信号与系统第二章时域分析方法
第二章 信号与系统的时域分析
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t
x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,
信号与系统第二章第一讲
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
3信号分析基础2(时域相关分析)
T
0
x (t )dt S x ( f )df
2
1 2 S x lim X f T T
信号的频域分析
自功率谱密度函数是偶函数,它的频率范围 (,) , 又称双边自功率谱密度函数。它在频率范围 (,0) 的函数值是其在 (0, ) 频率范围函数值的对称映射, 因此 Gx ( f ) 2Sx ( f ) 。
x(t - τ)
自相关函数的性质 自相关函数为实偶函数
Rx ( ) Rx ( )
1 T 证明: Rx ( ) lim x(t ) x(t )dt T T 0 1 T lim x(t ) x(t )d (t ) T T 0 Rx ( )
波形变量相关的概念(相关函数 )
如果所研究的变量x, y是与时间有关的函数, 即x(t)与y(t):
x(t)
y(t)
2.4信号的时差域相关分析 这时可以引入一个与时间τ有关的量,称为 函数的相关系数,简称相关函数,并有:
x ( t ) y ( t ) dt xy ( ) 2 [ x ( t ) dt y 2 ( t ) dt ]1/ 2
2 2 x x
自相关函数的性质
周期函数的自相关函数仍为同频率的周期函数
1 Rx ( nT ) lim T T 1 lim T T
T 0 T 0
x(t nT ) x(t nT )d (t nT ) x(t ) x(t )d (t ) Rx ( )
相关函数反映了二个信号在时移中的相关性。
x(t) y(t) y(t) y(t) y(t)
2.2.2 自相关(self-correlation)分析
信号与系统教案第2章
bm f
( m)
(t ) bm1 f
( m1)
ai 、 bj为常数。
2.1 LTI连续系统的响应
经典时域分析方法 y(t ) yh (t ) yp (t ) 卷积法
y(t) = yzi (t) + yzs (t)
一、经典时域分析方法(微分方程经典解)
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为 单位冲激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
h t T 0 , t
def
h t
t
信号与系统 电子教案
第二章 连续系统的时域分析
《信号与系统》
授课教师:吕晓丽
第2-1页
■
长春工程学院电子信息教研室
信号与系统 电子教案
第二节总结
总
结
1、LTI系统的判定方法 线性性质 时不变性质 2、 LTI系统的分类 因果系统 稳定系统 3、系统的描述 系统框图与系统方程
第2-2页
■
长春工程学院电子信息教研室
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et ε(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) C1e
信号与系统分析第二章 连续时间系统的时域分析
第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
信号与系统讲义-2
f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)
2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
,
d
02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2
R L
duc dt
1 LC
uc
1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2
第2章 时域离散信号和系统的频域分析
3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于
(
例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。
信号与系统 时域分析
2. 周期冲激信号定义
δ T ( t − t0 ) = ∑ δ ( t − t0 -nT )
−∞
∞
(2-1-7)
δT ( t )
3. 周期冲激信号波形
−T
0 T
2T
3T
t
2 信号与系统的时域分析
2.1.3 阶跃信号
1.阶跃信号(Step Signal)描述
(4)尺度特性
1 δ (at ) = δ ( t ) a b 1 δ (-at + b) = δ ( t − ) a a
2 信号与系统的时域分析
4. 冲激信号的性质
(5)冲激偶函数
dδ (t ) δ (t ) = dt
'
冲激函数的微分为具有正、负极性的一对冲激 (其强度无穷大),称作冲激偶函数。
Aδ ( t )
2.1.3 阶跃信号
4. 阶跃信号波形
Au( t − t0 )
A
0
A u[ n − N 0 ]
t0
连续
t
离散
2 信号与系统的时域分析
2.1.3 阶跃信号
5. 冲激信号和阶跃信号的关系
冲激信号的积分是阶跃信号:
U (t) =
∫
t −∞
δ (τ ) d τ
阶跃信号的微分为冲激信号:
dU ( t ) δ (t) = dt
(2-1-11)
2 信号与系统的时域分析
2.1.4 符号信号
3.符号信号波形
ASgn( t )
A
0 −A
连续
A Sgn[ n ]
t
离散
2 信号与系统的时域分析
第2章信号与系统的时域分析
f 1 ( )
2012-8-10
f 2 ( t ) dt f 2 ( )
f 1 ( t ) dt 0
30
性质4 卷积时移连续信号与系统的时域分析 第2章
2012-8-10
31
第 2 章 连续信号与系统的时域分析
由卷积时移性质还可进一步得到如下推论:
若f1(t)*f2(t)=y(t), 则
n 1
( n 1 )!
2
( t ), ,
t
2
( t ), t ( t ), ( t ), ( t ),
n
2
d (t ) d (t ) d (t ) , , , , 2 n 2012-8-10 dt dt dt
3
第 2 章 连续信号与系统的时域分析
,
f 1 ( t t1 ) f 2 ( t t 2 ) y ( t t1 t 2 )
式中,t1和t2为实常数。
(2.2-21)
2012-8-10
32
第 2 章 连续信号与系统的时域分析
例 2.2 – 2 计算常数K与信号f(t)的卷积积分。 解 直接按卷积定义, 可得
K f (t ) f (t ) K
性质3 卷积的微分和积分
证
2012-8-10
27
第 2 章 连续信号与系统的时域分析
(2) 应用式(2.2 - 8)及卷积运算的结合律, 可得
2012-8-10
28
第 2 章 连续信号与系统的时域分析
(3) 因为
2012-8-10
29
第 2 章 连续信号与系统的时域分析
同理,可将f2(t)表示为
[信号与系统作业解答]第二章
特征方程为 2 3 2 0 ,特征根为 1
1和 2
2。
所以rzi(t) C1e t C2e 2t, t 0
将 rzi(0 ) r (0 ) 2 和rzi(0 ) r(0 ) 1代入可求得
g(t) 1 e 12t cos 3 t 2
1 e 12t sin 3 t u(t)
3
2
由于系统的冲激响应h(t) h(t) e 12t cos 3 t
2
d g(t) ,所以系统的冲激响应为 dt
1 e 12t sin 3 t u(t)
3
2
3)系统的冲激响应满足方程
d dt
h(t)
2h(t)
(t) 3 (t)
电容两端电压不会发生跳变,vc(0 ) vc(0 ) 10V ,所以i(0 ) 0 ;
因此,电阻两端无电压,电感两端电压变成 10V,所以i (0 ) 10 。
(2)换路后系统的微分方程为
i (t) i (t) i(t) e (t) e(t) 20u(t)
t 0 时间内描述系统的微分方程为
i (t) i (t) i(t) 20 (t)
e(t) (1) 0 (2)
整理得:
2vo(t) 5vo(t) 5vo(t) 3vo(t) 2e (t)
2-4 已知系统相应的齐次方程及其对应的 0+状态条件,求系统的零输入响应。
1)
d2 dt 2
r(t)
2
d dt
r(t
)
2r(t)
0 ,给定r(0 )
1 ,r (0 )
2
信号与系统-线性系统分析__第二章
一.微分方程的经典解法
• n阶常系数线性微分方程
n
m
aiy(i) (t) bjf (j) (t)
i0
j0
(an 1)
y(n) (t) an-1y(n-1)(t) a0y(t)
bmf (m) (t) bm-1f (m-1)(t) b0f(t)
微分方程的全解由齐次解yh(t)和特解yp(t)组成
上例中,可令f(t)=10ejt,得解为 yp(t)=(1−j)ejt=cost+sint+j(sint−cost)
▪ 求微分方程也就是确定解的形式与全部待定系数。 ▪ 解的形式根据表2−1和表2−2确定,待定系数由初始
条件求出。
11
• 用算子方法求微分方程
微分算子:p d dt
积分算子:1 t ( )d
Pet (i) 或 et[Prtr+Pr−1tr−1+…+P0]
Pcos(t)+Qsin(t) 或 Aetcos(t+)
5
f(t)为常数1时,则特解为b0/a0。 考察函数f(t)在t0时作用,则全解的定义域[0,)。
全解由齐次解和特解组成,待定常数由初始条件y(0)、
y(1)(0)、…、y(n−1)(0)确定。
j1
j1
自由响应:由系统 本身的特性确定的 响应形式
强迫响应:由激 励信号确定的响 应形式
当输入信号含有阶跃函数或有始的周期函数时,系 统的全响应可分解为瞬态响应和稳态响应。
18
例:微分方程为 y''(t)+3y'(t)+2y(t)=2f '(t)+6f(t);
初始状态y(0−)=2,y'(0−)=1;输入函数f(t)=(t)。 求零输入响应和零状态响应。
信号与系统概论PPT第二章线性时不变系统的时域分析2
f t* t t0 f t t0
2) 信号与阶跃信号的卷积等于信号积分
f t*ut t0 f t* 1t t0 f t* t t0 1 f 1 t t0
第三节 卷积与卷积和、解卷积
卷积重要性质: 3) 信号与冲激偶的卷积等于信号微分
t
2
t
2
*
r
t
2
r
t
2
r t r t r t r t
r t 2r t r t
f(t)
f(t)
1
1
=
0 t 22
(a)
0 t 22
(b)
f΄(t)
f (-1)(t)
1
2 0 2
τ
t
0
22
=
t
(c)
(d)
f(t)f(t) τ
-τ 0 τ t 22
m
f1 m f2 n m mMaxn,0
第三节 卷积与卷积和、解卷积
重要结论:信号与冲激信号(脉冲信号) 的卷积(卷积和),其结果就是对该信号 进行移位,位移量取决于冲激(脉冲)信 号出现的位置。该结论也可视作信号通过 移位系统得到的零状态响应。
f
t*δt
t0
f
t
δ
t0 d
f
t
注意此处的 处理方式
ut 1 t1e d ut 1 t1e d
0
0
1
1
e t 1
u t Hale Waihona Puke 1 et1u t 1
例2-8:计算 cost* t 1 t 1
解:
M
M
f t* wi t ti wi f t ti
信号与系统(郑君里)第二版 讲义 第二章
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
郑君里信号与系统习题解答第二章
第二章 连续时间系统的时域分析经典法:双零法卷积积分法:求零状态响应求解系统响应→定初始条件满足换路定则起始点有跳变:求跳变量零输入响应:用经典法求解零状态响应:卷积积分法求解()()()()⎩⎨⎧==-+-+0000L L c c i i u u例题•例题1:连续时间系统求解(经典法,双零法) •例题2:求冲激响应(n >m ) •例题3:求冲激响应(n <m ) •例题4:求系统的零状态响应 •例题5:卷积 •例题6:系统互联例2-1分析在求解系统的完全响应时,要用到有关的三个量是: :起始状态,它决定零输入响应;()()()()()()()()()强迫响应。
状态响应,自由响应,并指出零输入响应,零,求系统的全响应,已知 系统的微分方程为描述某t u t e r r t e t t e t r t t r t t r =='=+=++--,00,206d d 22d d 3d d LTI 22()-0)(k r ⎩⎨⎧状态变量描述法输出描述法—输入建立系统的数学模型:跳变量,它决定零状态响应; :初始条件,它决定完全响应;这三个量之间的关系是 分别利用 求零状态响应和完全响应,需先确定微分方程的特解。
解:方法一:利用 先来求完全响应,再求零输入响应,零状态响应等于完全响应减去零输入响应。
方法二:用方法一求零输入响应后,利用跳变量 来求零状态响应,零状态响应加上零输入响应等于完全响应。
本题也可以用卷积积分求系统的零状态响应。
方法一1. 完全响应 该完全响应是方程 (1)方程(1)的特征方程为 特征根为 方程(1)的齐次解为因为方程(1)在t >0时,可写为 (2)显然,方程(1)的特解可设为常数D ,把D 代入方程(2)求得 所以方程(1)的解为下面由冲激函数匹配法定初始条件 由冲激函数匹配法定初始条件 据方程(1)可设代入方程(1),得匹配方程两端的 ,及其各阶导数项,得 所以,所以系统的完全响应为()+0)(k zsr ()+0)(k r ()()()+-+=-000)()()(k zs k k r r r ()()++00)()(k k zs r r ,()()代入原方程有将t u t e =()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()++'0,0r r ()()++''0,0zs zs r r ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足00,20='=--r r 0232=++αα2121-=-=αα,()t t e A e A t r 221--+=()()()()t u t r t t r tt r 62d d 3d d 22=++3=D ()3221++=--tt e A e A t r ()()()t u b t a t t r ∆+=δ22d d ()()t u a t t r ∆=d d ()无跳变t r ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ2=a ()t δ()()22000=+=+'='-+a r r ()()200==-+r r ()()代入把20,20=='++r r ()3221++=--t t e A e A t r 1,021-==A A 得()0 32≥+-=-t e t r t ()t r zi 再求零输入响应2.求零输入响应 (3)(3)式的特征根为 方程(3)的齐次解即系统的零输入响应为所以,系统的零输入响应为 下面求零状态响应零状态响应=完全响应—零输入响应,即 因为特解为3,所以强迫响应是3,自由响应是方法二(5)以上分析可用下面的数学过程描述 代入(5)式 根据在t =0时刻,微分方程两端的 及其各阶导数应该平衡相等,得 于是t >0时,方程为 齐次解为 ,特解为3,于是有所以,系统的零状态响应为方法一求出系统的零输入响应为()是方程响应因为激励为零,零输入t r zi ()()()02d 3d d 22=++t r dt t r t t r ()()()()()()的解.,且满足 0000 2000='='='===--+--+r r r r r r zi zi zi zi 2121-=-=αα,()t t zi e B e B t r 221--+=()()式解得,代入,由)4(0020='=++zi zi r r 2,421-==B B ()0 242≥-=--t e e t r t t zi ()0 342≥++-=--t e e t r t t zs t t e e 24--+-()是方程零状态响应t r zs ()()()()()t u t t r t t r t t r 622d d 3d d 22+=++δ()()的解且满足000='=--zs zs r r ()项由于上式等号右边有t δ()应含有冲激函数,,故t r zs "()将发生跳变,即从而t r zs '()()-+'≠'00zs zs r r ()处是连续的.在而0=t t r zs ()()()()()t u a t r t t u b t a t r tzs zs∆=+∆+=+d d ,d d 22δ()()()()()()t u t t r t u a t u b t a 6223+=+∆+∆+δδ()t δ2=a ()()()()002000===+'='-+-+zs zs zs zs r r a r r ()()()()t u t r t t r t t r 62d d 3d d 22=++ 221t t e D e D --+()3221++=--t t zi e D e D t r ()()得由初始条件0,200=='++zs zs r r 1,421=-=D D ()0) ( 342≥++-=--t e e t r t t zs ()0 242≥-=--t e e t r t t zi完全响应=零状态响应+零输入响应,即例2-2冲激响应是系统对单位冲激信号激励时的零状态响应。
信号与系统第二章
§2.1 经典时域解法
2 连续时间信号与系统的时域分析
2.1.1 微分方程式的建立与求解
1.物理系统的模型
•许多实际系统可以用线性系统来模拟。
•若系统的参数不随时间而改变,则该系统可以用
线性常系数微分方程来描述。
2 连续时间信号与系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网络
2 连续时间信号与系统的时域分析
2 冲激函数匹配法 配平的原理:t =0 时刻微分方程左右两端的δ(t) 及各阶导数应该平衡.
【例】
d y t 3 y t 3 t 已知y0 , 求y0 dt
ut : 表示0 到0 相对单位跳变函数
该过程可借助数学描述
所以系统响应的完全解为
需要注意的: 特解的函数形式由系统所加的激励决定,齐次解 的函数形式完全取决于特征方程的根。 由于构成系统的各元件本身所遵从的规律、系统 的结构与参数决定了微分方程的阶次与系数,因此, 齐次解只与系统本身特性有关。
2 连续时间信号与系统的时域分析
2.1.2 从 到 状态的转换
2 连续时间信号与系统的时域分析
齐次解:由特征方程→求出特征根→写出齐次解形式 注意重根情况处理方法。 特 解:根据微分方程右端函数式形式,设含待定系 数的特解函数式→代入原方程,比较系数 定出特解。
完全解:齐次解和特解相加, 齐次解中的待定系数可通过初始条件求得.
在系统分析中,响应区间定义为激励信号 加 入后系统的状态变化区间。系统响应的求解区间为
a 3 即 b 9 c 9
即 y0 y0 9
2 连续时间信号与系统的时域分析
冲激函数匹配法实现过程中应注意的问题: (1) 对于冲激函数只匹配 及其各阶导数项, 微分方程两端这些函数项都对应相等。 (2) 匹配从方程左端 的最高阶项开始,首 先使方程右端冲激函数最高阶次项得到匹配,在已 匹配好的高阶次冲激函数项系数的条件下,再匹配 低阶项。 (3) 每次匹配方程低阶冲激函数项时,如果方 程左端所有同阶次冲激函数各项系数之和不能和右 端匹配,则由左端 高阶项中补偿。
信号与系统(教案) 第二章
二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分
第2章-连续时间信号与系统的时域分析PPT课件
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。
信号与系统 第二章 线性时不变系统的时域分析
外加信号 常数A
特解 常数B
r 1i k t i r 1 i 1
tr
sin t或cos t
eλt
k1 cost k2 sin t keλt, λ不是方程的特征根 kteλt, λ是方程的特征根
k t
i 1 i
r 1
r 1i t
e , λ是方程的r阶特征重根
一、微差分方程的建立以及经典解法
'' 1
di1 (t ) 1 t L i2 ( )d R2i2 (t ) f (t ) dt C
一、微差分方程的建立以及经典解法
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
(1)
t
i ( )d
1 (2) Li (t ) i2 (t ) R2i2 ' (t ) f ' (t ) C 1 ( R2i2 i2 ( )d ) 1 U C i2 (t ) y (t ) (3) i1 i2 i2 (4) R2 R1 R1
例题,已知线性时不变系统方程如下: y˝(t)+6y΄(t)+8y(t)= f(t), t>0. 初始条件y(0)=1, y΄(0)=2,输入信号f(t)=e-tu(t) , Q求系统的完全响应y(t)。
解:1)求方程的齐次解 特征方程为:m2+6m+8=0 显然特征根为:m1=-2,m2=-4
故原方程的齐次解为:yn(t)= Ae-2t+Be-4t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
izi
0
iL
0
dizi 0
dt
1 R1C
izi
0
iL
0
2A
s
02
系统数学模型的建立
03 用时域经典法求解微分方程
04
起始点的跳变
05
零输入响应与零状态响应
06
冲激响应与阶跃响应
由基本信号所产生的响应
由单位冲激函数δ(t)所引起的零状态响应称为单位冲激响应,简 称冲激响应,记为h(t)。
n
r t Aieit rp t i 1
一般对于n阶微分方程(n阶系统),需n个边界条件,如
在t=0时刻的状态,r(0),
d dt
r 0,L
d n1 , dt n1
r 0
作为边界条件
对完全解的一般表达式求导,将各式(边界条件)代入可得P47
r 0 rp 0
a 2 系数匹配: b 2
c 2
i
0
i
0
a
2
d dt
i
0
d dt
i
0
b
2
d2 dt 2
i
0
d2 dt 2
i
0
c
2
因此:i
0
2
i
0
14 5
d dt
i
0
2
d dt
d n1 dt n1
r r
0 0
d dt
rp
M
d n1 dt n1
0
rp 0
1
1
M
1n1
1 2 M n1
2
L 1 A1
L
n
A2
范德蒙(Vandermonde)矩阵
d2 dt 2
i
t
a
t
b
t
cu
t
d dt
i
t
a
t
bu
t
代入
i t au t
a t b t cu t 7a t bu t 10au t
2 t 12 t 8u t
① 建立微分方程:列回路方 程及节点方程,目标
R1i t vc t e t
vc
t
L
diL t
dt
iL
t
R2
i
t
iC
t
iL
t
C
dvc t
dt
iL
t
消去 iL t 、vC t 中间变量并代入参数得
d2 dt 2
明德至诚 博学远志
信号与系统
第二章 连续时间系统的时域分析
钱慧
02
系统数学模型的建立
03 用时域经典法求解微分方程
04
起始点的跳变
05
零输入响应与零状态响应
06
冲激响应与阶跃响应
02
系统数学模型的建立
03 用时域经典法求解微分方程
04
起始点的跳变
05
零输入响应与零状态响应
06
冲激响应与阶跃响应
在此输入您的标题内容
Em1
de t
dt
Eme
t
在 nm
,齐次解包含
h
t
n
Ak
ek t
u
t
k 1
n m 齐次解包含其他导数项 mn t , mn1 t ,L , t
微分方程的特征根为-1,-3。故系统的冲激响应为 h(t)=(A1e-t + A2e-3t)u(t)
可以用 t 与 u t 关系由 h t 求 g t
t
ht
u t
LTI
g t
u t
t
d
g t
t h
d
t
0
h
d
t 0
课程内容小结
经典时域分析方法 零输入响应&零状态响应
第24页 Page 24
Recall:
d2 dt 2
i
t
7
d dt
i
t
10i
t
d2 dt 2
e
t
6
d dt
e
t
4e
t
① rzi t
等效电路
vc
0
6 5
V
,
iL
0
4V 5
izi
0
1 R1
vc
0
6 5
A
ic
0
C
d dt
vc
0
C
d dt
R1izi
对冲激响应进行逐步求解
dht
dt
A1
A2
t
( A1et
3A2e3t
)u
t
d 2ht dt 2
A1
A2
t
( A1
3A2 )
t
A1et 9 A2e3t
u t
A1 A2 t 3A1 A2 t
与其对应的右端为
t 2 t
3AA1 1AA2 212
A1
1 2
A2
1 2
对应的冲激响应的表示为
ht 1 et e3t u t 2
系统对 u t 的零状态响应 g t
g t 求法与 h t 类似,但可能有强迫项
时域分 析方法
在分析的过程中,涉及
的函数变量为时间“t”,
因此称为时域分析方法。 主要的方式归结为: 建立并求解微分方程(数学 模型)——端口描述
et 连续时间系 r t
统
微分方程解的结构
完全解= 齐次解+ 特解 见书P51页:表2-3
et 连续时间系 r t
统
齐次解
特征方程 齐次解
求根得到 1,L ,,n n个根,-> A1e1t A2e2t L Anent 为齐次解
(2) 特解:由激励形式决定,查表 -> P46
完全解:
rp t
A1e1t
144
A2e2t L
4 44 2 4 4 4
齐次(自由)
Anent
4 43
r{p t
06
冲激响应与阶跃响应
输入 et 连续时间系 r t
统
输出=齐次解+特解 齐次解:固有频率 特解:强迫响应
LTI系统——线性可加性
零输入响应
零状态响应
t
t
t 0 输入=无输入(起始状态)+输入(无起始状态)
输出=零输入响应+零输出响应
举例说明: 仍以上例进行说明,分别求零输入响应和零状响应
下节课内容
卷积积分
第25页 Page 25
题1 求如下图所示的一个连续时间系统的阶跃响应及冲激响应
et
1
3
2
2
r t
Page 26
第27页
谢谢大家
求解冲激响应,用冲激函数匹配法
在 t 作用下,等式右端将出现 t 及其导数项
C0
d nr t d n1r t
dtn C1 dtn1 L
Cn1
dr t
dt
Cn r
t
E0
d me t
dtm E1
d m1e t
L dt m1
特解(强迫)
(3) 定系数 A1,L , An ,最关键的一步,也是最难的一步。
需要根据实际电路及激励源确定一组边界条件,其难点在于确定这组边界条件
02
系统数学模型的建立
03 用时域经典法求解微分方程
04
起始点的跳变
05
零输入响应与零状态响应
06
冲激响应与阶跃响应
“换路”
例题:(1) 解题步骤,基本方法 (2)求0+状态
10B 16
B8 5
i t
A1
e2t
A2e5t
8 5
③ 确定 A1, A2
需要确定
i0
和
d dt
i
0
t 0
e t 2 2u t