 在以O'为圆心,槡2为半径的圆上运动.根据勾股定理求得AO'=BO'槡=22,所以AC 长的最大值为槡槡槡22+2=32,最小值为槡槡槡22-2=2.线段AC 长的取值范围是槡2≤AC ≤槡32.例3如图,点O 为坐标原点,⊙O 的半径为1,点A(2,0).动点B 在⊙O 上,连接AB ,作等边三角形△ABC (A 、B 、C 为顺时针顺序),求OC 的最大值与最小值.思路分析需要明白从主动点B 到从动点C 是作了怎样的变换?利用几何画板观察到,将点B 绕着点A 按照顺时针方向旋转60度得到点C ,再找从动点C 所在圆的圆心和半径,捆绑OB 作相同的变换,即:将点O 绕着点A 按照顺时针旋转60度得到点O',即以OA 为边向上作等边△OAO',则点O'就是点C 所在圆的圆心,半径为O'C.连接BO 、CO',因△ABC 和△OAO'均为等边三角形,则AO =AO',AB =AC ,∠BAO =∠CAO',得△ABC ≌△OAO',CO'=BO =1,点C 在以O'为圆心,1为半径的圆上运动,而OO'=AO =2,CO'=BO =1,所以CO 的最大值为3,最小值为1.以双动点为载体,图形为背景,运动变化为主线创设的求线段最值问题,集多个知识点为一体,集多种解题思想于一题,要求学生认真读题、领会题意、画出不同情况下的图形,判断动点运动轨迹的形状是解题的关键,根据图形建立变量之间的关系,要求学生有扎实的基础知识、灵活的解题方法、良好的思维品质;在解题思想上着重对数形结合思想、分类讨论思想、数学建模等思想的灵活运用.要以静代动的解题思想解题.参考文献:[1]周礼寅.隐性路径显性分析[J ].中国数学教育(初中版),2011(4):24-26.[责任编辑:李克柏]—22—。
圆中最值问题的常见解法
分析:由于 都不是定值,加之平方式,所以直接用函数、均值不等式、几何法求解,都无能为力.于是考虑先设点 的坐标,先代数化,再看有没有几何意义.
解:设点 ,则
, 表示点 到定点 距离的平方,而
, 的最大
值是 ,此时点 的坐标满足 .
一.利用三角形性质求最值
众所皆知:三角形中任意两边之和大于第三边,任意两边之差小于第三边,极端情况下,当三点共线时,两边之和等于第三边,两边之差等于第三边,这正是取得最值的时刻,这就是圆中解决最值问题的常用方法之一.主要模型是:求一定点与圆上动点之间距离的最大值与最小值.即有:设圆心为C,圆的半径为 ,定点为A,圆上动点为P,则 =
的最小值是 ,此时点 的坐标满足
.
评析:在几何方法受阻的情况下,可以先做代数化处理,在构造几何意义,本题的解决,得
益于构造圆外一点到圆上动点距离的最值模ቤተ መጻሕፍቲ ባይዱ.
相关问题:(1)已知圆 ,圆 , 分别是圆 上的动点, 为 轴上的动点,则 的最小值为( )A
A. B. C. D.
(2)P为双曲线 的右支上一点,M、N分别是圆 ,
解决圆中最值问题的常见方法
圆问题是高中解析几何中的重点问题,在这类问题中的最值问题又是常见题型,由于在解决过程中所需要的数学素养层次比较高,特别是对学生的直观想象素养、抽象素养、运算素养、逻辑推理素养有较高要求,所以学生在学习中常常感到比较困难.基于此,非常有必要对这类问题的常见解法做一些总结,以供参考.
.
例1.点 在椭圆 上运动,点 在圆 上运动,求 .
分析:由于有两个动点,所以需要分步完成,可以先固定点 ,这样就可以利用三角形性质求得 ,然后再利用函数法求得最终结果.
动点问题最值
v1.0 可编辑可修改动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。
一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。
方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。
1.如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.33-2-B.13+C.2D.1提示:点M在以AC为直径的圆上2.(2015•咸宁)如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD 于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是②③.(把你认为正确的说法的序号都填上)提示:G在以AB为直径的圆上:正确答案是:②④3、如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm,如果正方形AEFG绕点AAB 旋转,那么C、F两点之间的最小距离为4、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5、如图,等腰直角△ACB,AC=BC=5,等腰直角△CDP,且PB=2,将△CDP绕C点旋转.(1)求证:AD=PB(2)若∠CPB=135°,求BD;(3)∠PBC= 时,BD∠PBC= 时,BD分析:在△ABD中有:BD≤AB+AD,当BD=AB+AD时BD最大,此时AB与AD在一条直线上,且AD在BA的延长线上,又△ACB是等腰直角三角形,∠CAB=45°,由(1)知∠PBC=∠CAD=180°-45°=135°CABAACCBD ≥AB-AD ,当BD=AB-AD 时BD 最小,此时,AB 与AD 在一条直线上,且AD 在线段AB 上,此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1, ,F 为BE 中点. (1)求CF 的长(2)将△ADE 绕A 旋转一周,求点F 运动的路径长; (3)△ADE 绕点A 旋转一周,求线段CF 的范围.提示:本题根据中点构造三角形相似,△BOF ∽△BAE,且227、如图,AB=4,O 为AB 中点,⊙O 的半径为1,点P 是⊙O 上一动点,以点P 为直角顶点的B ,C 按逆时针方向排列)则线段AC提示:发现定等腰直角△AOC 与等腰直角△OBE ,从而得到相似。
中考热点:(一)圆中动点“PA+...
中考热点:圆中动点“PA+kPB”型最值问题一、问题导读在初中数学中,有一类几何动点“PA+kPB”型最值问题,学生普遍感到“害怕”。
普通方法求解可能就会失效!当k=1时,可以转化为“将军饮马”模型,我们可以利用对称变换来处理。
而如果k不等于1的话,我们必须利用转换思路,截取线段灵活转化线段值,转化为常见求解模式。
二、典例精析类型1 探究圆中“PA+kPB”型的最值问题例1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0),(2,0),点M是AO中点,⊙A 的半径为2.(1)若△PAB是直角三角形,则点P的坐标为______.(直接写出结果)(2)若PM⊥AB,则BP与⊙A有怎样的位置关系?为什么?(3)若点E的坐标为(0,3),那么⊙A上是否存在一点P,使PE+1/2PB最小,如果存在,求出这个最小值,如果不存在,简要说明理由.【解析】(1)分两种情形:①∠PAB=90°,②∠APB=90°分别求解即可解决问题;答案为(﹣2,2)或(﹣2,﹣2)或(﹣1,√3)或(﹣1,﹣√3).(2)求出PA,PB的长,利用勾股定理的逆定理证明即可;(3)如图,连接EM.∵PA=4,AMAB=4,∴PA=AMAB,∴PA/AM=AB/PA,∵∠PAM=∠BAP,∴△PAM∽△BAP,∴PM/PB=PA/AB=1/2,∴PM=1/2PB,∴PE+1/2PB=PE+PM,∵PE+PM≥EM,∴PE+PM的最小值为线段EM的长,∵E(0,3),∴OE=3,∴由勾股定理可求得EM=√10,∴PE+1/2PB的最小值为√10.【点评】本题属于属于圆综合题,考查了勾股定理以及逆定理,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会利用分类讨论的思想思考问题,学会构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.例2.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC 于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求BC/AE的值;②若点G为AE上一点,求OG+1/2EG最小值.【解析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得BC/AE 的值.②先利用BC/AE的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把1/2EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线,∴∠ABC=∠ABE+∠CBE=90°,∴∠BAE=∠CBE∵∠DAE=∠BAE,∴∠DAE=∠CBE,∴△ADE∽△BEC, ∴AE/BC=DE/CE,∵DE=3,CE=2,∴BC/AE=2/3②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q,∴EP⊥PG,四边形OGPQ 是平行四边形,∴∠EPG=90°,PQ=OG∵BC/AE=2/3,∴设BC=2x,AE=3x,∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C,∴△BEC∽△ABC,∴BC/AC=CE/BC,∴BC =ACCE 即(2x)=2(3x+2),解得:x =2,x =﹣1/2(舍去)∴BC=4,AE=6,AC=8,∴sin∠BAC=BC/AC=1/2,∴∠BAC=30°∴∠EGP=∠BAC=30°,∴PE=1/2EG,∴OG+1/2EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=1/2AE=3,∴OG+1/2EG的最小值为3【点评】本题考查了等腰三角形和平行线性质,切线的判定和性质,相似的判定和性质,最短路径问题.第(1)题为常规题型较简单;第(2)①题关键是发现DE、CE所在三角形的相似关系;②是求出所有线段长后发现30°角,利用30°构造1/2EG,考查了转化思想.类型2 由已知含有PA+kPB型最值条件,探究圆的综合问题例3.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且⊙O的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当1/2CD+OD的最小值为4√3时,求⊙O的直径AB的长.【解析】(1)连接OC,要证CE是⊙O的切线,只需证∠OCE=90°即可(2)过点C作CH⊥AB于H,连接OC,在Rt△OHC中运用三角函数即可求AB=4√3h/3AB;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,先证明四边形AOCF是菱形,根据对称性可得DF =DO,过点D作DH⊥OC于H,DH=1/2DC,1/2DC+OD=DH+FD,根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD最小,然后在Rt△OHF中运用三角函数求得AB的长.解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF则∠AOF=∠COF=1/2∠AOC=1/2(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DM⊥OC于M,∵OA=OC,∴∠OCA=∠OAC=30°,∴DM=DCsin∠DCM=DCsin30°=1/2DC,∴1/2CD+OD=DM+FD.根据两点之间线段最短可得:当F、D、M三点共线时,DM+FD(即1/2 CD+OD)最小,此时FM=OFsin∠FOM=√3/2OF=4√3,则OF=8,AB=2OF=16.∴当 CD+OD的最小值为4√3时,⊙O的直径AB的长为16.三、总结提升“PA+kPB”型最值问题问题核心解题思想就是“折转直”,通过截取构造等值线段,利用相似三角形、解直角三角形等,将问题利用这类问题常用定理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③垂线段最短,从而求解问题。
与圆有关的最值问题-高三数学备考练习
与圆有关的最值问题-高三数学备考练习近几年高考试题分析发现,与圆有关的最值问题是高考热点问题之一。
这类问题既能与平面几何相联系,又能与圆锥曲线相结合,命题方式比较灵活。
解决这类问题的主要思路是利用圆的几何性质将问题转化。
常见类型包括与圆有关的长度或距离的最值问题和与圆上点(x,y)有关代数式的最值问题。
对于长度或距离的最值问题,一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解。
对于与圆上点(x,y)有关代数式的最值问题,常见类型包括形如u=x-a型、t=ax+by型和(x-a)2+(y-b)2型。
这些问题可以转化为斜率的最值问题、动直线的截距的最值问题和动点到定点(a,b)的距离平方的最值问题。
与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面。
知识拓展包括圆外一点P到圆C上点的距离距离的最大值等于,最小值等于PC-r,圆C上的动点P到直线l距离的最大值等于点C到直线l距离的最大值加上半径,最小值等于点C到直线l距离的最小值减去半径,以及圆C内一点M的弦长的最大值为直径,最小的弦长为圆心角对应的弧长。
解决与圆相关的最值问题的主要思路是利用圆的几何性质将问题转化。
例如,与直线的倾斜角或斜率的最值问题可以利用公式k=tan(≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值。
处理方法包括分别讨论斜率的范围和倾斜角的范围。
例6】已知实数x,y满足方程$x^2+y^2-4x+1=0$,求:1) $x$ 的最大值和最小值;2) $y-x$ 的最大值和最小值。
解析】1) 将方程化为标准形式:$(x-2)^2+y^2=3$,得到一个以点 $(2,0)$ 为圆心,半径为 $\sqrt{3}$ 的圆。
由于 $x$ 的取值范围为 $[2-\sqrt{3},2+\sqrt{3}]$,所以$x$ 的最大值为 $2+\sqrt{3}$,最小值为 $2-\sqrt{3}$。
专题66 阿氏圆中的双线段模型与最值问题(原卷版)
又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.
【精典例题】
1、如图,抛物线 与 轴交于 , , 两点(点 在点 的左侧),与 轴交于点 ,且 , 的平分线 交 轴于点 ,过点 且垂直于 的直线 交 轴于点 ,点 是 轴下方抛物线上的一个动点,过点 作 轴,垂足为 ,交直线 于点 .
(1)求抛物线的解析式;
专题66 阿氏圆中的双线段模型与最值问题
【专题说明】
【模型展示】
如下图,已知A、B两点,点P满足PA:PB=k(k≠1Байду номын сангаас,则满足条件的所有的点P构成的图形为圆.
(1)角平分线定理:如图,在△ABC中,AD是∠BAC的角平分线,则 .
证明: , ,即
(2)外角平分线定理:如图,在△ABC中,外角CAE的角平分线AD交BC的延长线于点D,则 .
(2)设点 的横坐标为 ,当 时,求 的值;
(3)当直线 为抛物线的对称轴时,以点 为圆心, 为半径作 ,点 为 上的一个动点,求 的最小值.
2、如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上的动点,已知r=k·OB.连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?
证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,则 ,即 .
接下来开始证明步骤:
如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理, ,故M点为定点,即∠APB的角平分线交AB于定点;
作∠APB外角平分线交直线AB于N点,根据外角平分线定理, ,故N点为定点,即∠APB外角平分线交直线AB于定点;
圆的轨迹问题,有迹可循,突破难点有绝招
圆的轨迹问题,有迹可循,突破难点有绝招动点轨迹问题、最值问题历来是中考的难点和热点。
学生需要在考场短时间思考出动点的运动轨迹确实不是一件容易的事情,如果平时不能有对图形本质的理解和把握,很难在考试中解决此类问题。
在初中阶段,我们会遇到两种轨迹问题,一个是圆弧,一个是线段。
它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定长,线段上的点到直线的距离也等于定长。
但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。
而需要我们结合题目中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理方法又是什么呢?首先我们先给轨迹下个定义,简单的说就是:动点在空间或者平面内移动,它所通过的全部路径叫做这个点的轨迹。
我们在理解这个定义时,可从下列几个方面考虑:(1)符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
初中阶段会接触到的曲轨迹一般是圆或者圆弧,比如旋转问题中;当然动点也可能在双曲线或者抛物线上运动,这都属于曲轨迹;类型1 圆的问题中隐含圆的轨迹问题1.如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<3 B.r=3 C.3<r<3√3 D.r=3√2【解析】连OI,PI,DI,由△OPH的内心为I,可得到∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣1/2(∠HOP+∠OPH)=135°,并且易证△OPI≌△ODI,得到∠DIO=∠PIO=135°,所以点I在以OD为弦,并且所对的圆周角为135°的一段劣弧上;过D、I、O三点作⊙O′,如图,连O′D,O′O,在优弧AO取点P′,连P′D,P′O,可得∠DP′O=180°﹣135°=45°,得∠DO′O=90°,O′O =3√2.故选:D.2.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣√3 B.√3﹣1 C.2 D.√3+1【解析】利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,3.如图,在△ABC中,AC=4√3,BC=9,∠ACB=60°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于点E,则AE的最小值为.【解析】:如图,连接CE.∵AM∥BC,∴∠MAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,4.(2020•武汉模拟)如图,⊙O的半径为1,点D为优弧AB上一动点,AC⊥AB交直线BD于C,且∠B=30°,当△ACD的面积最大时,∠BAD的度数为.【解析】连接OA、OD,如图,根据圆周角定理得到∠AOD=2∠B=60°,则△OAD为等边三角形,所以AD=OA=1,而∠C=60°,利用圆周角定理可判断点C在AD为弦,圆周角为60°的弧上运动,根据三角形面积公式,当C在弧AD的中点时△ADC的面积最大,此时∠CAD=60°,从而得到∠BAD=30°.类型2 非圆问题中隐含圆的轨迹问题5.(2019秋•罗湖区期末)如图,矩形ABCD中,AB=20,AD=30,点E,F 分别是AB,BC边上的两个动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.【解析】:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以D为圆心,以5为半径的圆于G。
中考热点问题”双动点问题”的处理方法复习总结(模型解析+例题精讲+真题反馈)
中考热点问题"双动点问题"的处理方法总结动点问题是中考数学必考的重难点问题,大多数同学都是“谈动色变”,选择直接放弃的更是大有人在。
解决动点问题,大家一定不要被其“动”所吓倒,我们要充分发挥空间想象能力,“动"中求“静",化“动”为“静",利用已知条件和所学知识点,寻找和所求相关的不变量和确定关系,这样,题目就化难为易了。
动点问题一般分为点动、线动和面动这三种类型,本节我们主要学习两类较难的动点问题。
一.不关联双动点问题对于不关联的双动点问题,我们采用“控制变量法",我们先控制其中一个点不动,分析另一个点运动轨迹,之后再让这个点运动起来,这样我们可以使问题更直观,思路更清晰。
我们先来看一道例题:例1.如图,RTAABC中,AC=3,AB=4,D、E分别是AB、AC上的两个动点,将AADE 沿着DE翻折,A点落在A'处,求A'C的最小值。
【简答】首先,我们固定D点不动,使E点动起来,随着E点的运动,X'始终在以D为圆心,DA为半径的圆上运动(如图1),图1只有当C、A'、D三点共线时,A z C是最短的(如图2);图2然后我们让D点也动起来,随着D点的运动,圆D的半径会发生变化,圆的半径越大,离C点就越近,因此,当D与B重合时,圆离C点的距离最近,再,移动E点,使得A,落在BC上,此时C、A,、D三定共线(如图3),CA'最小为5-4=1.图3二.多动点联动问题对于多个点运动并且是联动的这类问题,我们采用相对运动法,可以让这多个点静止,让原本的定点动起来,这样减少了动点的个数,使得问题简单化。
(原则是:让数量少的点动,让数量多的点休息)如下面这道天津中考题的最后一问。
例2.在平面直角坐标系中,四边形AOBC是矩形,点0的坐标为(0,0),点A 的坐标为(5,0),点B的坐标为(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点0,B,C的对应点分别为D,E, F.(1)如图①,当点D落在BC边上时,求点D的坐标.(2)如图②,当点D落在线段BE上时,连接AB,AD与BC交于点H.①求证:AADB义AAOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S^jAKDE的面积,求S的取值范围(直接写出结果即可).【简答】(1)VA(5.0), B (0.3).・.・OA=5,OB=3,..•四边形AOBC是矩形.AAC OB=3,OA BC-5,ZOBC=ZC-90°.•.•矩形ADEF是由矩形AOBC旋转得到,/.AD=AO=5.在RtAAlK中,CD V a D2+AC2 4..•.BD=BC-CD 1.AD(h3).(2)®由四边形ADEF是短形,得到ZADE=90°.•・•点D在线段BE上,:.ZADB90°,由(1)可知,AD-AO.又AB AB.ZAOB=90%ARtAADBSSRlAAOB②如图b中.由八ADB^AAOB.得到ZBAD-ZBAO.又在矩形AOBC中,OA〃BC,/.ZCBA=ZOAB,.\ZBAD=ZCBA..\BH=AH.设AH=BH=m.则HC BC-BH5-m.在RtAAHC中,VAIP-HC^AC^.ABH y..・.H(—,3).<3)要求△KDE面积的取值范围.我们只要考虑K、D,E三个点的运动情况即可.由于D、E西个点都在运动.3KDE面积的取值范围不好确定.例3.直线1外有一点D,点D到直线的距离为3,让腰长为2的等腰直角三角板ABC在直线]上滑动,则AD+CD的最小值为.【简答】由于运动是相对的,可以看做D点在直线r上运动,作点a关于直线r的对称点A'.可知当A\D、C三点共线时AD+CD 最小,最小值为A,C的长。
圆中动点与最值问题集锦
第20题图第21题图第22题图
21.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是.
(1)求弦CD的长;(2)如果a+b=10,求ab的最大值,并求出此时a,b的值.
第15题图第16题图第17题图
16.如图,⊙O的半径为2,点P是⊙O内一点,且OP= ,过P作互相垂直的两条弦AC、BD,则四※边形ABCD面积的最大值为_________.
※17.如图,以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS取值范围.
8.如图,已知AB是⊙O的弦,C是⊙O上的一个动点,连接AC、BC,∠C=60°,⊙O的半径为2,则△ABC面积的最大值是_________.
9.如图,已知直线MN经过⊙O上的点A,点B在MN上,连OB交⊙O于C点,且点C是OB的中点,AC= OB,若点P是⊙O上的一个动点,当AB= 时,△APC的面积的最大值为_________.
10.如图,若Rt△ABC的斜边AB=2,内切圆的半径为r,则r的最大值为_________.
第10题图第11题图第12题图
11.如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为_________.
12.如图所示,在直角坐标系中,A点坐标为(﹣3,﹣2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为_________.
解析几何中求距离最值问题的方法与策略
解析几何中求距离最值问题的方法与策略作者:洪其强来源:《广东教育·高中》2013年第10期关于解析几何中的距离的最值问题,是我们在高考复习中经常遇到的一种题型,它有时以函数最值的形式出现,有时直接以解析几何题的形式出现,对于这种题型的处理方法,如果得当,就会达到事半功倍的效果.本文以几个例题来谈谈有关这种题型的最佳解决方法.一、直线上一点到两已知点的距离的最值问题1. 同侧求差取最大,直接连接找交点.例1. 设有两点P(3,x)、Q(2,y),其中x+y=2,且x、 y∈R+,求P、Q到原点O的距离之差的最大值,并求取得最大值时的x和y 的值.分析:由题意可知=|OP|-|OQ|= - = - ,即在x轴上求一点M(x,0),使它到点A(0,3)和点B(2,2)距离的差取得最大值 .又A、B两点都在x轴的同侧,为此,连接AB并延长使之交x轴于一点,易证该点即是所求的点M,从而AB的长就是所求的最大值.解析:由分析易得|OP|-|OQ|的最大值为|AB|= ,此时直线AB的方程为y=- x+3.令y=0得x=6即所求的x=6,y=-4.2. 异侧求差取最大,找出对称直接连.例2. 在直线l∶3x-y-1=0上求一点M使它到点A(4,1)和点B(0,4)的距离的差最大.分析:由题意可知A、B两点分别在直线l的两侧,故设B(0,4)点关于直线l∶3x-y-1=0的对称点为B′,易求得B′(3,3),连接AB′并延长交于l一点,易证该点即是所求的点M.解析:由分析易得|MA|-|MB|的最大值为|AB′|= ,此时直线AB′的方程为y=-2x+9.由3x-y-1=0,y=-2x+9?圯x=2,y=5,故所求M点为(2,5).3. 异侧求和取最小,直接连接找交点.例3. 求函数f(x)= + 的最小值.分析: f(x)= += + 表示动点P(x,0)到定点A(-3,3),B(5,-1)的距离之和,而A、B两点分别位于x轴的上下两侧,由此连接AB交x轴于一点,易证该点即是所求的P点.解析:由题意及分析易得直线AB的方程为y=- x+ ,令y=0得x=3即所求的P点为(3,0).4. 同侧求和取最小,找出对称直接连.例4. 在直线l∶x-y+9=0上任取一点P,又知M(-3,0),N(3,0),试问P点在何处时|PM|+|PN|取得最小值?解析:由题意可知M(-3,0),N(3,0)在直线l同侧,要使|PM|+|PN|取得最小值.设M(-3,0)点关于直线l∶x-y+9=0的对称点为M′,易求得M′(-9,6),连接M′N并延长交l于一点,易证该点即是所求的点P. 又直线M′N的方程为y=- x+ ,即x+2y-3=0.由x-y+9=0,x+2y-3=0,得x=-5,y=4,即所求P点位置为(-5,4).点评:由上可知,上述问题可用如下口诀给予解决:同侧求差取最大,直接连接找交点;异侧求差取最大,找出对称直接连;异侧求和取最小,直接连接找交点;同侧求和取最小,找出对称直接连.二、利用数形结合求距离的最值问题例5. 设m≥1,求坐标平面上两点A(m+ ,m-),B(1,0)之间距离的最小值.分析:此题若直接用距离公式求解,比较麻烦. 如果从轨迹图形入手,最简捷.先将动点的轨迹求出来,将动点与定点的距离最值问题转化为定点与轨迹上的点的距离的最值问题.解析:A不是动点吗?那么A的轨迹是什么?这是十分自然的联想,由x=m+ ,y=m- 可知,A点的轨迹方程为x2-y2=4,绘出如上图所示的双曲线的一支,立即可以看出,|AB|的最小值为1 .三、将两个动点转化为只有一个动点例6. 如图,设P为圆(x-3)2+y2=1上的动点,Q为抛物线y2=x上的动点,求|PQ|的最小值.分析:利用圆上动点到圆心的距离等于常数的特点,将圆的动点转化为圆心定点,从而两个动点的距离最值问题,就转化为一个动点到一个定点的距离的最值问题.本题P,Q两点都是动点,如果设这两个点的坐标来求,显然非常困难. 这就需要把这两个变量转化为一个变量来处理. P点在圆上运动,但P点到圆心M(3,0)的距离是定值,利用这个定值来解决.解析:设Q(y2,y),则|QM|2=(y2-3)2+y2=y4-5y2+9=(y2- )2+ ≥ .取等号当且仅当y=± .故|PQ|的最小值为 -1.四、利用圆锥曲线的定义将折线段转化为直线段来求距离的最值问题例7. 已知椭圆 + =1内有一点P(1,-1),F为椭圆的右焦点,在椭圆上求一点M,使得|MP|+2|MF|取得最小值.分析:利用圆锥曲线的定义将折线段转化为直线段来求最值.解析:a2=4,b2=3,c2=1即F(1,0). 由M向右准线作垂线,垂足为N,则 = = .即|MN|=2|MF|.故|MP|+2|MF|=|MP|+|MN|.显然当M,P,N共线时,|MP|+|MN|最小,由 + =1,得x=±,因为x>0,所以M(,-1).(作者单位:贵州省龙里中学)责任编校徐国坚。
动点问题最值
GFD ABCEA'MCDABNPCB动点问题最值最值问题有四种情形:定点到动点得最值,动点在圆上或直线上,就就是点到圆得最近距离,与点到直线得最近距离;三角形两边之与大于第三边得问题,当两边成一直线最大;几条线段之与构成一条线段最小;还有就就是对称点最小问题。
一、定点到动点所在圆得最大或最小值,动点在一个定圆上运动,其实质就是圆外一点到圆得最大或最小距离,就就是定点与圆心所在直线与圆得交点得两个距离。
方法:证明动点在圆上或者去找不变得特殊三角形,证明两个三角形相似,求出某些边得值。
1.如图,△ABC 、△EFG 均就是边长为2得等边三角形,点D 就是边BC 、EF 得中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长得最小值就是( ) A .32-B .13+C .2D .13-提示:点M 在以AC 为直径得圆上2.(2015•咸宁)如图,已知正方形ABCD 得边长为2,E 就是边BC 上得动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动得路径长为π;④CG 得最小值为﹣1.其中正确得说法就是 ②③ .(把您认为正确得说法得序号都填上)提示:G 在以AB 为直径得圆上:正确答案就是:②④3、如图,正方形ABCD 得边长为4cm,正方形AEFG 得边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间得最小距离为 4、如图,在边长为2得菱形ABCD 中,∠A=60°,M 就是AD 边得中点,N 就是AB 边上一动点,将△AMN 沿MN 所在直线翻折得到△A ′MN ,连接A ′C ,则A ′C 长度得最小值就是5、如图,等腰直角△ACB ,AC=BC=5,等腰直角△CDP ,且PB=2,将△CDP 绕C 点旋转、CABAAA GDDA E(1)求证:AD=PB(2)若∠CPB=135°,求BD ;(3)∠PBC= 时,BD 有最大值,并画图说明; ∠PBC= 时,BD 有最小值,并画图说明、PBC=∠AB 上,6、如图,△ABC 与△ADE °,AD=1,,F 为BE 中点、(1)求CF 得长(2)将△ADE 绕A 旋转一周,求点F 运动得路径长; (3)△ADE 绕点A 旋转一周,求线段CF 得范围、提示:本题根据中点构造三角形相似,△BOF ∽△BAE,且7、如图,AB=4,O 为AB 中点,⊙O 得半径为1,点P 得等腰△PBC (点P ,B ,C 按逆时针方向排列)则线段AC AOC 中,AE-CE ≤AC AE ∥BC 交⊙O 于E ADE9、AB=4,E 为形外一点,且∠点,求BF 连AC,取DC 中点中点H ,则△FGH ∽△∴12GH AD ==∠DEA=90°,∴点F 在以GH 小距离。
动点最值问题
两条线段求最值PA+K*PB型1.PA+PB型1.1 两定一动(将军饮马)此类在学生学完对称后就可以适当进行讲解了出现一个动点的解题方法这类试题的解决方法主要是通过轴对称,将动点所在直线同侧的两个定点中的其中一个,映射到直线的另一侧。
当动点在这个定点的对称点及另一定点的线段上时,由“两点之问线段最短”可知线段和的最小值,最小值为定点线段的长。
引:如图在直线 l 上找一点 P 使 AP+BP 最短。
解:(1)如果两点在直线异侧,如图(1),连接 AB 交直线 l 于点 P,则点 P 为所示作的点;(2)如果两点在直线同侧,如图(2),可通过轴对称把问题转化为两点在直线异侧的情况。
证明:如下图所示,从 B 出发向河岸引垂线,垂足为 D,在 BD 的延长线上,取 B 关于河岸的对称点 B',连结 AB',与河岸线相交于 P,则 P 点就是所求作的点,只要从 A 出发,沿直线到 P,再由 P 沿直线走到 B,所走的路程就是最短的。
如果在河边的另外任一点 C, 则CB=CB’,但是,AC+CB=AC+CB'>AB'=AP+PB'=AP+PB。
可见,在 P 点外任何一点 C,它与 A、B两点的距离和都比 AP+PB 都长。
本质:两点之间,线段最短。
【牛刀小试】1.如图,正方形 ABCD 的边长为 2,E 为 AB 的中点,P 是 AC 上一动点.则PB+PE 的最小值是____________.2.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P,使 PD+PE 的和最小,则这个最小值为__________.3.如图,MN 是半径为 1 的⊙O 的直径,点 A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点, P 是直径MN 上一动点,则 PA + PB 的最小值为_________.4.如图,AB 是⊙O 的直径,AB=8,点 M 在⊙O 上,∠MAB=20°,N 是弧 MB的中点,P 是直径 AB 上的一动点.若 MN=1,则△PMN 周长的最小值为________.5.已知 A(-2,3),B(3,1),P 点在 x 轴上,若 PA+PB 长度最小,则最小值为____________.6.如图,在 Rt△ABC 中,∠C=90°,∠B=60°,点 D 是 BC 边上的点,CD=1,将△ABC 沿直线 AD 翻折,使点 C 落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则△PEB 的周长的最小值是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题突破
圆的双动点最值问题
1.如图,在Rt△ABC中,∠C=90°,AC=6,
BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF 翻折,点C落在点P处,则点P到边AB距离的最小值是_____.
分析:本题中,要求点P到边AB距离的最小值,先要确定点P的运动轨迹.因为FP=FC=2,所以点P的运动轨迹是以点F为圆心,2为半径的圆弧(如图),过点F作FQ⊥AB,以F为圆心的弧与FQ的交点为满足条件的点P.
答案:6/5
这是动点轨迹为圆弧的一种类型,动点满足到定点的距离等于定长,确定动点的运动轨迹为以定点为圆心,定长为半径的圆(或一段弧).
2. 如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的
边长为4,则线段DH长度的最小值是_______.
分析:要求线段DH长度的最小值,先要确定动点H的运动轨迹。
在点P的运动过程中,∠AHB=90°,点H的运动轨迹是以AB为直径的半圆,题目转化为圆外一点到圆上一点之间的最小距离的问题(如图),连结点D和AB中点O,与半圆O交于点H,此时DH长度最小.
答案:
这一类动点满足与定线段构成一个直角三角形,且为直角顶点,则这个动点的轨迹是以定线段为直径的圆(或圆弧)。
由特殊到一般,如果动点与定线段构成的三角形中,以动点为顶点的角度确定,这个动点的运动轨迹是以定线段为弦的圆(或圆弧).
3. 如图,正方形OABC的边长为4,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O逆时针旋转90°,交点P运动的路径长是()
分析:这题看似动点很多,其实点A、B、C可看成是同一个动点,点P是第二动点,要求点P运动的路径长,先要确定点P的运动轨迹。
因为四边形OABC是正方形,所以∠AOC=90°,所以∠AFC=45°,因为EF是直径,所以∠EAF=90°,∠APF=45°,∠EPF=135°,点P的运动轨迹是以EF为弦且该弦所对的一个圆周角为135°的一段圆弧(如图)。
求出这段圆弧所对圆心角以及所在圆半径便可解决问题.
答案:A.
由此可见,定线段和动点组成的三角形中,如果以动点为顶点的角度是定值,那么这个动点的运动轨迹是一个圆(或一段圆弧).
试一试
1.如图,已知等边△ABC的边长为 8,以AB为直径的圆交BC于点F。
已C为圆心,CF长为半径作图,D 是⊙C上一动点,E 为BD的中点,当AE 最大时,BD的长为()
答案:B
2.如图,已知A、C是半径为2的⊙O上的两动点,以AC为直角边在⊙O内作等腰Rt△ABC,∠C=90°,连接OB,则OB的最小值为_______.
答案:
练习反馈:
1.如图,点A是直线y=-x上的动点,点B是x轴上的动点,在矩形ABCD
2.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上
3. 已知⊙O半径为3,点A、B在⊙O上,∠BAC=90°,AB=AC,求OC的最小值。
4.已知⊙O半径为3,点A、B在⊙O上,∠BAC=90°,AB:AC=4:3,求OC 的最小值.。