最优控制的特点实例
11 最优控制1
![11 最优控制1](https://img.taocdn.com/s3/m/3bb93546fe4733687e21aab5.png)
t0 tf
这是一种积分型泛函,在变分法中这类 问题称为拉格朗日问题。
(2)终值型性能指标
J [ x(t f ), t f ]
在变分法中称为迈耶尔问题。
(3)复合型性能指标。
J [ x(t f ), t f ] F[ x(t ), u(t ), t ]dt
最优控制问题提法
最优控制的问题就是:从所有可供选择 的容许控制中寻找一个最优控制 u (t ) 使状态由x(t 0 )经过一定时间转移到目标集 S,并且沿此轨线转移时,使相应的性能 指标达到极值。
*
任何一个最优控制问题均应包 含以下内容
系统数学模型 边界条件与目标集 容许控制 性能指标
t0
tf
举例
已知人造地球卫星姿态控制系统的状态方程 为 (t ) 0 1 x(t ) 0u (t ) x 0 0 1
1 2 2 性能泛函取为 J 2 0 u (t )dt
边界条件
1 x(0) 1
0 x(2) 0
J ( x) F[ x(t ), x(t ), t ]dt
t0
tf
J ( x) F [ x(t ), x(t ), t ]dt
t0
tf
t * ( t f ) f
t0 t* f
F [ x * (t ) (t ), x * (t ) (t ), t ]dt
求使性能泛函取极值的极值轨线和极值控制
F [ x * (t ) (t ), x * (t ) (t ), t ]dt
最优控制实验报告
![最优控制实验报告](https://img.taocdn.com/s3/m/d34a7047852458fb770b56ad.png)
最优控制论文一、最优控制(optimal control)的一般性描述:通过这一门课程的学习,首先给最优控制(Optimal Control)下一个定义:在规定的限度下,使被控系统的性能指标达到最佳状态的控制。
先了解一下最优控制发展的历史:最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。
美国学者R.贝尔曼1957年动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。
对最优控制理论的形成和发展起了重要的作用。
线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
另外我国科学家钱学森1954年所着的《工程控制论》(EngineeringCybernetics)直接促进了最优控制理论的发展和形成。
最优控制主要研究的问题:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定的要求运行,并使给定的某一性能指标达到最优值。
例如,对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
这类问题广泛存在于技术领域或社会问题中。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。
现在,我们把这些问题转化为数学模型来分析:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。
最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等广泛领域中。
二、最优控制解决问题的基本方法及其特点和适用范围1、变分法变分法又分为古代变分法和现代变分法,它是数学领域里处理泛函(函数的函数)极值的一种方法,可以确定容许控制为开集的最优控制函数,也是研究最优控制问题的一种重要工具。
刘豹版现代控制理论第六章课件6最优控制11
![刘豹版现代控制理论第六章课件6最优控制11](https://img.taocdn.com/s3/m/9f7abe34b90d6c85ec3ac674.png)
TechnicalTechnical parameters for turntable (2) parametersforturntable(1)通过实例来初步认识为转动惯量;内,电动机从静止起动,转过一定角度最小,求θt t I R D t D fd )(2∫=)(t I D 的函数,E 是函数的函数,称为中的直流他励电动机,如果电动机从初始)(t I D 又停下,求控制(是。
θ()D I t FD D D m T J I J K ⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎥⎦⎤100末值状态⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡0)()(21θf f t x t x 最优控制问题提法为:在状态方程约束下,寻求最优控制,使J 为最小最优控制:在某个性能指标下的最优控制;性能指标处的增量为::求平面上两固定点连线最短的曲线c=自由的终端约束的极值问题。
ce t回顾前面最优控制问题提出的第二个例子可以看出:1、当终值时刻,ω=02、I D (t )为负斜率线性函数,,]x u t ③边界条件(以始端固定、终端自由为例):[(),]()f f f x t t x t φ∂],,,*t λu 与通常基于变分法的最优控制不同处极值的必要条件是使哈密尔顿函1线性系统的二次型性能指标最优控制u 在这里不是输入,而是一种(反馈)控制结构03,0f t t ==322212121(242)2x x x x u dt+++10⎡⎤⎢21⎡⎤⎥02S =⎥⎣⎦14Q =⎢⎣⎦121222p x p x ⎤⎡⎤⎥⎢⎥⎦⎣⎦xxx+)}t随着参考输入的不同,系统的结构(输入部份)也不同变输入变结构控制?其状态方程模型u x=2&21x x=&}u ≤1系统的初始状态为)0(1x )0(2x 末值状态为)(1=f t x 0)(2=f t x 性能指标为ft t t J f ==∫d )(f t x 要求在状态方程约束下,寻求最优控制,转移到,同时使J 取极小值。
最优控制理论
![最优控制理论](https://img.taocdn.com/s3/m/a0874d35580216fc700afd13.png)
f ( x(t ), u (t ), t ) 满足一定条件时,方程有唯一解令 Nhomakorabea
H L( x, u, t ) f ( x, u, t )
T
哈密顿函数
性能指标
J L( x, u, t )dt
t0
T
令
H ( x, , u , t ) (t ) x
时至今日,最优控制理论的研究无论在深度上和广度上都有了很大 的发展,例如发展了对分布参数系统、随机系统、大系统的最优控制理 论的研究等等;在生物领域、市场销售和现代医学成像与高维图像分析 等实际生活中广泛应用 。
解决最优控制问题的方法
一、古典变分法 是研究对泛函求极值的一种数学 方法。古典变分法只能用在控制 变量的取值范围不受限制的情况。 在许多实际控制问题中,控制函 数的取值常常受到封闭性的边界 限制,如方向舵只能在两个极限 值范围内转动,电动机的力矩只 能在正负的最大值范围内产生等。 因此,古典变分法对于解决许多 重要的实际最优控制问题,是无 能为力的。
t [0, t f ]
这里 A>0表示最大生产率,另外为了保证满足需求,必 须有
A r (t )
t [0, t f ]
假定每单位时间的生产成本是生产率 u(t)的函数,即 h[u(t)] 。设 b>0是单位时间储存单位商品的费用,于是, 单位时间的总成本为:
f x(t ), u(t ), t h u(t ) bx(t )
二、极大值原理
是分析力学中哈密顿方法的推广。 极大值原理的突出优点是可用于控 制变量受限制的情况,能给出问题 中最优控制所必须满足的条件。
最优控制特点
![最优控制特点](https://img.taocdn.com/s3/m/14cbef80b14e852458fb576b.png)
切换一次,设切换
2t
时间为ts,则令
0
为了求出ts,必须
首先找出状态在
1
平面上的转移轨线。
0
1
ts
tf
t
t
由 则:
设u=1,则
其中
如图(a)所示,为一组抛物线, 当K=0时经过原点[pos]
X2 s
0
t
p
若u=-1,则
X2 N
o
X1
T u=-1
为一组抛物线,如图(b),当K1=0时过原点[NOT]
j =1,2…r
u 最优控制 *(t)是使
为极小,则:
+1 -1 不定
u*(t) +1
-1
奇异
t
可见:当 当
时, 时,
有确定值,正常情况 不定, 奇异情况
我们仅研究正常情况
u*(t)写成符号函数sgn{ }形式
则
j =1,2…r
向量形式:u*(t)=-sgn{q*(t)}
=-sgn{
}
⑶根据规范方程:
在证明过程中:
与H得符号与这里所定义的相反。
∴所以有的文献中也称为“极大值原理”。 3、H对u没有可微要求,因此应用拓宽。 4、 极小值原来是求取最优控制的必要条件,非充分条件。 即:满足极小值原理不一定J取极小值,需进一步判断。
一般:对于实际系统
有最优解
有唯一解
最优解
三、几种边界条件得讨论:
上面所讨论的是
控制向量约束条件: 末端状态:
g:p ×1维函数向量
目标函数:
: 自由
问题:寻求最优控制u*(t),使系统由初态到终态, 目标函数J 为最小
❖ 步骤:应用最小值原理进行问题的求解
第9章 最优控制1
![第9章 最优控制1](https://img.taocdn.com/s3/m/9e9a674d2e3f5727a5e962a8.png)
9 最优控制用经典控制理论设计系统时,是根据给定的频域和时域指标,通过选择适当结构和参数的校正装置进行调节,本质上是一个试凑的方法,设计质量的好坏很大程度上依赖于设计人员的实践经验。
而最优控制的设计目标是要选择适当的控制的规律,使控制系统在严格的数学基础上实现系统的性能品质在某种意义下是最优的。
最优控制是现代控制理论的一个重要组成部分。
本章主要讨论最优控制问题的基本概念。
二次型最优控制问题以及最优观测器设计。
9.1最优控制问题实例9.1.1最优控制问题实例设有一盛放液体的连续搅拌槽,如图9.3所示。
槽内装有搅拌器使槽内液体经常处于完全混合状态。
若槽内液体初始温度为0℃,现需将其温度经1小时后升高到40℃。
为此在入口处送进一定量的温度为u(t)的加热液体。
(为保持槽内液体恒定,出口处的流出量等于入口处的流入量),试寻找加热液体温度u(t)的变化规律,使槽中的液体温度经1小时后上升到40℃,且散失热量最小。
因假定槽内液体处于完全混合状态,由热力学可知,槽内液体温度x(t)的变化率与两种液体的温差(u(t)-x(t))成正比,为简便计,令比例系数为1,于是有)()()(t x t u dtt dx -= (9.1-1)初始条件x(0)=0 (9.1-2) 终值条件x(1)=40 (9.1-3)在1小时内散失掉的热量可用下式表示J=⎰10[qx2(t)+ru2(t)]dt (9.1-4)其中q和r都是正的常数。
该问题的任务是,寻求加热液体温度的最优变化规律u*(t),使槽内液体由初态9.1-2转移到终态9.1-3的过程中散失热量9.1-4为最小。
9.1.2最优控制问题的一般提法根据上例可概括出,最优控制问题用数学语言来描述时应该包含以下几方面内容:1.系统状态方程.x=f[x(t),u(t),t] (9.1-5)其中,x为n维状态向量,u为r维控制向量,f(.)是n维函数向量。
2.控制变量的约束条件大多数实际控制系统中的控制变量的取值范围是受限制的,如发动机的推力,电动机的转矩等都不能超出某一极限,即|u|≤K在数学上,表示容许控制域为控制空间中的一个集合Uu∈3.初始条件和终值条件在最优控制中,初始条件通常是已知的,即X(t0)=X,而终值条件则要复杂些,它可以是状态空间中一个确定的点,或状态空间中某一个点集(目标集)中的任何一个点。
最优控制_2
![最优控制_2](https://img.taocdn.com/s3/m/af3c8f3acfc789eb172dc849.png)
u (t ) 为p维控制向量,在[t0,tf] 上分段连续
f ( x (t ), u (t ), t ) 为n维连续向量函数, 对x和t连续可微
⎡ f1(x(t),u(t),t)⎤ ⎡ f1(x1(t), x2 (t)Lxn (t),u1(t),u2 (t)Lup (t),t)⎤ ⎢ f (x(t),u(t),t)⎥ ⎢ f (x (t), x (t)Lx (t),u (t),u (t)Lu (t),t)⎥ 2 n 1 2 p ⎥ ⎥=⎢ 2 1 &(t) = f (x(t),u(t),t) = ⎢ 2 x ⎥ ⎢ ⎥ ⎢ M M ⎥ ⎢ ⎥ ⎢ f x t x t L x t u t u t L u t t ( ( ), ( ) ( ), ( ), ( ) ( ), ) f x t u t t ( ( ), ( ), ) ⎥ 2 n 1 2 p ⎣ n ⎦ ⎢ ⎣ n 1 ⎦
无条件约束的泛函极值问题中的边界条件和横截条件列表(表10-1) x(t0)固定 x(tf)固定 x(t0)自由 x(tf)固定 tf固定 x(t0)固定 x(tf)自由 x(t0)自由 x(tf)自由 x(t0)固定 x(tf)自由 tf自由 x(t0)固定 x(tf)约束
x (t 0 ) = x 0
∂L ∂x d − dt ∂L & ∂x
=0
T t0
T ( ∂∂L ) & x t
f
L δx(t f ) − ( ∂ &) ∂x
δx(t0 ) = 0
& , λ , t ) = g ( x, x &, t ) + λT f ( x, x &, t ) L ( x, x
λ (t ) ∈ R n 称为拉格朗日乘子
最优控制介绍课件
![最优控制介绍课件](https://img.taocdn.com/s3/m/a944f416bc64783e0912a21614791711cd797977.png)
状态方程可以表 示为微分方程或 差分方程的形式
03
02
04
状态方程通常包 括系统的状态变 量、输入变量和 输出变量
状态方程在最优 控制问题中用于 描述系统的动态 特性,为控制器 的设计提供依据
控制方程
状态方程: 描述系统 状态的变 化规律
控制方程: 描述控制 输入与系 统状态的 关系
性能指标 方程:描 述系统的 性能指标
02
状态转移方程: 描述状态之间的
递推关系
03
边界条件:定义 初始状态和终止
状态
04
求解过程:从初 始状态开始,逐 步求解子问题, 直至得到最优解
最优控制理论
01
最优控制理论是研究如何找到最优控制策
略,使得系统在特定条件下达到最优性能。
02
最优控制理论包括动态规划、极大值原
理、变分法等方法。
03
最优控制理论广泛应用于工程、经济、
04
间接法:通过求解最优控制问 题的辅助问题来获得最优控制 策略
06
数值解法优缺点:优点是计算 简单、易于实现;缺点是计算 精度较低、收敛速度较慢
机器人控制
1
机器人运动控 制:通过最优 控制算法,实 现机器人的精 确运动控制
2
机器人路径规 划:通过最优 控制算法,规 划机器人的最 优路径
3
机器人抓取控 制:通过最优 控制算法,实 现机器人的精 确抓取控制
交通控制
STEP1
STEP2
STEP3
STEP4
交通信号灯控制: 根据实时交通状况, 自动调整信号灯时 间,提高道路通行 效率
公共交通调度:根 据客流量、车辆位 置等信息,优化公 交线路和发车频率, 降低乘客等待时间
最优控制的应用案例
![最优控制的应用案例](https://img.taocdn.com/s3/m/cf1d39d680c758f5f61fb7360b4c2e3f56272555.png)
最优控制的应用案例1、电力系统最优控制:随着电力系统的快速发展,电力系统的稳定运行需要能够实现最优控制。
最优控制技术可以有效地提高电力系统的可靠性和安全性,并且能够改善电力系统的运行效率和经济性。
此类技术可以帮助实现电力系统的自动控制,进而使电力系统能够适应不断变化的环境和复杂的负荷需求。
2、汽车优化控制:汽车电子控制系统是汽车性能和安全性能的重要保证。
采用最优控制技术,可以提高汽车的操纵性能和安全性。
具体而言,最优控制可以有效地提高汽车的加速性能,并且可以使汽车在恶劣的道路条件下安全行驶,从而改善汽车的整体操纵性能。
3、风力发电机最优控制:风力发电机的最优控制可以帮助减少由于环境噪声和突发事件引起的运行不稳定情况,从而改善风力发电机的可靠性和安全性。
此外,采用最优控制可以提高风力发电机的发电效率,从而有效地提高风力发电机的经济性。
4、投资组合最优控制:投资组合最优控制技术可以帮助投资者在风险和收益之间取得最佳平衡,并最大程度地提高投资收益率。
此类技术可以帮助投资者分析和评估投资组合的风险和收益,并有效地控制投资组合的风险,从而获得最佳投资效果。
5、能源最优控制:能源最优控制技术可以帮助企业有效地控制能源消耗,从而降低企业的能源成本。
此外,采用最优控制技术还可以帮助企业有效地分配能源,以满足不同部门的能源需求,从而提高能源的利用效率。
6、交通控制:最优控制技术可以帮助交通控制者有效地控制交通流量,从而提高交通系统的安全性和可靠性。
最优控制技术可以根据实时交通流量和交通路况调整交通灯的信号设置,从而有效地控制交通流量,减少交通拥堵的情况发生。
7、自动制造控制:最优控制技术可以帮助自动化制造系统实现高效率和高质量的制造。
此类技术可以根据制造过程的实时状态,调整机器人的运动轨迹,从而有效地改善制造过程的效率。
此外,最优控制技术还可以帮助自动化制造系统实现对制造质量的有效监控,从而保证产品质量。
现代控制工程最优控制课件
![现代控制工程最优控制课件](https://img.taocdn.com/s3/m/e2c8dd91250c844769eae009581b6bd97f19bca1.png)
03
优化目标
最小化损失函数,即达到最优控制效果。
线性调节器问题的解法
01
极点配置法
通过选择控制器的极点位置, 使得系统的传递函数在频率域
上具有理想的性能指标。
02
最优反馈增益
通过求解 Riccati 方程,得到 最优反馈增益,使得系统的性
能达到最优。
03
LQR 设计步骤
确定系统的状态空间模型、选 择适当的参考信号、设计控制
定义
非线性最优控制问题可以定 义为在给定初始状态和初始 时刻,寻找一个控制输入, 使得系统在结束时刻的状态
和性能指标达到最优。
特点
非线性最优控制问题具有复 杂性,其解决方案通常需要
借助数学工具和算法。
应用
非线性最优控制问题在许多 领域都有广泛的应用,如航 空航天、机器人、车辆控制 等。
利用梯度下降法求解非线性最优控制问题
移方程。
利用动态规划法求解非线性最优控制问题
3. 定义性能指标函数
根据问题的要求,定义性能 指标函数。
4. 求解最优子问题
利用动态规划法,依次求解 每个子问题,得到每个时刻 的最优控制输入。
5. 得到最优解
通过逆向递推,得到初始时 刻的最优控制输入和最优状 态。
04
动态规划基础上的最优控 制
多阶段决策过程的动态规划
利用动态规划法求解非线性最优控制问题
• 基本思想:动态规划法是一种通过将原问题分解为一 系列子问题,并逐个求解子问题,最终得到原问题最 优解的方法。
利用动态规划法求解非线性最优控制问题
01
步骤
02
1. 初始化:选择一个初始状 态和初始时刻。
03
2. 定义状态转移方程:根据 系统动态方程,定义状态转
最优控制理论
![最优控制理论](https://img.taocdn.com/s3/m/2959e9cfa58da0116c17498e.png)
5
电气与自动化工程学院
School of Electrical Engineering and Automation
二、最优控制的发展简史 第二次世界大战以后发展起来的自动调节原理,对设计与分析单输 入单输出的线性定常系统是有效的;然而近代航空及空间技术的发展对 控制精度提出了很高的耍求,并且被控制的对象是多输入多输出的,参 数是时变的。面临这些新的情况.建立在传递函数基础上的自动调节原 理就日益显出它的局限性来。这种局限性首先表现在对于时变系统,传 递函数根本无法定义,对多输入多输出系统从传递函数概念得出的工程 结论往往难于应用。由于工程技术的需要,以状态空间概念为基础的最 优控制理论渐渐发展起来。最优控制理论是现代控制理论的核心, 20世 纪50年代发展起来的,已形成系统的理论。
最优控制理论
© 2008 HFUT
9
电气与自动化工程学院
School of Electrical Engineering and Automation
三、研究最优控制的方法 从数学方面看,最优控制问题就是求解一类带有约束条件的泛函极值 问题,因此这是一个变分学的问题:然而变分理论只是解决容许控制属 于开集的一类最优控制问题,而在工程实践中还常遇到容许控制属于闭 集的一类最优控制问题,这就要求人们研究新方法。
1.3 最优控制问题的提法
f ( x,u, t ) 系统状态方程为 x
问题6-2 对于问题6-1中的直流他励电动机,如果电动机从初始 ) I D (t )是 时刻 t0 0 的静止状态转过一个角度 又停下,求控制 I D (t( 受到限制的),使得所需时间最短。 这也是一个最优控制问题:
系统方程为
0 1 0 1 x1 0 x K m I D 1 TF x J 2 0 0 x2 D JD x1 (0) 0 x1 (t f ) 初始状态 x ( 0) 0 末值状态 2 x (t ) 0
第7章 最优控制
![第7章 最优控制](https://img.taocdn.com/s3/m/ba6cbc0790c69ec3d5bb75d6.png)
第七章 最优控制(Optimal Control )最优化(Optimization ):生产过程的控制,企业的生产调度,对资金、材料、设备的分配,经济政策的制定等都与最优化有关。
最优控制:通常是针对控制系统本身而言的,目的是使一个机组、一台设备、或一个生产过程实现局部最优。
7-1概述1.最优分配问题:仓库(水泥) 运费(元/包) 工地(需要水泥)问应怎样发送这些水泥,才能使运费最省?设:从甲仓库运往A 、B 、C 工地的水泥数分别为1x 、2x 、3x ;从乙仓库运往A 、B 、C 工地的水泥数分别为4x 、5x 、6x 目标函数()x f (总运费):()65432195442x x x x x x x f +++++= 最优化的任务:确定[]Tx x x x x x x 654321=的值,使()x f 为最小。
约束条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+≤++≤++1200600900180********241654321x x x x x x x x x x x x该问题称为具有不等式约束条件的线性最优化问题,属于静态最优化问题,变量x 与时间无关2.动态最优化问题动态最优化问题:在最优控制系统中,受控对象是一个动态系统,所有变量都是时间的函数。
目标函数:是时间函数的函数,称为泛函数(简称泛函) 例:目标泛函 ()()[]⎰=ft t dt t t u t x L J 0,,基本约束条件(受控对象的状态方程):()()()[]t t u t x f t x ,,= J----标量L----标量函数()t x ----n 维状态矢量 ()t u ----r 维控制矢量f ----n 维矢量函数最优控制问题:在满足约束条件下,寻求最优控制函数()t u ,使目标泛函J 取极值(最小或最大),即()max min =J 。
3.求解动态最优化问题的方法古典变分法、极小(大)值原理、动态规划法7-2研究最优控制的前提条件1.给出受控系统的动态描述,即状态方程()()()[]t t u t x f t x,,= 2.明确控制作用域控制集:()(){}0,≤=u x j t u U ϕ()()r m m j u x j ≤=≤;,,2,10, ϕ----()t u 满足的约束条件容许控制:()U t u ∈ 3.明确始端条件 固定始端:()0t x 给定 自由始端:()0t x 任意可变始端:()00Ω∈t x 始端集:()()[]{}0000==Ωt x j t x ρ()[]()n m m j t x j ≤==;,2,100 ρ----()0t x 必须满足的约束条件 4. 明确终端条件固定终端:f t 、()f t x 给定 自由终端:f t 给定、()f t x 任意可变终端:()f f t x Ω∈ 目标集:()()[]{}0==Ωf j t x ff t x ϕ()[]()n m m j t x f j ≤==;,2,10 ϕ----()f t x 必须满足的约束条件5. 给出目标泛函(即性能指标) 对于连续时间系统,一般表示为:()[]()()[]⎰+Φ=ft t f dt t t u t x L t x J 0,, (综合型或鲍尔扎型)()[]f t x Φ----终端指标函数,反映对终端性能的要求;()()[]⎰ft t dt t t u t x L 0,,----动态指标函数,L 为状态控制过程中对动态品质及能量或燃料消耗的要求等。
现代控制理论CA14-最优控制资料
![现代控制理论CA14-最优控制资料](https://img.taocdn.com/s3/m/c269f9b16c175f0e7dd13781.png)
m(t) ku(t)
边界条件
h(0) h0, v(0) v0, m(0) m0 M F
h(t f ) 0, v(t f ) 0
控制约束 0 u(t) umax
性能指标
J m(t f )
燃料消耗量 为最少
最优控制问题的组成
• 系统数学模型(状态方程) • 边界条件(初态和末态) • 容许控制(控制向量的取值范围) • 性能指标
曲线满足运动微分方程
f (x, x,t) 0
极值轨线x(t)满足如下欧拉方程
L d L 0 x dt x
L(x, x,,t) g(x, x,t) T (t) f (x, x,t)
约束 方程
例 人造地球卫星姿态控制系统
x
0 0
1 0
x
0 1
u
J 1 2 uபைடு நூலகம்dt 20
求使性能泛函取极值的极值轨线和极值控 制
状态调节器
对于运行于某一平衡状态的系 统,在受到扰动偏离原平衡状 态时,使系统恢复到原平衡状 态附近时要求的性能。
J
1 2
xT
(t f
)Fx(t f
)
1 2
tf [xTQx(t) uT (t)Ru(t)]dt
t0
末态偏差
状态偏差
控制能量
输出跟踪系统
J
1 2
eT
(t f
)Fe(t f
)
1 2
tf [eTQe(t) uT (t)Ru(t)]dt
14 .3 极小值原理
应用经典变分法解最优控制问题, 要求控制向量不受任何约束.
为解决控制有约束的变分问题, 庞特里亚金提出并证明了极小值原理, 能够应用于控制变量受边界限制的情 况。
最优控制理论PPT课件
![最优控制理论PPT课件](https://img.taocdn.com/s3/m/2b098173366baf1ffc4ffe4733687e21ae45ff40.png)
生产计划与调度
在企业生产管理中,利用 最优控制理论对生产计划 和调度进行优化,提高生 产效率和降低成本。
08
总结与展望
最优控制理论的重要性和应用前景
总结
最优控制理论是现代控制理论的重要组成部分,它在解决复杂系统的优化和控制问题方面 具有显著的优势。该理论通过数学模型和算法,寻求在给定条件下实现系统性能最优化的 控制策略。
非线性最优控制理论
20世纪70年代,基于微分几何、非 线性分析和最优控制问题的研究。
智能优化算法与最优控制
20世纪80年代,考虑系统不确定性 ,引入概率论和随机过程理论。
03
最优控制问题的数学模型
状态方程与性能指标
状态方程
描述系统动态行为的数学方程,通常表示为状态变量对时间 的导数等于其函数。
性能指标
态。这种控制策略的关键在于如何根据当前状态信息快速、准确地计算出最优控制输入。
离散系统的最优输出反馈控制
总结词
离散系统的最优输出反馈控制是一种基 于系统输出的反馈控制策略,通过最优 控制算法计算出在当前输出下的最优控 制输入,使得系统状态在有限时间内达 到预期目标。
VS
详细描述
离散系统的最优输出反馈控制是一种有效 的最优控制策略,它根据系统的输出信息 ,通过最优控制算法计算出在当前输出下 的最优控制输入,使得系统状态在有限的 时间步内以最优的方式达到目标状态。这 种控制策略的关键在于如何根据输出信息 快速、准确地计算出最优控制输入。
控制问题分类
确定性和不确定性控制、线性与 非线性控制、连续和离散控制等 。
重要性及应用领域
重要性
在实际工程和科学问题中,许多问题 都需要通过最优控制理论来解决,如 航天器轨道控制、机器人运动控制、 电力系统优化等。
数学建模——最优控制
![数学建模——最优控制](https://img.taocdn.com/s3/m/7f346e98d1f34693dbef3e09.png)
30
H对最优控制取极小值.
H x * (t ), u * (t ), * (t ), t
u ( t )U , tt 0 ,T
min
H ( x * (t ), u (t ), * (t ), t )
40 在最优轨线上:
H * (t ) H * (T ) T H t t
dh v dt dv u g dt m dm (k>0 为常数) ku dt
v h
.
o
图 2
( 5 )
要求飞船从初始状态
h(0) h0 v (0) v0 m(0) M F
( 7 )
实现软着陆
h (T ) 0 v (T ) 0
( 8 )
发动机的最大推力为 a ,故
单位时间单位产品的库存费用为b, 则t时刻单位时间的成本为:
L(t , x(t ), u(t )) h(u(t )) bx(t )
故总成本为
T J (u) L(t , x(t ), u (t ))dt t0
(4)
于是问题归结为:求满足条件(2)的生产速率u(t),使库存量满 足(3),且使J(u)为最小.
续表:
按末端 状态分 末端自由 末端时间固定 末端时间自由 定常问题 按函数 类型分 末值状态可以任意 到达末态的时刻 T固定 到达末态的时刻 T 不固定 状态方程,性能指标和末态约束中的函数均不显含时间 t
时变问题
线性系统问题 非线性系统问题 调节器问题 跟踪问题
状态方程,性能指标和末态约束中的函数有显含时间 t 的 状态方程中的函数关于 x(t), u(t)均是线性的
1 最优控制问题实例 最优控制问题是从大量的实际问题中提炼出来 的。下面通过几个典型例子说明什么是最优控制。 例1 生产计划问题 某工厂制定从t0到T时间间隔的生产计划,即要 选择适当的生产速率,使得在时间[t0 , T]内,在保 证供应的前提下,花费的成本最低。
现代控制理论 最优控制11
![现代控制理论 最优控制11](https://img.taocdn.com/s3/m/1b9aae56f46527d3240ce09f.png)
得证。
§6-2.2 无约束条件的变分问题
引理:如果函数 F (t )在区间 [t0 , t f ]上是连续的,而且对于只满
§6-1 最优控制问题的一般提法
4. 性能指标 tf (1)积分型性能指标: J L[ x(t ), u (t ), t ]dt t0 反映控制过程中对系统性能的要求。
(2)终值型性能指标: J [ x(t f ), t f ] 反映了系统状态在终端时刻的性能。
(3)复合型性能指标: J [ x(t f ), t f ] L[ x(t ), u (t ), t ]dt t0 反映了控制过程和终端时刻对系统性能的要求。 若:[ x(t f ), t f ]、L[ x(t ), u (t ), t ] 为二次型函数,则复合型性能指 标可表示为二次型性能指标: 1 T 1 tf T J x (t f ) Px(t f ) [ x (t )Qx (t ) u T (t ) Ru (t )]dt 2 2 t0
足某些一般条件的任意选定的函数 (t )有
则在区间 [t0 , t f ]上有: F (t ) 0
t
tf
0
F (t ) (t ) dt 0
一. 欧拉方程
(t ), t ]dt 问题: 考虑泛函为 J [ x(t )] L[ x(t ), x
t0 tf
讨论一个固定端点时间,固定端点状态的无约束条件变分问题。
则称泛函 J [ x(t )] 在 x(t ) x* (t ) 有极小值或极大值。
2. 泛函极值定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①最短时间问题
J
tf t0
dt
tf
t0
②线性二次最优控制问题
J 1 t f (xTQx uT Ru)dt 2 t0
③线性伺服器问题
如果要求给定的系统状态x跟踪或者尽可能地接近目标轨ຫໍສະໝຸດ 迹xd,则J可以取为J
1 2
tf t0
(x
xd
)T
(x
xd
)dt
除了特殊情况外,最优控制问题的解析解是比较复杂的,
自适应控制
Adaptive Control
什么是自适应控制?
▪ “自适应”(Adaptive)最初来源于生物系统,指生物变更自 己的习性以适应新的环境的一种特征。人体的体温、血压等 系统都是典型的自适应系统;
▪ 前苏联学者Tsypkin在《学习系统的理论基础》一书中引 用了马克.吐温的一段话来说明自适应:“一只猫在烧热的灶 上烫了一次,这只猫再也不敢在灶上坐了,即使这只灶是冷 的。”说明了自适应过程的机械性;
最优控制
——与其他控制方法的区别
最优控制
Optimal Control
实际应用背景
v
例1:飞船的月球软着陆问题
飞船靠其发动机产生一与月球重力 方向相反的推力f,赖以控制飞船实现 软着陆(落到月球表面上时速度为零)。 要求选择一最好发动机推力程序f(t), 使燃料消耗最少。
h g
月球
设飞船质量为m,它的高度和垂直速度分别为h和v。 月球的重力加速度可视为常数g,飞船的自身质量及所带燃 料分别为M和F。
至于单位向量u,它可以表示为
u 2 uTu 1
其中|u|表示向量u的长度,有 u u12 u22 u32 也就是说,u的幅值为1,其方向不受限制。
要求控制拦截器从相对于目标的初始状态出发,于某末态
时刻tf与目标相遇(实现拦截),即
且应满足
x(t f ) 0
m(t f ) me
这里, me是燃料耗尽后拦截火箭的质量。 一般说来,达到上述控制目标的f(t)、u(t)和tf并非唯一。 为了实现快速拦截,并尽可能地节省燃料,可综合考虑
▪ “自适应控制”这个名词出现在20世纪50年代。 “大百科” 中定义:能在系统和环境的信息不完备的情况下改变自身特 性来保持良好工作品质的控制系统,称为自适应控制系统。
例如:
飞机控制 近地点和高空的空气密度不同,飞机控制特性随高度、
飞行速度的不同而有很大的变化
导弹控制 导弹的质量和重心随燃料的消耗迅速变化
这两种要求,取性能指标为
J
tf t0
C1 f (t) dt
(a)
问题归结为选择f(t)、u(t)和tf ,除实现拦截外还要使规定的
性能指标为最小,此即在性能指标(a)意义下的最优拦截问
题。
上面的具体实例可抽象为共同的数学模型,其中受控系统 数学模型一般可以表示为:
x f (x(t),u(t),t)
如果是线性时不变系统,则可以表示为
x Ax(t) Bu(t)
性能指标:尽管我们不能为各种各样的最优控制问题规定
一个性能指标的统一格式,但是通常情况下如下形式的性能指 标可以概括一般:
J
(x(t f ), t f )
tf L(x(t), u(t), t)dt
t0
针对不同的具体问题,J一般可以取为不同的具体形式,如:
干扰v(t)
参考输入r(t)
控制量u(t)
输出量y(t)
控制器
被控对象
自适应器
自适应系统主要由控制器、被控对象、自适应器及反馈 控制回路和自适应回路组成。
鲁棒控制 —— 以静制动 最优控制 —— “没有更好只有最好” 自适应控制 —— 以变制变
0 f (t) fmax
满足上述限制,使飞船实现软着陆的推力程序f(t)不止一 种,其中消耗燃料最少者才是最佳推力程序,易见,问题可 归结为求
J m(t f )
为最大的数学问题。
例2:防天拦截问题
所谓防天拦截是指发射火箭拦击对方洲际导弹或其它
航天武器。 设x(t)、v(t)分别表示拦截器L与目标M的相对位置和
相对速度向量。a(t)是包括空气动力与地心引力所引起的 加速度在内的相对加速度向量,它是x、v的函数,既然位 置和速度向量是由运动微分方程所确定的时间函数,因此 相对加速度也可以看成时间的函数。设m(t)是拦截器的质 量,f(t)是其推力的大小。用u表示拦截器推力方向的单位 向量。C是有效喷气速度,可视为常数。
于是,拦截器与目标的相对运动方程可写为
x v
v
a(t)
f (t) m(t)
u
初始条件为
m
f (t) C
x(t0 ) x0, v(t0 ) v0, m(t0 ) m0
为实现拦截,既要控制拦截器的推力大小,又要改变推力方
向。拦截火箭的最大推力是一有限值fmax,瞬时推力f(t)应满
足
0 f (t) fmax
以至必须求其数值解。当指标为二次性能指标时,可以给出
整齐的解析解。
最优控制问题有四个关键点: (1)受控对象为动态系统; (2)初始与终端条件(时间和状态); (3)性能指标; (4)容许控制。 而最优控制问题的实质就是要找出容许的控制作用或控 制规律,使动态系统(受控对象)从初始状态转移到某 种要求的终端状态,并且保证某种要求的性能指标达到 最小值或者是最大值。
自某t=0时刻开始飞船进入着陆过程。其运动方程为
其中k为一常数。
h• v
• v
f m
g
m• kf
要求控制飞船从初始状态
h(0) h0, v(0) v0, m(0) M F
出发,于某一时刻tf实现软着陆,即
h(t f ) 0, v(t f ) 0
控制过程中推力f(t)不能超过发动机所能提供的最大推力 fmax,即
过程控制 连续生产化工设备参数随着环境温度和输入输出流量而改 变;锅炉机组过热蒸气温度的动态参数随着负荷变化而变 化
电力拖动 造纸:卷纸筒惯性变化,为保持纸张力不变,马达的转矩 需改变
船舶的航线控制 传递函数的动态参数随着船载、速度、吃水深度和环境 (即波浪、风速、海潮等)的变化而变化
自适应系统的原理框图