§3.1解的存在唯一性定理与逐次逼近法
Chapter3一阶微分方程的解的存在定理
第三章一阶微分方程的解的存在定理本章重点介绍和证明一阶微分方程的解的存在唯一性定理,并叙述解的一些性质,如解的延拓,解对初值的连续性和可微性等.教学目的1.掌握可分离变量方程的解法;2.掌握齐次型方程的解法。
教学重点、难点可化为齐次型方程的解法;教学时数12学时§3.1 解的存在唯一性定理与逐步逼近法教学目的1.理解存在唯一性定理;2.了解逐步逼近法。
教学重点、难点存在唯一性定理与逐步逼近法; 教学时数 4学时 教学过程3.1.1 存在唯一性定理1. 考虑导数已解出的一阶微分方程)1.3)(,(y x f dxdy= f (x ,y ) 在矩阵区域 R | x -x 0 | ≤ a , | y -y 0 | ≤ b 上连续.利普希茨条件 若对函数 f (x ,y ) 存在常数 L >0 ,使得对所有 (x , y 1), (x , y 2) ∈R 都成立不等式 | f (x ,y 1)- f (x ,y 2) | ≤ L | y 1- y 2 |,则称函数 f (x ,y ) 在 R 上满足利普希茨条件.定理1 如果f (x ,y ) 在矩形区域 R 上连续且关于 y 满足利普利茨条件,则方程(3.1)存在唯一的解y =ϕ(x ), 定义于区间 | x -x 0 | ≤ h 上,连续且满足初值条件 ϕ(x 0)=y 0.|),(|max ),,min( ),(y x f M Mba h R y x ∈==其中.采用皮卡(Picard)的逐步逼近法来证明.区间取为 x 0≤x ≤x 0+h . 皮卡逐步逼近法(思路)(1)证明求微分方程的初值问题的解等价于求积分方程⎰+=xx dx y x f y y 0),(0的连续解;(2)取一连续函数 ϕ0(x ) 进行迭代求解,构造函数序列: ϕ0(x ), ϕ1(x ), ϕ2(x ),… ϕn (x );⎰+=x x x x x f y x 0d ))(,()(001ϕϕ⎰+=xx x x x f y x 0d ))(,()(102ϕϕ⎰+=x x x x x f y x 0d ))(,()(203ϕϕ…⎰-+=xx n n x x x f y x 0d ))(,()(10ϕϕ(3)如果上述过程可无限地进行,则证明此过程构造的函数列收敛于某一连续函数ϕ(x ); (4)证明上述解是唯一的;命题1 设y =ϕ(x )是方程(3.1)的定义于区间 x 0≤x ≤x 0+h 上,满足初值条件 ϕ(x 0)=y 0 的解,则 y =ϕ(x ) 是积分方程)5.3(),(00⎰+=xx dx y x f y y的定义于 x 0≤x ≤x 0+h 上的连续解,反之亦然.证明:“=>”由y =ϕ(x )是方程(3.1)的定义于区间 x 0≤ x ≤ x 0+h 上,满足初值条件 ϕ(x 0)=y 0 的解有))(,(d )(d x x f xx ϕϕ= 两边从x 0到x 积分可得⎰⎰=x x xx x x x,f x 0))d (()(d ϕϕ⎰=-⇒xx x x x,f x x 0))d (()()(0ϕϕϕ将初始条件 ϕ(x 0)=y 0 代入即得到⎰+=xx x x x,f y x 0))d (()(0ϕϕ所以y =ϕ(x )是积分方程(3.5)的定义于 x 0≤x ≤x 0+h 上的连续解.“<=”设y =ϕ(x )是积分方程(3.5)的定义于 x 0≤x ≤x 0+h 上的连续解,则有⎰+=xx x x x,f y x 0))d (()(0ϕϕ两边对x 求导得),())(,()(y x f x x f x y =='=ϕϕ又上述积分方程显然满足初始条件,所命题成立.现取 ϕ0(x )=y 0 ,构造皮卡逐步逼近函数序列:)7.3(,...2,1,d ))(,()( ,d ))(,()()(01000100⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=+==⎰⎰-n t t t f y x t t t f y x y x xx n n xx ϕϕϕϕϕ命题2 对于所有的 n ,函数 ϕn (x ) 在 x 0≤x ≤x 0+h 上有定义,连续且满足不等式 | ϕn (x )-y 0 | ≤ b . 证明: (用数学归纳法)当 n =1 时,⎰+=xx t t t f y x 0d ))(,()(001ϕϕ,显然在x 0≤x ≤x 0+h 上是有定义,并是连续的;并且⎰=-xx t t t f y x 0d ))(,(|)(|001ϕϕ⎰≤x x t t t f 0d |))(,(|0ϕ⎰≤xx t M 0d )(0x x M -≤b x x M ≤-≤)(0,命题成立;假设命题当 n =k 时成立,即⎰-+=xx k k t x t f y x 0d ))(,()(10ϕϕ在x 0≤x ≤x 0+h 上是有定义、连续用满足b y x k =≤-|)(|0ϕ则⎰+=+xx k k t x t f y x 0d ))(,()(01ϕϕ由于ϕk (x )的连续性,知ϕk +1(x )在x 0≤x ≤x 0+h 也显然上是有定义和连续的. 并且=-+|)(|01y x k ϕ⎰xx k t x t f 0d ))(,(ϕ⎰≤xx k t x t f 0d |))(,(|ϕb x x M ≤-≤)(0所以当n =k 时命题也成立,从而命题2对一切 n ∈N 都成立.命题3 函数序列 {ϕn (x )} 在 x 0≤x ≤x 0+h 上是一致收敛的. 证明:由级数与数列的关系:级数收敛等价于部分和数列收敛. 考虑级数∑∞=--+110)]()([)(k k kx x x ϕϕϕ,它的部分和恰为)()]()([)(110x x x x n nk k k ϕϕϕϕ=-+∑=-因此要证明函数序列 {ϕn (x )} 在 x 0≤x ≤x 0+h 上一致收敛只须证明上述级数一致收敛即可.⎰≤-xx dt t t f x x 0))(,(||)()(|001ϕϕϕ )(0x x M -≤⎰-≤-xx dt t t f t t f x x 0|))(,())(,(||)()(|0112ϕϕϕϕ由于函数f (x ,y )对y 满足利普希茨条件 | f (x ,y 1)- f (x ,y 2) | ≤ L | y 1- y 2 | 则有⎰-xx dt t t f t t f 0|))(,())(,(|01ϕϕ⎰-≤x x dt t t L 0|)()(|01ϕϕ⎰-≤xx dt x t M L 0)(020)(2x x ML-=同理⎰-≤-xx dt t t f t t f x x 0|))(,())(,(||)()(|1223ϕϕϕϕ⎰-≤xx dt t t L 0|)()(|12ϕϕ⎰-≤xx dt x t ML 0202)(2302)(!3x x ML -= 设对正整数 k 有k k k k x x k ML x x )(!|)()(|011-≤---ϕϕ 则对正整数 k +1 有⎰-+-≤-xx k k k k dt t t f t t f x x 0|))(,())(,(||)()(|11ϕϕϕϕ⎰--≤xx k k dt t t L 0|)()(|1ϕϕ⎰-≤xx kkdt x t k ML 0)(!010)()!1(+-+=k k x x k ML从而由数学归纳法知对任一正整数 n 有n n n n x x n ML x x )(!|)()(|011-≤---ϕϕ从而对级数而言有∑∞=--+110)]()([)(k k k x x x ϕϕϕ∑∞=--+≤1010)(!)(k nn x x n L M x ϕ∑∞=-+≤110!)(k n n n h L M x ϕ 上式是收敛的正项级数,因此由M 判别法(魏尔斯特拉斯判别法)知,左端的级数收敛,故函数列 {ϕn (x )}在 x 0≤ x ≤x 0+h 上一致收敛.命题4 ϕ(x )是积分方程(3.5)的定义于 x 0≤x ≤x 0+h 上的连续解.证明:因为函数列{ϕn (x )}一致收敛于ϕ(x ),加之利普希茨条件 | f (x , ϕn (x ))- f (x , ϕ(x )) | ≤ L | ϕn (x )- ϕ(x ) | 可知函数列{ f (x , ϕn (x ))}收敛于f (x , ϕ(x )). 因此,两边取极限有⎰-∞→∞→+=x x n n n n dt t t f y x 0))(,(lim )(lim 10ϕϕ⎰+=xx dt t t f y x 0))(,()(0ϕϕ所以ϕ(x )是积分方程定义于 x 0≤x ≤x 0+h 上的连续解.命题5 设 ψ(x ) 是积分方程(3.5)的定义于 x 0≤x ≤x 0+h 上的另一连续解,则 ϕ(x )= ψ(x ). 证明:由命题1可知⎰+=xx t t t,f y x 0))d (()(0ψψ只要证明 ψ(x ) 也是函数列 {ϕn (x )} 的极限函数即可. 由于⎰≤-xx t t t f x x 0d |))(,(||)()(|0ψψϕ)(0x x M -≤=-|)()(|1x x ψϕ⎰-≤xx dt t t f t t f 0|))(,())(,(|0ψϕ⎰-≤xx dt t t L 0|)()(|0ψϕ200)(2)(0x x LMdt t t LM xx -=-≤⎰ 假设对正整数 n -1 时有|)()(|1x x n ψϕ--n n x x n ML )(!01-≤- 则对正整数 n 有|)()(|x x n ψϕ-⎰-≤-xx n dt t t f t t f 0|))(,())(,(|1ψϕ⎰-≤-xx n dt t t L 0|)()(|1ψϕ100)()!1()(!0+-+=-≤⎰n n xx nn x x n M L dt t t n M L 因此,由数学归纳法可和,上述公式对所有正整数都成立. 即1)!1(|)()(|++≤-n n n h n M L x x ψϕ上式右端是收敛级数的一般项,当 n →∞ 时它趋于零,因而函数列 {ϕn (x )} 一致收敛于 ψ(x ) ,由极限的唯一性,有 ψ(x )= ϕ(x ) .注1 存在唯一性定理中数 h 的几何意义.注2 由于利普希茨条件比较难检验,常用 f (x ,y ) 在 R 上有对 y 的连续偏导数来代替. 注3 设方程(3.1)是线性的,即方程为)()(x Q y x P dxdy+= 那么当 P (x ), Q (x ) 在区间 [α ,β]上连续时,定理1的条件能满足.2. 考虑一阶隐式方程 F (x , y , y ')=0由隐函数定理,若在点 (x 0, y 0, y '0) 的某邻域内 F 连续且 F (x 0, y 0, y '0)=0 而0≠'∂∂y f,则 y ' 唯一地表示为 x , y 的函数,且 f (x , y ) 在点 (x 0, y 0) 的某邻域内连续且满足y '0= f (x 0, y 0).定理2 如果在点 (x 0, y 0, y '0) 的某一邻域中(1) F (x , y , y ')对所有变量 x , y 及 y ' 连续,且存在连续偏导函数; (2) F (x 0, y 0, y '0)=0 (3)0),,(000≠'∂'∂y y y x F则方程(3.15)存在唯一解 y =y (x ), | x -x 0 | ≤ h ( h 是足够小的正数) 满足初值条件 y (x 0)=y 0, y '(x 0)= y '0.3.1.2 近似计算和误差估计第 n 次近似解 ϕn (x ) 和真实解 ϕ(x ) 在区间 | x -x 0 | ≤ h 内的误差估计式1)!1(|)()(|++≤-n n n h n ML x x ϕϕ.例1 方程22y x dxdy+=定义在矩形域 R : -1≤ x ≤1, -1≤ y ≤1 上,试利用存在唯一性定理确定经过点 (0, 0) 的解的存在区间,并求此区间上与真正解的误差不超过0.05的近似解的表达式. 解:2|),(|max ),(==∈y x f M Ry x 21}21,1min{},min{===M b a h 利普希茨常数 L =2 :2|2|≤=∂∂y yf由题意,第n 次近似解 ϕn (x ) 和真实解 ϕ(x ) 的误差不超过0.05,即1)!1(|)()(|++≤-n n n h n M L x x ϕϕ121)!1(22+⋅+⨯=n n n )!1(1+=n 20105.0=< 即取 n =3 即可,从而可作如下近似计算0)(0=x ϕ3))((0)(302021x dt t t x x=++=⎰ϕϕ⎰+=xdt t t x 02122))(()(ϕϕ⎰+=xdt t t 062)9(63373x x +=⎰+=xdt t t x 02223))(()(ϕϕ⎰+++=xdt t t t t 0141062)396918929(5953520792633151173x x x x +++= ϕ3(x )即为所求的近似解.作业: P88,2.§3.2 解的延拓教学目的1.理解解的延拓的概念与条件;2.会将方程的解在指定区间上延拓。
Chapter3.1解的存在唯一性定理与逐步逼近法
2013-6-15
第三章第 节
5
两边从 x0 到 x 积分可得
x
将初始条件 (x0)=y0 代入即得到
( x) y0 f ( x, ( x))dx
x0 x
x0
d ( x) f ( x, ( x))dx ( x) ( x0 ) f ( x, ( x))dx
x0 x0
x
x
所以 y=(x) 是积分方程(3.5)的定义于 x0 x x0+h 上的 连续解. “←”: 设 y=(x) 是积分方程(3.5)的定义于 x0 x x0+h 上的连续解,则有
( x) y0 f ( x, ( x))dx
x
两边对x求导得 ( x) f ( x, ( x)) f ( x, y) 又上述积分方程显然满足初始条件,所命题成立.
k 1 n
它的部分和恰为
0 ( x) [k ( x) k 1 ( x)] n ( x)
k 1
因此要证明函数序列 {n(x)} 在 x0 x x0+h 上一致收敛 只须证明上述级数一致收敛即可.
2013-6-15
第三章第 节
10
1 ( x) 0 ( x) | | f (t , 0 (t )) | dt M ( x x0 ) |
x0
f ( x, n 1 ( x)) dx
(3)如果上述过程可无限地进行,则证明此过程构造的函 数列收敛于某一连续函数(x); (4)证明上述解是唯一的;
2013-6-15 第三章第 节 4
皮卡逐步逼近法
命题1 设y=(x)是方程(3.1)的定义于区间 x0 x x0+h 上,满足初值条件 (x0)=y0 的解,则 y=(x) 是 积分方程 x
3.1 解的存在唯一性定理与逐步逼近法
§3.1 解的存在唯一性定理 与逐步逼近法
dy f ( x, y) 考虑微分方程初值问题: d x y ( x0 ) y0 (1 )
一、 解的存在唯一性定理
定理1 若方程(1)的右端函数 f (x,y) 在闭矩形域 R:| xx0| a, | yy0| b 上满足如下条件: (1) f (x,y)在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件, 即存在常数L>0,使不等式 | f (x, y1) f (x, y2)| L| y1y2|, 对于所有(x,y1),(x,y2)R都成立. 则方程(1)在区间| xx0| h上存在唯一的连续解y= (x), 且满足初始条件 (x0)= y0,
ML
n!
( x x0 ) ,
n
则当 x 0 x x 0 h 时 ,由 Lipschitz 条件有
n1 ( x ) n ( x )
x
x
0
f ( , n ( )) f ( , n 1 ( )) d
n1 ( x ) n ( x )
对于积分方程 y y0
x
x
0
f ( t , y )d t , 若存在定义在区间
I [ , ]上的连续函数
y ( x ), 使得
( x ) y0
x
x
0
f ( t , ( t )) d t .
在区间 I 上恒成立 , 则称 y ( x )为该积分方程的解
0
x
x
0
| f ( t , y 0 ) | d t M | x x 0 | Mh b ,
设 n k 时命题 2成立 ,
3.1存在性定理
§3.1 解的存在唯一性定理与逐步逼近法 教学内容:介绍和证明解的存在唯一性定理;近似解的求解以及误差估计。
教学目标:掌握解的存在唯一性定理及其证明方法----Picard 逼近法问题的提出:我们在第二章介绍了一阶微分方程的几种解法,同时告诉我们大量的一阶微分方程不能用初等解法求其通解,而现实中所需要的恰恰是满足某种初值条件的解(包括数值形式的数值解),我们把主要精力集中在cauchy 问题()00(,),,dyf x y dxx y ϕ⎧=⎪⎨⎪=⎩的求解上。
与代数方程类似,对于不能用初等解法求解的微分方程,我们往往用数值方法求解(这是以后要学的计算方法的内容之一)。
在用数值方法求解cauchy 问题之前我们必须要解决两个基本问题。
(1)cauchy 问题()00(,)dyf x y dx x y ϕ⎧=⎪⎨⎪=⎩的解是否存在?如果解不存在,要去求解就毫无意义。
后面我们将给出cauchy 问题解存在的一般条件。
(2)若已知cauchy 问题的解存在,我们还必须进一步确认这样的解是否唯一?由于解不唯一,却要近似的去求其解,其问题也不明确。
例如 22dyx y dx=+,形式简单,但不能用初等方法求解。
例如 考虑cauchy 问题()00dyy dx y ⎧'==⎪⎨⎪=⎩的解的情况。
易知0y =是方程的解。
此外容易验证,2y x =或更一般地,函数20,0,(),1x c y x c c x ≤≤⎧=⎨-<≤⎩都是方程的过点(0,0)而定义于区间[0,1]上的解,其中c 是满足01c <<上的任意数。
解决问题的意义:1、 它是常微分方程理论中最基本的定理,具有重大的理论意义;2、 是进行近似计算的前提与基础,具有重大的实际意义;3、 定理的证明中给出了解的求解方法——Picard 逼近法,具有一般的意义,为求近似解提供了理论依据。
一、解的存在唯一性定理(一)首先考虑可从一般形式(,,)0F x y y '=解出 (,)dyf x y dx=的情形。
解的存在唯一性定理
一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。
3. 一阶常微分方程解的存在唯一性
由于ϕn(x) = ϕ0(x) + ϕ1(x) − ϕ0(x) + ϕ2(x) − ϕ1(x) + · · · + ϕn(x) − ϕn−1(x) ,
∞
故只需证明无穷级数ϕ0(x) + [ϕn+1(x) − ϕn(x)]在I上一致收敛即可。采用数学 n=0
归纳法来证明:
特别,取ϕ0(x) = y0,则 |ϕ1(x) − ϕ0(x)| =
设ϕ(x)和ψ(x)都 是 微 分 方 程(3.1)在I上 的 解。 记M = max |ϕ(x) − ψ(x)|, 根 x∈I
据Lipschitz条件,当x ∈ I时,有
|ϕ(x) − ψ(x)| ≤
x
|f (t, ϕ(t)) − f (t, ψ(t))|dt
x0 x
≤ L |ϕ(t) − ψ(t)|dt
第三章 一阶常微分方程解的存在唯一性
本章主要介绍和证明一阶微分方程解的Picard存在和唯一性定理,解的延拓,解对 初值的连续性和可微性等概念。
3.1 Picard存在唯一性定理
3.1.1 一阶显式微分方程
考虑一阶显式常微分方程的初值问题
dy dx
=
f (x, y)
y|x=x0 = y0
(3.1)
≤
LnM n!
x
|t − x0|ndt
x0
=
LnM (n + 1)!
|x
−
x0|n+1
特别,当|x − x0| ≤ h时,
|ϕn+1(x)
−
ϕn(x)|
≤
LnM (n + 1)!
hn+1
∞
由于正项级数
解的存在唯一性定理
上连续,从而k1(x)在[x0 , x0 h]上连续且
k1(x) y0
x
x0 f ( ,k ( ))d
x x0
f (,k ( ))d
M x x0 Mh b
即当n k 1时成立,命题2成立
综上,命题2得证
二、存在唯一性定理
定理1
dy =f (x, y)
(1)
dx
D :| x x0 | a,| y y0 | b
如果f (x, y)在D上连续且关于y满足利普希茨条件,
则方程(1)存在唯一的连续解y (x),定义在|x x0| h
上,连续且满足初值条件
(x0 ) y0
这里h min(a, b ), M max | f (x, y) |
x
L x0 n ( ) n1( )d
MLn
n!
x x0
(
x0 )nd
MLn (x (n 1)!
x0 )n1,
于是由数学归纳法得知,对所有正整数n,有
n (x) n1(x)
MLn1 n!
(x
x0 )n ,
x0 x x0 h,
(3.11)
从而当x0 x x0 h时,
n (x) n1(x)
于是{n (x)}一致收敛性与级数 (3.9)一致收敛性等价 .
对级数(3.9)的通项进行估计
x
1(x) 0(x) x0 f (,0( ))d M x x0
x
2(x) 1(x) x0 f (,1( )) f (,0 ( ))d
x
L x0 1( ) 0( )d
L
x x0
M (
[整理]一阶常微分方程解的存在唯一性定理与逐步逼近法(1022).
一阶常微分方程解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理1)首先考虑导数已解出的一阶微分方程(3.1.1.1)这里是在矩形域(3.1.1.2)上的连续函数。
定义1 如果存在常数,使得不等式对于所有都成立,则函数称为在上关于满足利普希茨(Lipschitz)条件,称为利普希茨常数。
定理3.1 如果在上连续且关于满足利普希茨条件,则方程(3.1.1.1)存在唯一的解,定义于区间上,连续且满足初始条件(3.1.1.3)这里,。
我们采用皮卡(Picard)的逐步逼近法来证明这个定理。
为简单起见,只就区间来讨论,对于的讨论完全一样。
现在简单叙述一下运用逐步逼近法证明定理的主要思想。
首先证明求微分方程的初值问题的解等价于求积分方程的连续解。
然后去证明积分方程的解的存在唯一性。
任取一个连续函数代入上面积分方程右端的,就得到函数,显然也是连续函数,如果,那末就是积分方程的解。
否则,我们又把代入积分方程右端的,得到,如果,那末就是积分方程的解。
否则我们继续这个步骤。
一般地作函数(3.1.1.4)这样就得到连续函数序列:,,…,,….如果,那末就是积分方程的解。
如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数,即存在,因而对(3.1.1.4)取极限时,就得到即,这就是说是积分方程的解。
这种一步一步地求出方程的解的方法就称为逐步逼近法。
由(3.1.1.4)确定的函数称为初值问题(3.1.1.1)、(3.1.1.3)的第次近似解。
在定理的假设条件下,以上的步骤是可以实现的。
下面我们分五个命题来证明定理1。
命题1设是方程(3.1.1.1)的定义于区间上,满足初始条件(3.1.1.3)的解,则是积分方程(3.1.1.5) 的定义于上的连续解。
反之亦然。
证明因为是方程(3.1.1.1)的解,故有,两边从到取定积分得到把(3.1.1.3)代入上式,即有因此,是(3.1.1.5) 的定义于上的连续解。
3.1 解的存在唯一性定理与逐步逼近法
3.2 解的延拓
引例 : 考察 Riccati 方程 dy dx 1 ) 在矩形域 D : 1 x 1 , 1 y 1 上验证其满足解的存在 定理条件 , 并求出初值解存在区间 [ x 0 h , x 0 h ].
?h? 2 ) 若 D : 2 x 2 , 2 y 2, 则相应的结论如何
( 1 ) 命题 1) 原初值问题的解必定等 y y0
1 ( x ) 2 ( x ) (x)
k 1
价于如下积分方程 ( 3 . 2 )的连续解 .
: ( x I [ x 0 , x 0 h ])
明
x
x
f ( x , y ) dx
0
( 2 ) 构照一列 Picard 逐步逼近函数序列如下
注:
(1) 该定理说明若 必然局部存在且唯一 效果在于保证解曲线
b ( x ) , 其中 h min a , , M M
max
f (x, y).
f ( x , y )满足定理条件 , 其中解存在区间
, 则其初值解
y (x)
[ x 0 h , x 0 h ]中的 h 的 D 内部而不出超出 .
解 : 1) 由于 f ( x , y ) x
2
x
2
y , y(0) 0 唯一性
2
2 y 在 D 上连续 , 且 f y 2 y 在 D 上连续 ,
故方程满足解的存在唯
一性条件 .
1 1 又 a 1 , b 1 , M 2 ,因此 h min ,1 . 故解存在区间 2 2 2 1 2) a 2 , b 2 , M 8 , 此时 h min , 2 .故解存在区间 8 4
解的存在唯一性定理证明
解的存在唯一性定理利用逐次逼近法,来证明微分方程(,),dyf x y dx =的初值问题00(,)()dy f x y dx y y x ==⎧⎨⎩的解存在与唯一性定理。
一、【存在、唯一性定理叙述】 如果方程(,),dyf x y dx=的右端函数(,)f x y 在闭矩形区域0000:,R x a x x a y b y y b -≤≤+-≤≤+上满足如下条件:(1)、在R 上连续;(2)、在R 上关于变量y 满足利普希茨条件,即存在常数N ,使对于R 上任何一点(),x y 和(),x y 有以下不等式:()|(,),|||f x y f x y N y y -≤-。
则初值问题00(,)()dyf x y dx y y x ==⎧⎨⎩在区间0000x h x x h -≤≤+上存在唯一解00(),()y x x y ϕϕ==, 其中0(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭二、【证明】 逐步迫近法:微分方程(,)dyf x y dx=等价于积分方程00(,)x x y y f x y dx =+⎰。
取00()x y ϕ=,定义001()(,()),1,2,3, (x)n n x x y f x x dx n ϕϕ-=+=⎰可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命 题 1:先证积分方程与微分方程等价: 设()y x ϕ=是微分方程(,)dyf x y dx=定义于区间0000x h x x h -≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程00(,),x x y y f x y dx =+⎰定义于区间0000x h x x h -≤≤+上的连续解。
反之亦然。
证: 因()y x ϕ=是微分方程(,)dy f x y dx =的解,有'()()(,())d x x f x x dxϕϕϕ== 两边从0x 到x 取定积分,得:000000()()(,()),xx x x f x x dx x h x x h ϕϕϕ-=-≤≤+⎰代入初值条件00()x y ϕ=得:000000()(,()),xx x y f x x dx x h x x h ϕϕ=+-≤≤+⎰即()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义于区间0000x h x x h -≤≤+上的连续解。
常微分方程§3.1解的存在唯一性定理与逐步逼近法
通过比较两个可能的解,证明它们必须相等。
举例说明
简单的一阶常微分方程
dy/dt = y,其解为 y = Ce^t(C为 常数)。
高阶常微分方程
d^2y/dt^2 = -g/m * dy/dt - k/m * y,描述了物体的自由落体运动,其解 为y(t) = A*cos(ωt + φ)(A、φ为常 数,ω=√(g/m))。
02
常微分方程解的存在唯一性定理
定义与定理陈述
定义
常微分方程是数学中描述一个或多个变量的函数如何随时间变化 的方程。
定理陈述
对于给定的常微分方程,如果其初值条件是合理的,那么该方程 存在唯一的解。
证明方法概述
02
01
03
数学分析
使用极限理论来证明解的存在性和唯一性。
连续性
证明解在时间上的连续性,从而说明解的存在性。
03
逐步逼近法
方法原理
逐步逼近法是一种通过逐步近 似求解常微分方程的方法。其 基本原理是,通过逐步构造一 系列的近似解,使得这些近似 解逐渐逼近真实的解。
在每一步中,根据已知的近似 解和微分方程的信息,构造一 个新的近似解,使得新解与旧 解之间的差距逐渐减小。
通过这样的方式,逐步逼近法 能够逐渐逼近真实的解,最终 得到满足精度要求的近似解。
输出满足精度要求的近似解。
迭代;否则,继续迭代。
04
解的存在唯一性定理与逐步逼近法的应用
在实际问题中的应用
物理问题
常微分方程在物理学中有广泛的应用,如力学、电磁学等领域。通过解的存在唯一性定理和逐步逼近法,可以求解物 理问题中的微分方程,从而得到物理现象的数学模型。
经济问题
在经济学中,常微分方程可以用来描述经济系统的动态变化,如供需关系、市场竞争等。通过逐步逼近法,可以求解 这些微分方程,为经济决策提供依据。
授课题目解的存在唯一性定理与逐步逼近法授课类型理论课首次
考虑初值问题
定理1(存在与唯一性定理)如果方程(2.1)的右端函数 在闭矩形域 上满足如下条件:
(1)在R上连续;
(2)在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点 和 有不等式:
则初值问题(2.2)在区间 上存在唯一解
其中
2存在性的证明
的情形类似可证,引理证毕.
积分方程(2.3)解的唯一性证明,采用反证法.
假设积分方程(2.3)除了解 之外,还另外有解 ,我们下面要证明:在 上,必有 .
事实上,因为
及
将这两个恒等式作差,并利用李普希兹条件来估值,有
令 ,从而由贝尔曼引理可知,在 上有 ,即 .
至此,初值问题(2.2)解的存在性与唯一性全部证完.
它在其上每点处都与线素场在这点的线素相切.现在定理假定 在R上连续,从而存在
于是,如果从点 引两条斜率分别等于M和-M的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取
则过点 的积分曲线 (如果存在的话)当x在区间上变化时,必位于R之中.
3.如果方程(2.1)是线性方程,即
讲授
教学过程:(包括授课思路、过程设计、讲解要点及各部分具体内容、时间分配等)
㈠授课思路:
讲授微分方程的理论基础——解的存在唯一性定理。阐述定理的内容,简述证明思路,然后对定理进行详细证明,对定理的几何意义进行说明,最后利用皮卡的逐步逼近序列进行近似计算和误差估计。
㈡过程设计
⒈稳定课堂秩序,组织教学;
附注:
1.在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的,但却易于验证的条件来代替它.即如果函数 在闭矩形域R上关于y的偏导数 存在并有界, .则李普希兹条件成立,事实上,由拉格朗日中值定理有
3.1 一阶微分方程解的存在唯一性定理
第三章 一阶微分方程解的存在定理[教学目标]1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。
2. 了解解的延拓定理及延拓条件。
3. 理解解对初值的连续性、可微性定理的条件和结论。
[教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。
[教学方法] 讲授,实践。
[教学时间] 12学时[教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。
[考核目标]1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。
2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。
3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。
§1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。
在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。
而实际问题中所需要的往往是要求满足某种初始条件的解。
因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。
他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。
例如方程dydx=过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数20 0() c<1x cy x c x ≤≤⎧=⎨-≤⎩都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。
解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。
解的存在唯一性定理
一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。
【典型例题】 第三章 一阶微分方程的解的存在定理
第三章 一阶微分方程的解的存在定理例3-1 求方程22y x dxdy+= 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。
解 函数22),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题⎪⎩⎪⎨⎧=+=0)0(22y yx dxdy 的解在],[h h -上存在唯一,其中)(max ),,min(22),(y x M Mba h D y x +==∈。
因为逐次逼近函数序列为⎰-+=xx n n dx x y x f y x y 0))(,()(10,此时,2200),(,0,0y x y x f y x +===,所以0)(0=x y ,⎰=+=xx dx x y x x y 0320213)]([)(,633)]([)(7032122x x dx x y x x y x+=+=⎰,⎰⎰+++=+=xxdxx x x x dx x y x x y 01410622223)396918929()]([)(5953520792633151173x x x x +++=。
现在求h 的最大值。
因为 ),,min(22ba ba h += 对任给的正数b a ,,ab b a 222≥+,上式中,当 b a = 时,22b a b+取得最大值aab b 212=。
此时,)21,min()2,min(a a ab b a h ==,当且仅当aa 21=,即22==b a 时,h 取得最大值为22。
评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。
特别地,对其中的by a x D y x f M Mba h D y x ≤≤==∈,:),,(max ),,min(),(等常数意义的理解和对逐次逼近函数列⎰-+=xx n n dx x y x f y x y 0))(,()(10的构造过程的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1解的存在唯一性定理与逐次逼近法一、教学目的:讨论Picard逼近法及一阶微分方程的解的存在与唯一性定理。
二、教学要求:熟练掌握Picard逼近法,理解解的存在唯一性定理的条件、结论及证明思路,会用Picard逼近法求近似解。
三、教学重点:Picard存在唯一性定理及其证明。
四、教学难点:解的存在唯一性定理的证明。
五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。
六、教学手段:传统板书与多媒体课件辅助教学相结合。
七、教学过程:3.1.1.解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。
在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。
而实际问题中所需要的往往是要求满足某种初始条件的解。
因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。
他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。
例如方程dy=dx过点(0,0)的解就是不唯一,易知0y=是方程过(0,0)的解,此外,容易验证,2=或更一般地,函数y x20 0() c<1x c y x c x ≤≤⎧=⎨-≤⎩ 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。
解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。
另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。
而解的存在唯一性定理保证了所求解的存在性和唯一性。
一.存在性与唯一性定理: 1、 显式一阶微分方程),(y x f dxdy= (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。
定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y ,2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ϕ=,在区间0||x x h -≤上连续,而且满足初始条件00()x y ϕ= (3.3)其中,min(,),max (,)x y R bh a M f x y M∈==,L 称为Lipschitz 常数。
思路: 1) 求初值问题的解等价于积分方程00(,)xx y y f x y dx =+⎰的连续解。
2)构造近似解函数序列{()}n x ϕ任取一个连续函数0()x ϕ,使得00|()|x y b ϕ-≤,替代上述积分方程右端的y ,得到0100()(,())xx x y f x x dx ϕϕ=+⎰如果10()()x x ϕϕ≡,那么0()x ϕ是积分方程的解,否则,又用1()x ϕ替代积分方程右端的y ,得到 0201()(,())xx x y f x x dx ϕϕ=+⎰如果21()()x x ϕϕ≡,那么1()x ϕ是积分方程的解,否则,继续进行,得到001()(,())xn n x x y f x x dx ϕϕ-=+⎰ (3.4)于是得到函数序列{()}n x ϕ。
3)函数序列{()}n x ϕ在区间00[,]x h x h -+上一致收敛于()x ϕ,即lim ()()n n x x ϕϕ→∞=存在,对(3.4)取极限,得到00010lim ()lim (,()) =(,())xn n x n n xx x y f x x dxy f x x dx ϕϕϕ-→∞→∞=++⎰⎰即00()(,())xx x y f x x dx ϕϕ=+⎰.4) )(x ϕ是积分方程00(,)xx y y f x y dx =+⎰在00[,]x h x h -+上的连续解。
这种一步一步求出方程解的方法——Picard 逐步逼近法。
在定理的假设条件下,分五个命题来证明定理。
为了讨论方便,只考虑区间00x x x h ≤≤+,对于区间00x h x x -≤≤的讨论完全类似.命题1 设()y x ϕ=是方程),(y x f dxdy= (3.1)定义于区间00x x x h ≤≤+上,满足初始条件00()x y ϕ=(3.3)的解,则()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰,00x x x h ≤≤+ (3.5)的定义于00x x x h ≤≤+上的连续解,反之亦然。
证明 因为()y x ϕ=是方程(3.1)满足00()x y ϕ=的解,于是有()(,())d x f x x dxϕϕ= 两边取0x 到x 的积分得到0()()(,())xx x x f x x dx ϕϕϕ-=⎰ 00x x x h ≤≤+即有00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+所以()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义在区间00x x x h ≤≤+上的连续解.反之,如果()y x ϕ=是积分方程(3.5)上的连续解,则00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+ (3.6)由于),(y x f 在R 上连续,从而(,())f x x ϕ连续,两边对x 求导,可得()(,())d x f x x dxϕϕ= 而且 00()x y ϕ=, 故()y x ϕ=是方程(3.1)定义在区间00x x x h ≤≤+上,且满足初始条件00()x y ϕ=的解。
构造Picard 的逐次逼近函数序列{()}n x ϕ.0000100()()(,()) x nn x x y x y f d x x x h ϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1,2,)n =L (3.7)命题2 对于所有的n ,(3.7)中的函数()n x ϕ在00x x x h ≤≤+上有定义,连续且满足不等式 0|()|n x y b ϕ-≤ (3.8) 证明 (用数学归纳法证明)当1n =时,0100()(,)xx x y f y d ϕξξ=+⎰,显然1()x ϕ在00x x x h ≤≤+上有定义、连续且有010000|()||(,)||(,)|()x xx x x y f y d f y d M x x Mh b ϕξξξξ-=≤≤-≤≤⎰⎰即命题成立。
假设n k =命题2成立,也就是在00x x x h ≤≤+上有定义、连续且满足不等式 0|()|k x y b ϕ-≤当1n k =+时, 010()(,())xk k x x y f dx ϕξϕξ+=+⎰由于),(y x f 在R 上连续,从而(,())k f x x ϕ在00x x x h ≤≤+上连续,于是得知1()k x ϕ+在00x x x h ≤≤+上有定义、连续,而且有100|()||(,())|()xk k x x y f d M x x Mh b ϕξϕξξ+-≤≤-≤≤⎰即命题2对1n k =+时也成立.由数学归纳法知对所有的n 均成立。
命题3 函数序列{()}n x ϕ在00x x x h ≤≤+上是一致收敛的。
记lim ()()n n x x ϕϕ→∞=,00x x x h ≤≤+证明 构造函数项级数011()[()()]k k k x x x ϕϕϕ∞-=+-∑ 00x x x h ≤≤+ (3.9)它的部分和为 011()()[()()]()nn k k n k S x x x x x ϕϕϕϕ-==+-=∑于是{()}n x ϕ的一致收敛性与级数(3.9)的一致收敛性等价. 为此,对级数(3.9)的通项进行估计.01000|()()||(,())|()xx x x f d M x x ϕϕξϕξξ-≤≤-⎰ (3.10)2110|()()||(,())(,())|xx x x f f d ϕϕξϕξξϕξξ-≤-⎰由Lipschitz 条件得知002110020|()()||()()|ξ() ()2!xx xx x x L d L M x d MLx x ϕϕϕξϕξξξ-≤-≤-≤-⎰⎰设对于正整数n ,有不等式110|()()|() !n n n n ML x x x x n ϕϕ---≤- 成立,则由Lipschitz 条件得知,当00x x x h ≤≤+时,有000111010|()()||(,())(,())| |()()|ξ() ! ()(+1)!xn n n n x xn n x n x nx nn x x f f d L d ML x d n ML x x n ϕϕξϕξξϕξξϕξϕξξξ+--+-≤-≤-≤-≤-⎰⎰⎰于是由数学归纳法可知, 对所有正整数k ,有1110|()()|() !!k k kk k k ML ML x x x x h k k ϕϕ----≤-≤ 00x x x h ≤≤+ (3.11)由正项级数11!kK k h MLk ∞-=∑ 的收敛性,利用Weierstrass 判别法,级数(3.9)在00x x x h ≤≤+上一致收敛.因而序列{()}n x ϕ在00x x x h ≤≤+上一致收敛。
设lim ()()n n x x ϕϕ→∞=,则()x ϕ也在00x x x h ≤≤+上连续,且 0|()|x y b ϕ-≤ 命题4 ()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.证明 由Lipschitz 条件|(,())(,())||()()|n n f x x f x x L x x ϕϕϕϕ-≤-以及{()}n x ϕ在00x x x h ≤≤+上一致收敛于()x ϕ,可知(,())n f x x ϕ在00x x x h ≤≤+上一致收敛于(,())f x x ϕ.因此000101lim ()lim (,())=lim (,())xn n x n n xn x n x y f d y f d ϕξϕξξξϕξξ-→∞→∞-→∞=++⎰⎰即 00()(,()) xn x x y f d ϕξϕξξ=+⎰故()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解。