[课件]核磁共振分析PPT

合集下载

核磁共振波谱分析ppt课件

核磁共振波谱分析ppt课件

DE=hν ——②
则:处于低能级态的1H就会吸收电磁波的能量,跃迁到 高能级态,发生核磁共振。
11
核磁共振波谱分析
1.2.4 核磁共振的条件
发生核磁共振时,必须满足下式:
n=
g 2p
Ho
3
③式称为核磁共振基本关系式。
❖ 可见,固定H0,改变ν射或固定ν射,改变H0都可满足③ 式,发生核磁共振。
但为了便于操作,通常采用后一种方法。
• 乙酸乙酯的核磁共振氢谱
1H NMR ( 300 MHz, CDCl3 ),δ( ppm) 1.867 ( t, J= 7.2 Hz, 3H ), 2.626 ( s, 3H ), 4.716 ( q, J= 7.2 Hz, 2H )
• s—单峰;d—双峰(二重峰);t—三峰 (三重峰);q—四峰(四重峰);m—多 峰(多重峰)
C6H5CH2CH3 C6H5
CH3
CH2
17
17
核磁共振波谱分析
核磁共振氢谱信号 结构信息
信号的位置 (化学位移)
信号的数目
信号的强度 (积分面积)
信号的裂分 (自旋偶合)
质子的化学环境 化学等价质子的组数 引起该信号的氢原子数目
邻近质子的数目,J(偶
合常数)单位:Hz
18
核磁共振波谱分析
(2)核磁共振数据
19
核磁共振波谱分析
§3 化学位移 (Chemical shift)
化学环境不同 的1H 核在不 同位置(ν) 产生共振吸 收
化学环境不同的1H 核在外磁场中 以不同的Larmor频率进动;1H 核在分子中所处的化学环境不同 导致Larmor频率位移
20
核磁共振波谱分析

核磁共振ppt课件

核磁共振ppt课件

δ 13C 96.1 192.8 77.1(3) 30.3(7), 207.3 39.5(7)
128.0(3) 67.4 116.5(4), 163.3(4) 26.3(7) 149.3(3),123.5(3), 135.5(3) 49.0(7)
精选ppt
2024/2/24
课件2021
16
7.2 1H-核磁共振波谱
(3)用一个能量恰好等于分裂后相邻能级差的电 磁波照射,该核就可以吸收此频率的波,发生能级 跃迁,从而产生 特征的NMR 吸收。
这就是核磁共振的基本原理。
精选ppt
2024/2/24
课件2021
3
1. 原子核的自旋(atomic nuclear spin )
(1)一些原子核像电子一样存在 自旋现象,因而有自旋角动量:
精选ppt
2024/2/24
课件2021
25
例题, 某质子的吸收峰与TMS峰相隔134Hz。若 用60 MHz的核磁共振仪测量,计算该质子的化学 位移值是多少?
解: δ = 134Hz / 60MHz 106 = 2.23 (ppm)
改用100 MHz的NMR仪进行测量,质子吸收峰 与TMS 峰相隔的距离,即为相对于TMS的化学 位移值Δν
在有机化合物中,各种氢核周围的化学环境不同,电 子云密度不同,屏蔽效应不同,共振频率有差异,即引起共 振吸收峰的位移,这种现象称为化学位移。
由于化学位移的大小用
与氢核所处的化学环境
密切相关,因此可用来
判断H 的化学环境,从
而推断有机化合物的分
子结构。
精选ppt
2024/2/24
课件2021
21
3. 化学位移的表示方法

仪器分析—核磁共振ppt课件

仪器分析—核磁共振ppt课件

大, △E越大
B0外加磁场
无磁场 m= -1/2 E2= B0 △E=2 B0 m= +1/2
E1= -B0
(一)、核磁共振
由于磁场的作用,原子核一方面绕轴自
旋,另一方面自旋轴又围绕着磁场方向进动。
拉莫尔进动有一定的回旋频率 ,当发 生核磁共振时,自旋核的跃迁能量(E= 2B0 ) 必然等于射频辐射能量(E=h) ,则 h =ΔE
(2)不同原子核,磁旋比 不同,产生共振的条件不同,需要的磁场强度B0和 射频频率不同。
(二)、核自旋能级分布和驰豫
一定温度下,原子核处于低能级与高能级上 的核数目达到热平衡,且满足玻尔兹曼分布:
Ni kT e e N0 E
h kT
e
hB 0 2kT
式中,Ni和N0分别为处于高能集合处于低能级上 的核总数;ΔE为两能级之间的能量差;k为玻尔 兹曼常量;T为 热力学温度。
NMR是结构分析的重要工具之一,在化学、 生物、医学、临床等研究工作中得到了广泛 的应用。
核磁共振与紫外、红外比较
共同点都是吸收光
紫外—可见
红外
核磁共振
吸收 能量
紫外可见光 200~780nm
红外光 780nm~1000m
无线电波1~100m 波长最长,能量最 小,不能发生电子 振动转动能级跃迁
自旋-自旋弛豫: 处于高能态的核自旋体系将能 量传递给邻近低能态同类磁性核而回到低能态的 过程,称为自旋-自旋弛豫,自旋体系的总能量没 有改变。 自旋-自旋弛豫时间用t2表示。
二、核磁共振现象
(一)核自旋能级 把自旋核放在场强为B0的磁场中,由于磁矩 与磁场相 互作用,核磁矩相对外加磁场有不同的取向,共有2I+1个,各 取向可用磁量子数m表示 m=I, I-1, I-2, ……-I 每种取向各对应一定能量状态 I=1/2的氢核只有两种取向 I=1的核在B0中有三种取向

《核磁共振》PPT课件.ppt

《核磁共振》PPT课件.ppt
时间表示;T2 气、液的T2与其T1相似,约为1秒;
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。

磁共振 ppt课件

磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。

基础医学课件-核磁共振波谱分析PPT课件

基础医学课件-核磁共振波谱分析PPT课件
外加磁场强度下发生核跃迁时,氢核需要的能量将高 于氟核
2020年10月2日
11
5.2.3 核的回旋
当原子核的核磁矩处于外加磁场B0 中,由于核自
身的旋转,而外加磁场又力求它取向于磁场方向,在 这两种力的作用下,核会在自旋的同时绕外磁场的方 向进行回旋,这种运动称为Larmor进动。
2020年10月2日
2020年10月2日
22
样品处理
对液体样品,可以直接进行测定。对难以溶解的 物质,如高分子化合物、矿物等,可用固体核磁共振 仪测定。但在大多数情况下,固体样品和粘稠样品都 是配成溶液(通常用内径4mm的样品管,内装0.4mL 质量分数约为10%的样品溶液)进行测定。
溶剂应该不含质子,对样品的溶解性好,不与样 品发生缔合作用。常用的溶剂有四氯化碳、二硫化碳 和氘代试剂等。四氯化碳是较好的溶剂,但对许多化 合物溶解度都不好。氘代试剂有氘代氯仿、氘代甲醇、 氘代丙酮、重水等,可根据样品的极性选择使用。氘 代氯仿是氘代试剂中最廉价的,应用也最广泛。
在上图中,当自旋取向与外加磁场一致时(m =+1/2), 氢核处于一种低能级状态(E=-μB0);相反时(m=- 1/2),氢核处于一种高能级状态(E=+μB0)两种取向间 的能级差,可用ΔE来表示:
ΔE = E2-E1 =+μB0-(-μB0) = 2μB0 式中:μ为氢核磁矩;B0为外加磁场强度
然而,核磁共振信号的强弱是与被测磁性核的天然丰 度和旋磁比的立方成正比的,如1H的天然丰度为99.985%, 19F和31P的丰度均为100%,因此,它们的共振信号较强, 容易测定,而13C的天然丰度只有1.1%,很有用的15N和17O 核的丰度也在1%以下,它们的共振信号都很弱,必须在傅 里叶变换核磁共振波谱仪上经过多次扫描才能得到有用的 信息。

核磁共振谱图解析 ppt课件

核磁共振谱图解析  ppt课件

PPT课件
33
用NOESY方法对异构体的鉴别

在有机合成反应中会经常出现异构体 ,在异构体构型的鉴别 中,NOE是一种非常有效的手段。NOE谱对有机化合物结构、构 型、构象的鉴定能够提供重要信息. NOE谱可以采用一维方式或 二维方式 ,我们通常都采用二维谱图的方式,因为二维谱方便快 捷,可观察的信息全。 • NOE主要用来确定两种质子在分子立体空间结构中是否距 离相近。要求两种质子的空间距离小于5A. 从以上可以看出 NOE和空间因素很有关系,和相隔的化学键数无关,所以在分析 NOE谱图时候,一定要能画出结构的立体构型以便解析。下面是 用NOE方法来鉴别异构体的简单例子。
下面是四氢糖醇的结构图,可以看出手性碳对2,3,4,5位氢的空间上的影响.
PPT课件
2.5
1.188 2.373
2.0
2.944
4 5
4
1.000
1.5
1.955 1.941 1.936 1.922 1.918 1.910 1.907 1.904 1.899 1.895 1.884 1.867 1.853 1.848 1.664 1.658 1.650 1.645 1.638 1.632 1.628 1.619 1.610 1.602 1.589
10-14 (DMSO); 7-10 (CDCl3) 8-10 (峰型尖锐) 5-8 (并且两个氢会分开) 7-13 9-12
PPT课件
12
PPT课件
13
PPT课件
14
PPT课件
15
PPT课件
16
PPT课件
17
PPT课件
18
PPT课件
19
PPT课件
20

磁共振成像(MRI)解剖PPT课件

磁共振成像(MRI)解剖PPT课件
局限性
检查费用较高、检查时间长、对 金属植入物敏感、部分患者不适 宜进行检查等。
02 MRI解剖学基础
头部MRI解剖
脑干与小脑
脑室与脑池
展示脑干和小脑的MRI图像,解释其 结构与功能。
介绍脑室和脑池的MRI表现,阐述其 临床意义。
脑皮质与髓质
通过MRI图像展示脑皮质和髓质的解 剖特点,解释其在神经系统中的作用。
信号产生与接收
通过施加射频脉冲,使原子核发生 能级跃迁并释放出能量,被探测器 接收并转化为电信号,再经过计算 机处理形成图像。
成像原理
利用不同组织对射频脉冲的吸收和 散射程度不同,通过测量磁场中原 子核的共振频率和相位信息,重建 出人体内部结构的图像。
MRI技术发展历程
1971年
第一台医用核磁共振成像仪问 世。
腹部MRI解剖
腰椎与肾脏
展示腰椎和肾脏的MRI图像,解释其在腹部结构中的功能。
肝脏与脾脏
通过MRI图像展示肝脏和脾脏的解剖特点,阐述其在消化系统中的作用。
03 正常MRI解剖图像展示
正常头部MRI解剖图像
总结词
展示大脑、脑干、小脑等结构
详细描述
正常头部MRI解剖图像可以清晰地展示大脑、脑干和小脑等重要结构,以及它们 之间的相互关系。这些结构包括灰质、白质、脑室和脑池等,对于诊断神经系统 疾病具有重要意义。
疗效评估
手术后或放化疗后,MRI 可用于评估肿瘤缩小或消 退的情况,监测疗效。
血管疾病的诊断与评估
动脉粥样硬化
MRI能够检测动脉粥样硬化的早期病变,对预防 心血管事件具有重要意义。
血管狭窄与阻塞
MRI能够评估血管狭窄和阻塞程度,为治疗方案 的选择提供依据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
实践证明,核自旋与核的质量数,质子数和中子数有关
质量数为 原子序数 自旋量子数 无自旋 偶数 为偶数 为0 质量数为 原子序数 自旋量子数 有自旋 偶数 为奇数 为1,2,3
自旋量子数 原子序数 质量数为 为 有自旋 为奇或偶 1/2,3/2, 奇数 数 5/2
二、核自旋能级和核磁共振
(一)核自旋能级 把自旋核放在场强为B0的磁场中,由于磁矩 与磁场相 互作用,核磁矩相对外加磁场有不同的取向,共有2I+1 个,各取向可用磁量子数m表示 m=I, I-1, I-2, ……-I 每种取向各对应一定能量状态 I=1/2的氢核只有两种取向 I=1的核在B0中有三种取向
B0外加磁场
无磁场 m= -1/2 E2= B0 △E=2 B0 m= +1/2 E1= -B0
(二)核磁共振的产生
如果以一定频率的电磁波照射处于磁场B0中的核, 且射频频率恰好满足下列关系时: h =ΔE ΔE=2 B0 20 (核磁共振条件式) h 自旋核的跃迁能量


(1)对自旋量子数I=1/2的同一核来说,, 因磁矩为一定值,—为常数,所以发生共振 时,照射频率的大小取决于外磁场强度的大 小。外磁场强度增加时,为使核发生共振, 照射频率也相应增加;反之,则减小。 扫频法和扫场法(p224)


(2)对自旋量子数I=1/2的不同核来说,若同时放 入一固定磁场中,共振频率取决于核本身磁矩的大 小, 大的核,发生共振所需的照射频率也大;反之, 则小。 磁旋比γ 的影响(p225)
9.1 核磁共振基本原理
一、原子核的自旋运动及磁距
原子核具有质量并带正电 荷,自旋量子数I≠0的原子核有 自旋现象,在自旋时产生磁矩, 磁矩的方向可用右手定则确定, 核磁矩和核自旋角动量P都是矢 量,方向相互平行,且磁矩随角 动量的增加成正比地增加 =P —磁旋比,不同的核具有不同的磁旋比,
与紫外、红外比较

共同点都是吸收光谱 紫外-可见 红外 红外光 780nm~1 000m 核磁共振 无线电波 1~100m波长 最长,能量最小, 不能发生电子振 动转动能级跃迁
吸收 能量
紫外可见光 200~780 nm
跃迁 类型
电子能级跃 自旋原子核发生 振动能级跃迁 迁 能级跃迁


NMR是结构分析的重要工具之一,在化 学、生物、医学、临床等研究工作中得到 了广泛的应用。 分析测定时,样品不会受到破坏,属于无 破损分析方法
z
z
z
B0
m = +1/2
m =+1 m =
m = m = m = m = 1
m = 1/2
m = 1
m = 2 I=2
I = 1/2
I=1
I=1/2的氢核
与外磁场平行,能量较低,m=+1/2, E 1/2= -B0 与外磁场方向相反, 能量较高, m= -1/2, E -1/2=B0
12C
32 6, S 16O , 16 8
14N 7 1H , 1 13C 6 19F ,31P 9 15


I=1/2的原子核,核电荷球形均匀分布于核 表面,如: 1H1, 13C6 , 14N7, 19F9,31P15 它们核磁共振现象较简单;谱线窄,适宜检测, 目前研究和应用较多的是1H和13C核磁共振 谱
核磁共振分析
引言:
将磁性原子核放入强磁场后,用适宜频率的 电磁波照射,它们会吸收能量,发生原子核能级 跃迁,同时产生核磁共振信号,得到核磁共振

利用核磁共振光谱进行结构测定,定性与定量分析 的方法称为核磁共振波谱法。简称 NMR
在有机化合物中,经常研究的是1H和13C的共
振吸收谱,重点介绍H核共振的原理及应用

Pz为自旋角动量在Z轴上的分量
h P Z m 2


核磁矩在磁场方向上的分量

核磁矩与外磁场相互作用而产生的核磁场作用能E, 即 各能级的能量为 E=-ZB0 E 1/2= -B0 E-1/2= B0
h Z m 2


I=1/2的核自旋能级裂分与B0的关系 由式 E = -ZB0及图可知1H核在磁场 中,由低能级 E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0 △E与核磁矩及外磁场强度成正比, B0越大,能级分 裂越大, △E越大
三、核自旋能级分布和驰豫
(一)核自旋能级分布
1H核在磁场作用下,被分裂为m=+1/2和m=-
1/2两个能级,处在低能态核和处于高能态核的分布 服从波尔兹曼分布定律
N N
1 ( ) 2
e
E kT
e
h kT
e
h B 0 2 kT
1 ( ) 2

当B0 = 1.409 T,温度为300K时,高能态和低能态 的1H核数之比为

磁性核

h =ΔE
高能级 低能级
处于低能态的核将吸收射频能量而跃迁至高 能态,这种现象叫做核磁共振现象。
h m 2
I=1/2 的核发生核磁共振吸收射频 的频率,即共振频率。
0 2 B 1h 代入 0得 2 2 2 h
产生核磁共振光谱的条件
对某元素是定值。是磁性核的一个特征常数
核的自旋角动量是量子化的,与核的自旋量
子数 I 的关系如下:
h 13 p I ( I 1 ) I 可以为 0 , , 1 , , 2 等值 2 22

代入上式得:
h I( I 1 ) 2
( = P)

34 8 1 6 . 63 10 J s 2 . 68 10 T1 s 1 . 409 T 23 1 2 3 . 14 1 . 38 10 J K 300 K
核磁共振的分类 1.固体核磁共振 用于不溶性的高分子材料,膜蛋白,金属 材料的研究; 2. 液体核磁共振 用于有机化合物,天然产物,生物大分子 的研究; 3. 核磁共振成像 临床诊断的成像仪,动植物实验、研究用 的成像仪
核磁共振波谱分析的特点 1. 样品无损; 2. 结构信息丰富; 3. 新的分析测试技术不断出现。
相关文档
最新文档